Unicode®

H.I

The use of inconsistent character encodings (i.e., numeric values associated with charac-
ters) when developing global software products causes serious problems because comput-
ers process information using numbers. For example, the character “a” is converted to a
numeric value so that a computer can manipulate that piece of data. Many countries and
corporations have developed encoding systems that are incompatible with the encoding
systems of other countries and corporations. For example, the Microsoft Windows oper-
ating system assigns the value 0xC0 to the character “A with a grave accent,” while the Ap-
ple Macintosh operating system assigns the same value to an upside-down question mark.
This results in the misrepresentation and possible corruption of data.

In the absence of a universal character encoding standard, global software developers
had to localize their products extensively before distribution. Localization includes the
language translation and cultural adaptation of content. The process of localization usually
includes significant modifications to the source code (e.g., the conversion of numeric
values and the underlying assumptions made by programmers), which results in increased
costs and delays in releasing the software. For example, an English-speaking programmer
might design a global software product assuming that a single character can be represented
by one byte. However, when those products are localized in Asian markets, the pro-
grammer’s assumptions are no longer valid because there are many more Asian characters,
and therefore most, if not all, of the code needs to be rewritten. Localization is necessary
with each release of a version. By the time a software product is localized for a particular
market, a newer version, which needs to be localized as well, can be ready for distribution.
As a result, it’s cumbersome and costly to produce and distribute global software products
in a market where there’s no universal character encoding standard.

In response to this situation, the Unicode Standard, an encoding standard that facil-
itates the production and distribution of software, was created. The Unicode Standard
outlines a specification to produce consistent encoding of the world’s characters and sym-

4| ®

‘ @;LE jhtp_appH_Unicode.fm Page 2 Wednesday, June 21,2017 3:29 PM

H 2 Appendix H Unicode®

bols. Software products which handle text encoded in the Unicode Standard need to be
localized, but the localization process is simpler and more efficient because the numeric
values need not be converted and the assumptions made by programmers about the char-
acter encoding are universal. The Unicode Standard is maintained by a non-profit organi-
zation called the Unicode Consortium, whose members include Apple, IBM, Microsoft,
Oracle, Sun Microsystems, Sybase and many others.

When the Consortium envisioned and developed the Unicode Standard, it wanted an
encoding system that was universal, efficient, uniform and unambiguous. A universal
encoding system encompasses all commonly used characters. An efficient encoding system
allows text files to be parsed quickly. A uniform encoding system assigns fixed values to all
characters. An unambiguous encoding system represents a given character in a consistent
manner. These four terms are referred to as the Unicode Standard design basis.

H.2 Unicode Transformation Formats

Although Unicode incorporates the limited ASCII character set (i.e., a collection of char-
acters), it encompasses a more comprehensive character set. In ASCII each character is rep-
resented by a byte containing Os and 1s. One byte is capable of storing the binary numbers
from 0 to 255. Each character is assigned a number between 0 and 255, thus ASCII-based
systems can support only 256 characters, a tiny fraction of the world’s characters. Unicode
extends the ASCII character set by encoding the vast majority of the world’s characters.
The Unicode Standard encodes characters in a uniform numerical space from 0 to 10FFFF
hexadecimal. An implementation will express these numbers in one of several transforma-
tion formats, choosing the one that best fits the particular application at hand.

Three such formats are in use, called UTF-8, UTF-16 and UTF-32. UTE-8, a vari-
able-width encoding form, requires one to four bytes to express each Unicode character.
UTF-8 data consists of 8-bit bytes (sequences of one, two, three or four bytes depending
on the character being encoded) and is well suited for ASCII-based systems when there’s
a predominance of one-byte characters (ASCII represents characters as one-byte). Cur-
rently, UTF-8 is widely implemented in UNIX systems and in databases.

