
25Introduction to JShell:
Java 9’s REPL for
Interactive Java

O b j e c t i v e s
In this chapter you’ll:
■ See how using JShell can

enhance the learning and
software development
processes by enabling you to
explore, discover and
experiment with Java language
and API features.

■ Start a JShell session.
■ Execute code snippets.
■ Declare variables explicitly.
■ Evaluate expressions.
■ Edit existing code snippets.
■ Declare and use a class.
■ Save snippets to a file.
■ Open a file of JShell snippets

and evaluate them.
■ Auto-complete code and

JShell commands.
■ Display method parameters

and overloads.
■ Discover and explore with the

Java API documentation in
JShell.

■ Declare and use methods.
■ Forward reference a method

that has not yet been declared.
■ See how JShell wraps

exceptions.
■ Import custom packages for

use in a JShell session.
■ Control JShell’s feedback level.

jhtp_25_REPL.FM Page 1109 Tuesday, April 11, 2017 2:58 PM

1110 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.1 Introduction
As educators, it’s a joy to write this chapter on what may be the most important pedagogic
improvement in Java since its inception more than two decades ago. The Java communi-
ty—by far the largest programming language community in the world—has grown to
more than 10 million developers. But along the way, not much has been done to improve
the learning process for novice programmers. That changes dramatically in Java 9 with the
introduction of JShell—Java’s REPL (read-evaluate-print loop).1

25.1 Introduction
25.2 Installing JDK 9
25.3 Introduction to JShell

25.3.1 Starting a JShell Session
25.3.2 Executing Statements
25.3.3 Declaring Variables Explicitly
25.3.4 Listing and Executing Prior Snippets
25.3.5 Evaluating Expressions and Declaring

Variables Implicitly
25.3.6 Using Implicitly Declared Variables
25.3.7 Viewing a Variable’s Value
25.3.8 Resetting a JShell Session
25.3.9 Writing Multiline Statements

25.3.10 Editing Code Snippets
25.3.11 Exiting JShell

25.4 Command-Line Input in JShell
25.5 Declaring and Using Classes

25.5.1 Creating a Class in JShell
25.5.2 Explicitly Declaring Reference-Type

Variables
25.5.3 Creating Objects
25.5.4 Manipulating Objects
25.5.5 Creating a Meaningful Variable Name

for an Expression
25.5.6 Saving and Opening Code-Snippet Files

25.6 Discovery with JShell Auto-
Completion

25.6.1 Auto-Completing Identifiers
25.6.2 Auto-Completing JShell Commands

25.7 Exploring a Class’s Members and
Viewing Documentation

25.7.1 Listing Class Math’s static
Members

25.7.2 Viewing a Method’s Parameters
25.7.3 Viewing a Method’s Documentation

25.7.4 Viewing a public Field’s
Documentation

25.7.5 Viewing a Class’s Documentation
25.7.6 Viewing Method Overloads
25.7.7 Exploring Members of a Specific Object

25.8 Declaring Methods
25.8.1 Forward Referencing an Undeclared

Method—Declaring Method
displayCubes

25.8.2 Declaring a Previously Undeclared
Method

25.8.3 Testing cube and Replacing Its
Declaration

25.8.4 Testing Updated Method cube and
Method displayCubes

25.9 Exceptions
25.10 Importing Classes and Adding

Packages to the CLASSPATH
25.11 Using an External Editor
25.12 Summary of JShell Commands

25.12.1 Getting Help in JShell
25.12.2 /edit Command: Additional

Features
25.12.3 /reload Command
25.12.4 /drop Command
25.12.5 Feedback Modes
25.12.6 Other JShell Features Configurable

with /set
25.13 Keyboard Shortcuts for Snippet

Editing
25.14 How JShell Reinterprets Java for

Interactive Use
25.15 IDE JShell Support
25.16 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises

1. We’d like to thank Robert Field at Oracle—the head of the JShell/REPL effort. We interacted with
Mr. Field extensively as we developed Chapter 25. He answered our many questions. We reported
JShell bugs and made suggestions for improvement.

jhtp_25_REPL.FM Page 1110 Tuesday, April 11, 2017 2:58 PM

25.1 Introduction 1111

Instructors have indicated a preference in introductory programming courses for lan-
guages with REPLs—and now Java has a rich REPL implementation. And with the new
JShell APIs, third parties will build JShell and related interactive-development tools into
the major IDEs like Eclipse, IntelliJ, NetBeans and others. Java 9 and JShell are evolving
rapidly, so we’ve placed all our Java 9 content online—we’ll keep it up-to-date as Java 9
evolves.

What is JShell?
What’s the magic? It’s simple. JShell provides a fast and friendly environment that enables
you to quickly explore, discover and experiment with Java language features and its exten-
sive libraries. REPLs like the one in JShell have been around for decades. In the 1960s, one
of the earliest REPLs made convenient interactive development possible in the LISP pro-
gramming language. Students of that era, like one of your authors, Harvey Deitel, found
it fast and fun to use.

JShell replaces the tedious cycle of editing, compiling and executing with its read-
evaluate-print loop. Rather than complete programs, you write JShell commands and Java
code snippets. When you enter a snippet, JShell immediately reads it, evaluates it and
prints the results that help you see the effects of your code. Then it loops to perform this
process again for the next snippet. As you work through Chapter 25’s scores of examples
and exercises, you’ll see how JShell and its instant feedback keep your attention, enhance
your performance and speed the learning and software development processes.