The variable-width UTF-16 encoding form expresses Unicode characters in units of
16-bits (i.e., as two adjacent bytes, or a short integer in many machines). Most characters
of Unicode are expressed in a single 16-bit unit. However, characters with values above
FFFF hexadecimal are expressed with an ordered pair of 16-bit units called surrogates.
Surrogates are 16-bit integers in the range D800 through DFFF, which are used solely for
the purpose of “escaping” into higher numbered characters. Approximately one million
characters can be expressed in this manner. Although a surrogate pair requires 32 bits to
represent characters, it’s space-efficient to use these 16-bit units. Surrogates are rare char-
acters in current implementations. Many string-handling implementations are written in
terms of UTF-16. [Noze: Details and sample-code for UTF-16 handling are available on
the Unicode Consortium website at www.unicode.org.]

Implementations that require significant use of rare characters or entire scripts
encoded above FFFF hexadecimal, should use UTF-32, a 32-bit fixed-width encoding
form that usually requires twice as much memory as UTF-16 encoded characters. The
major advantage of the fixed-width UTF-32 encoding form is that it expresses all charac-
ters uniformly, so it’s easy to handle in arrays.

ﬁ%

4| ®

‘ @;LE jhtp_appH_Unicode.fm Page 3 Wednesday, June 21,2017 3:29 PM

H.3 Characters and Glyphs H_3

There are few guidelines that state when to use a particular encoding form. The best
encoding form to use depends on the computer system and business protocol, not on the
data itself. Typically, the UTF-8 encoding form should be used where computer systems
and business protocols require data to be handled in 8-bit units, particulatly in legacy sys-
tems being upgraded, because it often simplifies changes to existing programs. For this
reason, UTF-8 has become the encoding form of choice on the Internet. Likewise, UTF-
16 is the encoding form of choice on Microsoft Windows applications. UTF-32 is likely
to become more widely used in the future as more characters are encoded with values
above FFFF hexadecimal. UTF-32 requires less sophisticated handling than UTF-16 in
the presence of surrogate pairs. Figure H.1 shows the different ways in which the three
encoding forms handle character encoding.

LATIN CAPITALLETTERA 0x41 0x0041 0x00000041
GREEK CAPITAL LETTER 0xCD 0x91 0x0391 0x00000391
ALPHA

CJK UNIFIED IDEO- 0xE4 0xBA 0x95 0x4E95 0x00004E95
GRAPH-4E95

OLD ITALIC LETTER A 0xFO0 0x80 0x83 0x80 0xDCO00 0xDF00 0x00010300

Fig. H.1 | Correlation between the three encoding forms.

H.3 Characters and Glyphs

The Unicode Standard consists of characters—written components (i.e., alphabets, num-
bers, punctuation marks, accent marks, etc.) that can be represented by numeric values.
An example of such a character is U+0041 LATIN CAPITAL LETTER A. In the first
character representation, U+yyyy is a code value, in which U+ refers to Unicode code val-
ues, as opposed to other hexadecimal values. The yyyy represents a four-digit hexadecimal
number of an encoded character. Code values are bit combinations that represent encoded
characters. Characters are represented using glyphs—various shapes, fonts and sizes for
displaying characters. There are no code values for glyphs in the Unicode Standard. Ex-
amples of glyphs are shown in Fig. H.2.

The Unicode Standard encompasses the alphabets, ideographs, syllabaries, punctua-
tion marks, diacritics, mathematical operators and other features that comprise the written
languages and scripts of the world. A diacritic is a special mark added to a character to dis-
tinguish it from another letter or to indicate an accent (e.g., in Spanish, the tilde “~” above
the character “n”). Currently, Unicode provides code values for 96,382 character repre-
sentations, with more than 878,000 code values reserved for future expansion.