Code Comes Alive
As you know, we emphasize the value of the live-code teaching approach in our books, fo-
cusing on complete, working programs. JShell brings this right down to the individual snip-
pet level. Your code literally comes alive as you enter each line. Of course, you’ll still make
occasional errors as you enter your snippets. JShell reports compilation errors to you on a
snippet-by-snippet basis. You can use this capability, for example, to test the items in our
Common Programming Error tips and see the errors as they occur.

Kinds of Snippets
Snippets can be expressions, individual statements, multi-line statements and larger entities,
like methods and classes. JShell supports all but a few Java features, but there are some dif-
ferences designed to facilitate JShell’s explore–discover–experiment capabilities. In JShell,
methods do not need to be in classes, expressions and statements do not need to be in meth-
ods, and you do not need a main method (other differences are in Section 25.14). Eliminat-
ing this infrastructure saves you considerable time, especially compared to the lengthy
repeated edit, compile and execute cycles of complete programs. And because JShell auto-
matically displays the results of evaluating your expressions and statements, you do not need
as many print statements as we use throughout this book’s traditional Java code examples.

Discovery with Auto-Completion
We include a detailed treatment of auto-completion—a key discovery feature that speeds
the coding process. After you type a portion of a name (class, method, variable, etc.) and
press the Tab key, JShell completes the name for you or provides a list of all possible names
that begin with what you’ve typed so far. You can then easily display method parameters
and even the documentation that describes those methods.

jhtp_25_REPL.FM Page 1111 Tuesday, April 11, 2017 2:58 PM

1112 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

Rapid Prototyping
Professional developers will commonly use JShell for rapid prototyping but not for full-
out software development. Once you develop and test a small chunk of code, you can then
paste it in to your larger project.

How This Chapter Is Organized
Chapter 25 is optional. For those who want to use JShell, the chapter has been designed
as a series of units, paced to certain earlier chapters of the print book. Each unit begins
with a statement like: “This section may be read after Chapter 2.” So you’d begin by read-
ing through Chapter 2, then read the corresponding section of this chapter—and similarly
for subsequent chapters.

The Chapter 2 JShell Exercises
As you work your way through this chapter, execute each snippet and command in JShell
to confirm that the features work as advertised. Sections 25.3–25.4 are designed to be read
after Chapter 2. Once you read these sections, we recommend that you do Chapter 25’s
dozens of self-review exercises. JShell encourages you to “learn by doing,” so the exercises
have you write and test code snippets that exercise many of Chapter 2’s Java features.

The self-review exercises are small and to the point, and the answers are provided to help
you quickly get comfortable with JShell’s capabilities. When you’re done you’ll have a great
sense of what JShell is all about. Please tell us what you think of this new Java tool. Thanks!

Instead of rambling on about the advantages of JShell, we’re going to let JShell itself
convince you. If you have any questions as you work through the following examples and
exercises, just write to us at deitel@deitel.com and we’ll always respond promptly.

25.2 Installing JDK 9
Java 9 and its JShell are early access technologies that are still under development. This
introduction to JShell is based on the JDK 9 Developer Preview (early access build 163).
To use JShell, you must first install JDK 9, which is available in early access form at

The Before You Begin section that follows the Preface discusses the JDK version numbering
schemes, then shows how to manage multiple JDK installations on your particular platform.

25.3 Introduction to JShell
[Note: This section may be read after studying Chapter 2, Introduction to Java Applica-
tions; Input/Output and Operators.]

In Chapter 2, to create a Java application, you:

1. created a class containing a main method.

2. declared in main the statements that will execute when you run the program.

3. compiled the program and fixed any compilation errors that occurred. This step
had to be repeated until the program compiled without errors.

4. ran the program to see the results.

https://jdk9.java.net/download/

jhtp_25_REPL.FM Page 1112 Tuesday, April 11, 2017 2:58 PM

25.3 Introduction to JShell 1113

By automatically compiling and executing code as you complete each expression or state-
ment, JShell eliminates the overhead of

• creating a class containing the code you wish to test,

• compiling the class and

• executing the class.

Instead, you can focus on interactively discovering and experimenting with Java’s language
and API features. If you enter code that does not compile, JShell immediately reports the
errors. You can then use JShell’s editing features to quickly fix and re-execute the code.

25.3.1 Starting a JShell Session
To start a JShell session in:

• Microsoft Windows, open a Command Prompt then type jshell and press Enter.

• macOS (formerly OS X), open a Terminal window then type the following com-
mand and press Enter.

• Linux, open a shell window then type jshell and press Enter.

The preceding commands execute a new JShell session and display the following message
and the jshell> prompt:

In the first line above, "Version 9-ea" indicates that you’re using the ea (that is, early ac-
cess) version of JDK 9. JShell precedes informational messages with vertical bars (|). You
are now ready to enter Java code or JShell commands.

25.3.2 Executing Statements
[Note: As you work through this chapter, type the same code and JShell commands that
we show at each jshell> prompt to ensure that what you see on your screen will match
what we show in the sample outputs.]

JShell has two input types:

• Java code (which the JShell documentation refers to as snippets) and

• JShell commands.

In this section and Section 25.3.3, we begin with Java code snippets. Subsequent sections
introduce JShell commands.

You can type any expression or statement at the jshell> prompt then press Enter to
execute the code and see its results immediately. Consider the program of Fig. 2.1, which
we show again in Fig. 25.1. To demonstrate how System.out.println works, this pro-
gram required many lines of code and comments, which you had to write, compile and
execute. Even without the comments, five code lines were still required (lines 4 and 6–9).

 $JAVA_HOME/bin/jshell

| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell>

jhtp_25_REPL.FM Page 1113 Tuesday, April 11, 2017 2:58 PM

1114 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

In JShell, you can execute the statement in line 7 without creating all the infrastruc-
ture of class Welcome1 and its main method:

In this case, JShell displays the snippet’s command-line output below the initial jshell>
prompt and the statement you entered. Per our convention, we show user inputs in bold.

Notice that we did not enter the preceding statement’s semicolon (;). JShell adds only
terminating semicolons.2 You need to add a semicolon if the end of the statement is not
the end of the line—for example, if the statement is inside braces ({ and }). Also, if there
is more than one statement on a line then you need a semicolon between statements, but
not after the last statement.

The blank line before the second jshell> prompt is the result of the newline dis-
played by method println and the newline that JShell always displays before each
jshell> prompt. Using print rather than println eliminates the blank line:

JShell keeps track of everything you type, which can be useful for re-executing prior state-
ments and modifying statements to update the tasks they perform.

25.3.3 Declaring Variables Explicitly
Almost anything you can declare in a typical Java source-code file also can be declared in
JShell (Section 25.14 discusses some of the features you cannot use). For example, you can
explicitly declare a variable as follows:

1 // Fig. 25.1: Welcome1.java
2 // Text-printing program.
3
4 public class Welcome1 {
5 // main method begins execution of Java application
6 public static void main(String[] args) {
7 System.out.println("Welcome to Java Programming!");
8 } // end method main
9 } // end class Welcome1

Welcome to Java Programming!

Fig. 25.1 | Text-printing program.

jshell> System.out.println("Welcome to Java Programming!")
Welcome to Java Programming!

jshell>

2. Not requiring semicolons is one example of how JShell reinterprets standard Java for convenient inter-
active use. We discuss several of these throughout the chapter and summarize them in Section 25.14.

jshell> System.out.print("Welcome to Java Programming!")
Welcome to Java Programming!
jshell>

jshell> int number1
number1 ==> 0

jshell>

jhtp_25_REPL.FM Page 1114 Tuesday, April 11, 2017 2:58 PM

25.3 Introduction to JShell 1115

When you enter a variable declaration, JShell displays the variable’s name (in this case,
number1) followed by ==> (which means, “has the value”) and the variable’s initial value
(0). If you do not specify an initial value explicitly, the variable is initialized to its type’s
default value—in this case, 0 for an int variable.

A variable can be initialized in its declaration—let’s redeclare number1:

JShell displays

to indicate that number1 now has the value 30. When you declare a new variable with the
same name as another variable in the current JShell session, JShell replaces the first decla-
ration with the new one.3 Because number1 was declared previously, we could have simply
assigned number1 a value, as in

Compilation Errors in JShell
You must declare variables before using them in JShell. The following declaration of int
variable sum attempts to use a variable named number2 that we have not yet declared, so
JShell reports a compilation error, indicating that the compiler was unable to find a vari-
able named number2:

The error message uses the notation ^-----^ to highlight the error in the statement. No
error is reported for the previously declared variable number1. Because this snippet has a
compilation error, it’s invalid. However, JShell still maintains the snippet as part of the
JShell session’s history, which includes valid snippets, invalid snippets and commands that
you’ve typed. As you’ll soon see, you can recall this invalid snippet and execute it again
later. JShell’s /history command displays the current session’s history—that is, everything
you’ve typed:

jshell> int number1 = 30
number1 ==> 30

jshell>

number1 ==> 30

3. Redeclaring an existing variable is another example of how JShell reinterprets standard Java for inter-
active use. This behavior is different from how the Java compiler handles a new declaration of an ex-
isting variable—such a “double declaration” generates a compilation error.

jshell> number1 = 45
number1 ==> 45

jshell>

jshell> int sum = number1 + number2
| Error:
| cannot find symbol
| symbol: variable number2
| int sum = number1 + number2;
| ^-----^

jshell>

jhtp_25_REPL.FM Page 1115 Tuesday, April 11, 2017 2:58 PM

1116 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

Fixing the Error
JShell makes it easy to fix a prior error and re-execute a snippet. Let’s fix the preceding
error by first declaring number2 with the value 72:

Subsequent snippets can now use number2—in a moment, you’ll re-execute the snippet
that declared and initialized sum with number1 + number2.

Recalling and Re-executing a Previous Snippet
Now that both number1 and number2 are declared, we can declare the int variable sum. You
can use the up and down arrow keys to navigate backward and forward through the snippets
and JShell commands you’ve entered previously. Rather than retyping sum’s declaration, you
can press the up arrow key three times to recall the declaration that failed previously. JShell
recalls your prior inputs in reverse order—the last line of text you typed is recalled first. So,
the first time you press the up arrow key, the following appears at the jshell> prompt:

The second time you press the up arrow key, the /history command appears:

The third time you press the up arrow key, sum’s prior declaration appears:

Now you can press Enter to re-execute the snippet that declares and initializes sum:

JShell adds the values of number1 (45) and number2 (72), stores the result in the new sum
variable, then shows sum’s value (117).