AA A A A A

Fig. H.2 | Various glyphs of the character A.

e 4| ®

‘ é% jhtp_appH_Unicode.fm Page 4 Wednesday, June 21,2017 3:29 PM

H 4 Appendix H Unicode®

H.4 Advantages/Disadvantages of Unicode

The Unicode Standard has several significant advantages that promote its use. One is the
impact it has on the performance of the international economy. Unicode standardizes the
characters for the world’s writing systems to a uniform model that promotes transferring
and sharing data. Programs developed using such a schema maintain their accuracy be-
cause each character has a single definition (i.e., 2 is always U+0061, % is always U+0025).
This enables corporations to manage the high demands of international markets by pro-
cessing different writing systems at the same time. All characters can be managed in an
identical manner, thus avoiding any confusion caused by different character-code archi-
tectures. Moreover, managing data in a consistent manner eliminates data corruption, be-
cause data can be sorted, searched and manipulated using a consistent process.

Another advantage of the Unicode Standard is portability (i.e., software that can exe-
cute on disparate computers or with disparate operating systems). Most operating systems,
databases, programming languages (including Java and Microsoft’s .NET languages) and
web browsers currently support, or are planning to support, Unicode.

A disadvantage of the Unicode Standard is the amount of memory required by UTE-
16 and UTF-32. ASCII character sets are 8-bits in length, so they require less storage than
the default 16-bit Unicode character set. The double-byte character set (DBCS) encodes
Asian characters with one or two bytes per character. The multibyte character set (MBCS)
encodes characters with a variable number of bytes per character. In such instances, the
UTF-16 or UTE-32 encoding forms may be used with little hindrance on memory and
performance.

Another disadvantage of Unicode is that although it includes more characters than
any other character set in common use, it does not yet encode all of the world’s written
characters. Also, UTF-8 and UTF-16 are variable-width encoding forms, so characters
occupy different amounts of memory.

H.5 Using Unicode

Numerous programming languages (e.g., C, Java, JavaScript, Perl, Visual Basic) provide
some level of support for the Unicode Standard. The application shown in Fig. H.3—
Fig. H.4 prints the text “Welcome to Unicode!” in eight different languages: English, Rus-
sian, French, German, Japanese, Portuguese, Spanish and Traditional Chinese.

import java.awt.GridlLayout;
import javax.swing.JFrame;
import javax.swing.JLabel;

public class UnicodelFrame extends JFrame

{

public UnicodeJFrame()

{

-0 Vo NONUE WN=

Fig. H.3 | Java application that uses Unicode encoding (Part | of 2.).

%

4| ®

‘ @;LE jhtp_appH_Unicode.fm Page 5 Wednesday, June 21,2017 3:29 PM

H.5 Using Unicode H 5

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

}

super()

setlLayout(new GridLayout(8, 1));

JLabel englishJLabel = new JLabel(

english]Label.setToolTipText(

add(englishJLabel);

JLabel chineselLabel = new JLabel(
)

chineselLabel.setToolTipText(

add(chinese]Label);

JLabel cyrillicJLabel = new JLabel(
cyrillicJLabel.setToolTipText(
add(cyrilliclLabel);

JLabel french]Label = new JLabel(

french]JLabel.setToolTipText(
add(french]Label);

JLabel germanJLabel = new JLabel(

german]Label.setToolTipText(

add(germanJLabel);

JLabel japanese]lLabel = new JLabel(
)

japaneseJlLabel.setToolTipText(

add(japanese]Label);
JLabel portuguesellLabel = new JLabel(

)
portuguesellLabel.setToolTipText(
add(portuguesellLabel);

JLabel spanish]Label = new JLabel(

)
spanishJLabel.setToolTipText(
add(spanish]Label);

+
)E
)H
+
)N
+
+
)5
)
+
);
);
+
);
);
+
)
+
+
s
+
+
)

Fig. H.3 | Java application that uses Unicode encoding (Part 2 of 2.).