25.3.4 Listing and Executing Prior Snippets
You can view a list of all previous valid Java code snippets with JShell’s /list command—
JShell displays the snippets in the order you entered them:

jshell> /history

System.out.println("Welcome to Java Programming!")
System.out.print("Welcome to Java Programming!")
int number1
int number1 = 45
number1 = 45
int sum = number1 + number2
/history

jshell>

jshell> int number2 = 72
number2 ==> 72

jshell>

jshell> int number2 = 72

jshell> /history

jshell> int sum = number1 + number2

jshell> int sum = number1 + number2
sum ==> 117

jshell>

jhtp_25_REPL.FM Page 1116 Tuesday, April 11, 2017 2:58 PM

25.3 Introduction to JShell 1117

Each valid snippet is identified by a sequential snippet ID. The snippet with ID 3 is miss-
ing above, because we replaced that original snippet

with the one that has the ID 4 in the preceding /list. Note that /list may not display
everything that /history does. As you recall, if you omit a terminating semicolon, JShell
inserts it for you behind the scenes. When you say /list, only the declarations (snippets
4, 6 and 7) actually show the semicolons that JShell inserted.

Snippet 1 above is just an expression. If we type it with a terminating semicolon, it’s
an expression statement.

Executing Snippets By ID Number
You can execute any prior snippet by typing /id, where id is the snippet’s ID. For example,
when you enter /1:

JShell displays the first snippet we entered, executes it and shows the result.4 You can re-
execute the last snippet you typed (whether it was valid or invalid) with /!:

JShell assigns an ID to every valid snippet you execute, so even though

already exists in this session as snippet 1, JShell creates a new snippet with the next ID in
sequence (in this case, 8 and 9 for the last two snippets). Executing the /list command
shows that snippets 1, 8 and 9 are identical:

jshell> /list

 1 : System.out.println("Welcome to Java Programming!")
 2 : System.out.print("Welcome to Java Programming!")
 4 : int number1 = 30;
 5 : number1 = 45
 6 : int number2 = 72;
 7 : int sum = number1 + number2;

jshell>

int number1

jshell> /1
System.out.println("Welcome to Java Programming!")
Welcome to Java Programming!

jshell>

4. At the time of this writing, you cannot use the /id command to execute a range of previous snippets;
however, the JShell command /reload can re-execute all existing snippets (Section 25.12.3).

jshell> /!
System.out.println("Welcome to Java Programming!")
Welcome to Java Programming!

jshell>

System.out.println("Welcome to Java Programming!")

jhtp_25_REPL.FM Page 1117 Tuesday, April 11, 2017 2:58 PM

1118 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.3.5 Evaluating Expressions and Declaring Variables Implicitly
When you enter an expression in JShell, it evaluates the expression, implicitly creates a
variable and assigns the expression’s value to the variable. Implicit variables are named $#,
where # is the new snippet’s ID.5 For example:

evaluates the expression 11 + 5 and assigns the resulting value (16) to the implicitly de-
clared variable $10, because there were nine prior valid snippets (even though one was de-
leted because we redeclared the variable number1). JShell infers that the type of $10 is int,
because the expression 11 + 5 adds two int values, producing an int. Expressions may also
include one or more method calls. The list of snippets is now:

Note that the implicitly declared variable $10 appears in the list simply as 10 without the $.

25.3.6 Using Implicitly Declared Variables
Like any other declared variable, you can use an implicitly declared variable in an expres-
sion. For example, the following assigns to the existing variable sum the result of adding
number1 (45) and $10 (16):

jshell> /list

 1 : System.out.println("Welcome to Java Programming!")
 2 : System.out.print("Welcome to Java Programming!")
 4 : int number1 = 30;
 5 : number1 = 45
 6 : int number2 = 72;
 7 : int sum = number1 + number2;
 8 : System.out.println("Welcome to Java Programming!")
 9 : System.out.println("Welcome to Java Programming!")

jshell>

jshell> 11 + 5
$10 ==> 16

jshell>

5. Implicitly declared variables are another example of how JShell reinterprets standard Java for inter-
active use. In regular Java programs you must explicitly declare every variable.

jshell> /list

 1 : System.out.println("Welcome to Java Programming!")
 2 : System.out.print("Welcome to Java Programming!")
 4 : int number1 = 30;
 5 : number1 = 45
 6 : int number2 = 72;
 7 : int sum = number1 + number2;
 8 : System.out.println("Welcome to Java Programming!")
 9 : System.out.println("Welcome to Java Programming!")
 10 : 11 + 5

jshell>

jhtp_25_REPL.FM Page 1118 Tuesday, April 11, 2017 2:58 PM

25.3 Introduction to JShell 1119

The list of snippets is now:

25.3.7 Viewing a Variable’s Value
You can view a variable’s value at any time simply by typing its name and pressing Enter:

JShell treats the variable name as an expression and simply evaluates its value.

25.3.8 Resetting a JShell Session
You can remove all prior code from a JShell session by entering the /reset command:

The subsequent /list command shows that all prior snippets were removed. Confirma-
tion messages displayed by JShell, such as

are helpful when you’re first becoming familiar with JShell. In Section 25.12.5, we’ll show
how you can change the JShell feedback mode, making it more or less verbose.

25.3.9 Writing Multiline Statements
Next, we write an if statement that determines whether 45 is less than 72. First, let’s store
45 and 72 in implicitly declared variables, as in:

jshell> sum = number1 + $10
sum ==> 61

jshell>

jshell> /list

 1 : System.out.println("Welcome to Java Programming!")
 2 : System.out.print("Welcome to Java Programming!")
 4 : int number1 = 30;
 5 : number1 = 45
 6 : int number2 = 72;
 7 : int sum = number1 + number2;
 8 : System.out.println("Welcome to Java Programming!")
 9 : System.out.println("Welcome to Java Programming!")
 10 : 11 + 5
 11 : sum = number1 + $10

jshell>

jshell> sum
sum ==> 61

jshell>

jshell> /reset
| Resetting state.

jshell> /list

jshell>

| Resetting state.

jhtp_25_REPL.FM Page 1119 Tuesday, April 11, 2017 2:58 PM

1120 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

Next, begin typing the if statement:

JShell knows that the if statement is incomplete, because we typed the opening left brace,
but did not provide a body or a closing right brace. So, JShell displays the continuation
prompt ...> at which you can enter more of the control statement. The following com-
pletes and evaluates the if statement:

In this case, a second continuation prompt appeared because the if statement was still
missing its terminating right brace (}). Note that the statement-terminating semicolon (;)
at the end of the System.out.printf statement in the if’s body is required. We manually
indented the if’s body statement—JShell does not add spacing or braces for you as IDEs
generally do. Also, JShell assigns each multiline code snippet—such as an if statement—
only one snippet ID. The list of snippets is now:

25.3.10 Editing Code Snippets
Sometimes you might want to create a new snippet, based on an existing snippet in the
current JShell session. For example, suppose you want to create an if statement that de-
termines whether $1 is greater than $2. The statement that performs this task

is nearly identical to the if statement in Section 25.3.9, so it would be easier to edit the
existing statement rather than typing the new one from scratch. When you edit a snippet,
JShell saves the edited version as a new snippet with the next snippet ID in sequence.

jshell> 45
$1 ==> 45

jshell> 72
$2 ==> 72

jshell>

jshell> if ($1 < $2) {
 ...>

jshell> if ($1 < $2) {
 ...> System.out.printf("%d < %d%n", $1, $2);
 ...> }
45 < 72

jshell>

jshell> /list

 1 : 45
 2 : 72
 3 : if ($1 < $2) {
 System.out.printf("%d < %d%n", $1, $2);
 }

jshell>

if ($1 > $2) {
 System.out.printf("%d > %d%n", $1, $2);
}

jhtp_25_REPL.FM Page 1120 Tuesday, April 11, 2017 2:58 PM

25.3 Introduction to JShell 1121

Editing a Single-Line Snippet
To edit a single-line snippet, locate it with the up-arrow key, make your changes within
the snippet then press Enter to evaluate it. See Section 25.13 for some keyboard shortcuts
that can help you edit single-line snippets.

Editing a Multiline Snippet
For a larger snippet that’s spread over several lines—such as a if statement that contains
one or more statements—you can edit the entire snippet by using JShell’s /edit command
to open the snippet in the JShell Edit Pad (Fig. 25.2). The command

opens JShell Edit Pad and displays all valid code snippets you’ve entered so far. To edit a
specific snippet, include the snippet’s ID, as in

So, the command:

displays the if statement from Section 25.3.9 in JShell Edit Pad (Fig. 25.2)—no snippet
IDs are shown in this window. JShell Edit Pad’s window is modal—that is, while it’s open,
you cannot enter code snippets or commands at the JShell prompt.

JShell Edit Pad supports only basic editing capabilities. You can:

• click to insert the cursor at a specific position to begin typing,

• move the cursor via the arrow keys on your keyboard,

• drag the mouse to select text,

• use the Delete (Backspace) key to delete text,

• cut, copy and paste text using your operating system’s keyboard shortcuts, and

• enter text, including new snippets separate from the one(s) you’re editing.

In the first and second lines of the if statement, select each less than operator (<) and change
it to a greater than operator (>), then click Accept to create a new if statement containing
the edited code. When you click Accept, JShell also immediately evaluates the new if state-
ment and displays its results (if any)—because $1 (45) is not greater than $2 (72) the Sys-
tem.out.printf statement does not execute,6 so no additional output is shown in JShell.

/edit

/edit id

/edit 3

Fig. 25.2 | JShell Edit Pad showing the if statement from Section 25.3.9.

6. We could have made this an if…else statement to show output when the condition is false, but this
section is meant to be used with Chapter 2 where we introduce only the single-selection if statement.

jhtp_25_REPL.FM Page 1121 Tuesday, April 11, 2017 2:58 PM

1122 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

If you want to return immediately to the JShell prompt, rather than clicking Accept,
you could click Exit to execute the edited snippet and close JShell Edit Pad. Clicking Cancel
closes JShell Edit Pad and discards any changes you made since the last time you clicked
Accept, or since JShell Edit Pad was launched if have not yet clicked Accept.

When you change or create multiple snippets then click Accept or Exit, JShell com-
pares the JShell Edit Pad contents with the previously saved snippets. It then executes every
modified or new snippet.

Adding a New Snippet Via JShell Edit Pad
To show that JShell Edit Pad does, in fact, execute snippets immediately when you click
Accept, let’s change $1’s value to 100 by entering the following statement following the if
statement after the other code in JShell Edit Pad:

and clicking Accept (Fig. 25.3). Each time you modify a variable’s value, JShell immedi-
ately displays the variable’s name and new value:

Click Exit to close JShell Edit Pad and return to the jshell> prompt.