ﬁ%

4| ®

‘ @;LE jhtp_appH_Unicode.fm Page 6 Wednesday, June 21,2017 3:29 PM

H_6 Appendix H Unicode®

|

2

3 dimport javax.swing.JFrame;

4

5 public class Unicode

6 {

7 public static void main(String[] args)

8 {

9 UnicodeJFrame unicodelFrame = new UnicodeJFrame();
10 unicodelFrame.setDefaultCloseOperation();
11 unicodeJFrame.setSize(,);
12 unicodeJFrame.setVisible()
13 }
14 3

| £:| Demonstrating Unicode EI@

Welcome to Unicode!

PRADER Unicode!

[o6po noxanoeaTs B Unicode!
Bienvenue au Unicode!
Wilkommen zu Unicode!
Unicode~.% 3 Z-&!

Séja Bermvindo Unicode!

Bienvenida a Unicode!

Fig. H.4 | Displaying Unicode.

Class UnicodeJFrame (Fig. H.3) uses escape sequences to represent characters. An
escape sequence is in the form \uyyyy, where yyyy represents the four-digit hexadecimal
code value. Lines 17-18 contain the series of escape sequences necessary to display “Wel-
come to Unicode!” in English. The first escape sequence (\u0057) equates to the character
“W,” the second escape sequence (\u0065) equates to the character “e,” and so on. The
\u0020 escape sequence (line 18) is the encoding for the space character. The \u0074 and
\UOO6F escape sequences equate to the word “to.” “Unicode” is not encoded because it’s a
registered trademark and has no equivalent translation in most languages. Line 18 also
contains the \u0021 escape sequence for the exclamation point (!).

Lines 22-56 contain the escape sequences for the other seven languages. The Unicode
Consortium’s website contains a link to code charts that lists the 16-bit Unicode code
values. The English, French, German, Portuguese and Spanish characters are located in
the Basic Latin block, the Japanese characters are located in the Hiragana block, the Russian
characters are located in the Cyrillic block and the Traditional Chinese characters are
located in the CJK Unified Ideographs block. The next section discusses these blocks.

H.6 Character Ranges

The Unicode Standard assigns code values, which range from 0000 (Basic Latin) to E007F
(Tags), to the written characters of the world. Currently, there are code values for 96,382
characters. To simplify the search for a character and its associated code value, the Unicode

e 4| ®

‘ %LE jhtp_appH_Unicode.fm Page 7 Wednesday, June 21,2017 3:29 PM

H.6 Character Ranges H_7

Standard generally groups code values by script and function (i.e., Latin characters are
grouped in a block, mathematical operators are grouped in another block, etc.). As a rule,
a script is a single writing system that is used for multiple languages (e.g., the Latin script
is used for English, French, Spanish, etc.). The Code Charts page on the Unicode Consor-
tium website lists all the defined blocks and their respective code values. Figure H.5 lists
some blocks (scripts) from the website and their range of code values.

Arabic

Basic Latin

Bengali (India)

Cherokee (Native America)

CJK Unified Ideographs (East Asia)
Cyrillic (Russia and Eastern Europe)
Ethiopic

Greek

Hangul Jamo (Korea)

Hebrew

Hiragana (Japan)

Khmer (Cambodia)

Lao (Laos)

Mongolian

Myanmar

Ogham (Ireland)

Runic (Germany and Scandinavia)
Sinhala (Sri Lanka)

Telugu (India)

Thai

Fig. H.5 | Some character ranges.

U+0600-U+06FF
U+0000-U+007F
U+0980-U+09FF
U+13A0-U+13FF
U+4E00-U+9FFF
U+0400-U+04FF
U+1200-U+137F
U+0370-U+03FF
U+1100-U+11FF
U+0590-U+05FF
U+3040-U+309F
U+1780-U+17FF
U+0E80-U+OEFF
U+1800-U+18AF
U+1000-U+109F
U+1680-U+169F
U+16A0-U+16FF
U+0D80-U+ODFF
U+0C00-U+0C7F
U+OE00-U+0E7F

4| ®

‘ jhtp_appH_Unicode.fm Page 8 Wednesday, June 21,2017 3:29 PM

H_8 Appendix H Unicode®

A

\

1IN