The following lists the current snippets—notice that each multiline if statement has
only one ID:

Executing the New if Statement Again
The following re-executes the new if statement (ID 4) with the updated $1 value:

$1 = 100

jshell> /edit 3
$1 ==> 100

Fig. 25.3 | Entering a new statement following the if statement in JShell Edit Pad.

jshell> /list

 1 : 45
 2 : 72
 3 : if ($1 < $2) {
 System.out.printf("%d < %d%n", $1, $2);
 }
 4 : if ($1 > $2) {
 System.out.printf("%d > %d%n", $1, $2);
 }
 5 : $1 = 100

jshell>

jhtp_25_REPL.FM Page 1122 Tuesday, April 11, 2017 2:58 PM

25.4 Command-Line Input in JShell 1123

The condition $1 > $2 is now true, so the if statement’s body executes. The list of snip-
pets is now

25.3.11 Exiting JShell
To terminate the current JShell session, use the /exit command or type the keyboard
shortcut Ctrl + d (or control + d). This returns you to the command-line prompt in your
Command Prompt (in Windows), Terminal (in macOS) or shell (in Linux—sometimes
called Terminal, depending on your Linux distribution).

25.4 Command-Line Input in JShell
[Note: This section may be read after studying Chapter 2, Introduction to Java Applica-
tions; Input/Output and Operators and the preceding sections in this chapter.]

In Chapter 2, we showed command-line input using a Scanner object:

We created a Scanner, prompted the user for input, then used Scanner method nextInt
to read a value. Recall that the program then waited for you to type an integer and press
Enter before proceeding to the next statement. The on-screen interaction appeared as:

This section shows what that interaction looks like in JShell.

jshell> /4
if ($1 > $2) {
 System.out.printf("%d > %d%n", $1, $2);
}
100 > 72

jshell>

jshell> /list

 1 : 45
 2 : 72
 3 : if ($1 < $2) {
 System.out.printf("%d < %d%n", $1, $2);
 }
 4 : if ($1 > $2) {
 System.out.printf("%d > %d%n", $1, $2);
 }
 5 : $1 = 100
 6 : if ($1 > $2) {
 System.out.printf("%d > %d%n", $1, $2);
 }

jshell>

Scanner input = new Scanner(System.in);

System.out.print("Enter first integer: ");
int number1 = input.nextInt();

Enter first integer: 45

jhtp_25_REPL.FM Page 1123 Tuesday, April 11, 2017 2:58 PM

1124 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

Creating a Scanner
Start a new JShell session or /reset the current one, then create a Scanner object:

You do not need to import Scanner. JShell automatically imports the java.util package
and several others—we show the complete list in Section 25.10. When you create an ob-
ject, JShell displays its text representation. The notation to the right of input ==> is the
Scanner’s text representation (which you can simply ignore).

Prompting for Input and Reading a Value
Next, prompt the user for input:

The statement’s output is displayed immediately, followed by the next jshell> prompt.
Now enter the input statement:

At this point, JShell waits for your input. The input cursor is positioned below the
jshell> prompt and snippet you just entered—indicated by the underscore (_) above—
rather than next to the prompt "Enter first integer:" as it was in Chapter 2. Now type
an integer and press Enter to assign it to number1—the last snippet’s execution is now com-
plete, so the next jshell> prompt appears.:

Though you can use Scanner for command-line input in JShell, in most cases it’s
unnecessary. The goal of the preceding interactions was simply to store an integer value in
the variable number1. You can accomplish that in JShell with the simple assignment

For this reason, you’ll typically use assignments, rather than command-line input in JShell.
We introduced Scanner here, because sometimes you’ll want to copy code you developed
in JShell into a conventional Java program.

25.5 Declaring and Using Classes
[Note: This section may be read after studying Chapter 3, Introduction to Classes, Ob-
jects, Methods and Strings.]

jshell> Scanner input = new Scanner(System.in)
input ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] ...
 \E][infinity string=\Q∞\E]

jshell>

jshell> System.out.print("Enter first integer: ")
Enter first integer:
jshell>

jshell> int number1 = input.nextInt()
_

jshell> int number1 = input.nextInt()
45
number1 ==> 45

jshell>

jshell> int number1 = 45
number1 ==> 45

jshell>

jhtp_25_REPL.FM Page 1124 Tuesday, April 11, 2017 2:58 PM

25.5 Declaring and Using Classes 1125

In Section 25.3, we demonstrated basic JShell capabilities. In this section, we create a class
and manipulate an object of that class. We’ll use the version of class Account presented in
Fig. 3.1.

25.5.1 Creating a Class in JShell
Start a new JShell session (or /reset the current one), then declare class Account—we ig-
nored the comments from Fig. 3.1:

JShell recognizes when you enter the class’s closing brace—then displays

and issues the next jshell> prompt. Note that the semicolons throughout class Account’s
body are required.

To save time, rather than typing a class’s code as shown above, you can load an
existing source code file into JShell, as shown in Section 25.5.6. Though you can specify
access modifiers like public on your classes (and other types), JShell ignores all access
modifiers on the top-level types except for abstract (discussed in Chapter 10).

Viewing Declared Classes
To view the names of the classes you’ve declared so far, enter the /types command:7

25.5.2 Explicitly Declaring Reference-Type Variables
The following creates the Account variable account:

The default value of a reference-type variable is null.

jshell> public class Account {
 ...> private String name;
 ...>
 ...> public void setName(String name) {
 ...> this.name = name;
 ...> }
 ...>
 ...> public String getName() {
 ...> return name;
 ...> }
 ...> }
| created class Account

jshell>

| created class Account

jshell> /types
| class Account

jshell>

7. /types actually displays all types you declare, including classes, interfaces and enums.

jshell> Account account
account ==> null

jshell>

jhtp_25_REPL.FM Page 1125 Tuesday, April 11, 2017 2:58 PM

1126 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.5.3 Creating Objects
You can create new objects. The following creates an Account variable named account and
initializes it with a new object:

The strange notation

is the default text representation of the new Account object. If a class provides a custom
text representation, you’ll see that instead. We show how to provide a custom text repre-
sentation for objects of a class in Section 7.6. We discuss the default text representation of
objects in Section 9.6. The value after the @ symbol is the object’s hashcode. We discuss
hashcodes in Section 16.10.

Declaring an Implicit Account Variable Initialized with an Account Object
If you create an object with only the expression new Account(), JShell assigns the object
to an implicit variable of type Account, as in:

Note that this object’s hashcode (1ed4004b) is different from the prior Account object’s
hashcode (56ef9176)—these typically are different, but that’s not guaranteed.

Viewing Declared Variables
You can view all the variables you’ve declared so far with the JShell /vars command:

For each variable, JShell shows the type and variable name followed by an equal sign and
the variable’s text representation.

25.5.4 Manipulating Objects
Once you have an object, you can call its methods. In fact, you already did this with the
System.out object by calling its println, print and printf methods in earlier snippets.

The following sets the account object’s name:

jshell> account = new Account()
account ==> Account@56ef9176

jshell>

Account@56ef9176

jshell> new Account()
$4 ==> Account@1ed4004b

jshell>

jshell> /vars
| Account account = Account@56ef9176
| Account $4 = Account@1ed4004b

jshell>

jshell> account.setName("Amanda")

jshell>

jhtp_25_REPL.FM Page 1126 Tuesday, April 11, 2017 2:58 PM

25.5 Declaring and Using Classes 1127

The method setName has the return type void, so it does not return a value and JShell does
not show any additional output.

The following gets the account object’s name:

Method getName returns a String. When you invoke a method that returns a value, JShell
stores the value in an implicitly declared variable. In this case, $6’s type is inferred to be
String. Of course, you could have assigned the result of the preceding method call to an
explicitly declared variable.

Using the Return Value of a Method in a Statement
If you invoke a method as part of a larger statement, the return value is used in that state-
ment, rather than stored. For example, the following uses println to display the account
object’s name:

25.5.5 Creating a Meaningful Variable Name for an Expression
You can give a meaningful variable name to a value that JShell previously assigned to an
implicit variable. For example, with the following snippet recalled

type

The + notation means that you should you press both the Shift and Tab keys together, then
release those keys and press v. JShell infers the expression’s type and begins a variable dec-
laration for you—account.getName() returns a String, so JShell inserts String and an
equal sign (=) before the expression, as in

JShell also positions the cursor (indicated by the _ above) immediately before the = so you
can simply type the variable name, as in

When you press Enter, JShell evaluates the new snippet and stores the value in the specified
variable.

jshell> account.getName()
$6 ==> "Amanda"

jshell>

jshell> System.out.println(account.getName())
Amanda

jshell>

jshell> account.getName()

Shift + Tab v

jshell> account.getName()
jshell> String _= account.getName()

jshell> String name = account.getName()
name ==> "Amanda"

jshell>

jhtp_25_REPL.FM Page 1127 Tuesday, April 11, 2017 2:58 PM

1128 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.5.6 Saving and Opening Code-Snippet Files
You can save all of a session’s valid code snippets to a file, which you can then load into a
JShell session as needed.

Saving Snippets to a File
To save just the valid snippets, use the /save command, as in:

By default, the file is created in the folder from which you launched JShell. To store the
file in a different location, specify the complete path of the file.

Loading Snippets from a File
Once you save your snippets, they can be reloaded with the /open command:

which executes each snippet in the file.

Using /open to Load Java Source-Code Files
You also can open existing Java source code files using /open. For example, let’s assume
you’d like to experiment with class Account from Fig. 3.1 (as you did in Section 25.5.1).
Rather than typing its code into JShell, you can save time by loading the class from the
source file Account.java. In a command window, you’d change to the folder containing
Account.java, execute JShell, then use the following command to load the class declara-
tion into JShell:

To load a file from another folder, you can specify the full pathname of the file to open.
In Section 25.10, we’ll show how to use existing compiled classes in JShell.

25.6 Discovery with JShell Auto-Completion
[Note: This section may be read after studying Chapter 3, Introduction to Classes, Ob-
jects, Methods and Strings, and completing Section 25.5.]

JShell can help you write code. When you partially type the name of an existing class, vari-
able or method then press the Tab key, JShell does one of the following:

• If no other name matches what you’ve typed so far, JShell enters the rest of the
name for you.

• If there are multiple names that begin with the same letters, JShell displays a list
of those names to help you decide what to type next—then you can type the next
letter(s) and press Tab again to complete the name.

• If no names match what you typed so far, JShell does nothing and your operating
system’s alert sound plays as feedback.

Auto-completion is normally an IDE feature, but with JShell it’s IDE independent.

/save filename

/open filename

/open Account.java

jhtp_25_REPL.FM Page 1128 Tuesday, April 11, 2017 2:58 PM

25.6 Discovery with JShell Auto-Completion 1129

Let’s first list the snippets we’ve entered since the last /reset (from Section 25.5):

25.6.1 Auto-Completing Identifiers
The only variable declared so far that begins with lowercase "a" is account, which was de-
clared in snippet 2. Auto-completion is case sensitive, so "a" does not match the class
name Account. If you type "a" at the jshell> prompt:

then press Tab, JShell auto-completes the name:

If you then enter a dot:

then press Tab, JShell does not know what method you want to call, so it displays a list of
everything—in this case, all the methods—that can appear to the right of the dot:

and follows the list with a new jshell> prompt that includes what you’ve typed so far.
The list includes the methods we declared in class Account (snippet 1) and several methods
that all Java classes have (as we discuss in Chapter 9). In the list of method names

• those followed by "()" are methods that do not require arguments and

• those followed only by "(" are methods that either require at least one argument
or that are so-called overloaded methods—multiple methods with the same name,
but different parameter lists (discussed in Section 6.11).

jshell> /list

 1 : public class Account {
 private String name;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
 }
 2 : Account account;
 3 : account = new Account()
 4 : new Account()
 5 : account.setName("Amanda")
 6 : account.getName()
 7 : System.out.println(account.getName())
 8 : String name = account.getName();

jshell>

jshell> a

jshell> account

jshell> account.

jshell> account.
equals(getClass() getName() hashCode() notify()
notifyAll() setName(toString() wait(

jshell> account.

jhtp_25_REPL.FM Page 1129 Tuesday, April 11, 2017 2:58 PM

1130 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

Let’s assume you want to use Account’s setName method to change the name stored in the
account object to "John". There’s only one method that begins with "s", so you can type
s then Tab to auto-complete setName:

JShell automatically inserts the method call’s opening left parenthesis. Now you can com-
plete the snippet as in:

25.6.2 Auto-Completing JShell Commands
Auto-completion also works for JShell commands. If you type / then press Tab, JShell dis-
plays the list of JShell commands:

If you then type h and press Tab, JShell displays only the commands that start with /h:

Finally, if you type "i" and press Tab, JShell auto-completes /history. Similarly, if you
type /l then press Tab, JShell auto-completes the command as /list, because only that
command starts with /l.

25.7 Exploring a Class’s Members and Viewing
Documentation
[Note: This section may be read after studying Chapter 6, Methods: A Deeper Look, and
the preceding portions of Chapter 25.]

The preceding section introduced basic auto-completion capabilities. When using JShell
for experimentation and discovery, you’ll often want to learn more about a class before us-
ing it. In this section, we’ll show you how to:

• view the parameters required by a method so that you can call it correctly

• view the documentation for a method

• view the documentation for a field of a class

• view the documentation for a class, and

• view the list of overloads for a given method.

jshell> account.setName(

jshell> account.setName("John")

jshell>

jshell> /
/! /? /drop /edit /env /exit
/help /history /imports /list /methods /open
/reload /reset /save /set /types /vars

<press tab again to see synopsis>

jshell> /

jshell> /h
/help /history

<press tab again to see synopsis>

jshell> /h

jhtp_25_REPL.FM Page 1130 Tuesday, April 11, 2017 2:58 PM

25.7 Exploring a Class’s Members and Viewing Documentation 1131

To demonstrate these features, let’s explore class Math. Start a new JShell session or /reset
the current one.

25.7.1 Listing Class Math’s static Members
As we discussed in Chapter 6, class Math contains only static members—static meth-
ods for various mathematical calculations and the static constants PI and E. To view a
complete list, type "Math." then press Tab:

As you know, JShell auto-completion displays a list of everything that can appear to the
right of the dot (.). Here we typed a class name and a dot (.), so JShell shows only the
class’s static members. The names that are not followed by any parentheses (E and PI)
are the class’s static variables. All the other names are the class’s static methods:

• Any method names followed by ()—only random in this case—do not require
any arguments.

• Any method names followed by only an opening left parenthesis, (, require at
least one argument or are overloaded.

You can easily view the value of the constants PI and E:

25.7.2 Viewing a Method’s Parameters
Let’s assume you wish to test Math’s pow method (introduced in Section 5.4.2), but you do
not know the parameters it requires. You can type

then press Tab to auto-complete the name pow:

jshell> Math.
E IEEEremainder(PI abs(
acos(addExact(asin(atan(
atan2(cbrt(ceil(class
copySign(cos(cosh(decrementExact(
exp(expm1(floor(floorDiv(
floorMod(fma(getExponent(hypot(
incrementExact(log(log10(log1p(
max(min(multiplyExact(multiplyFull(
multiplyHigh(negateExact(nextAfter(nextDown(
nextUp(pow(random() rint(
round(scalb(signum(sin(
sinh(sqrt(subtractExact(tan(
tanh(toDegrees(toIntExact(toRadians(
ulp(

jshell> Math.

jshell> Math.PI
$1 ==> 3.141592653589793

jshell> Math.E
$2 ==> 2.718281828459045

jshell>

Math.p

jshell> Math.pow(

jhtp_25_REPL.FM Page 1131 Tuesday, April 11, 2017 2:58 PM

1132 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

Since there are no other methods that begin with "pow", JShell also inserts the left paren-
thesis to indicate the beginning of a method call. Next, you can type Tab to view the meth-
od’s parameters:

JShell displays the method’s return type, name and complete parameter list followed by
the next jshell> prompt containing what you’ve typed so far. As you can see, the method
requires two double parameters.

25.7.3 Viewing a Method’s Documentation
JShell integrates the Java API documentation so you can view documentation convenient-
ly in JShell, rather than requiring you to use a separate web browser. Suppose you’d like
to learn more about pow before completing your code snippet. You can press Tab again to
view the method’s Java documentation (known as its javadoc)—we cut out some of the
documentation text and replaced it with a vertical ellipsis (…) to save space (try the steps
in your own JShell session to see the complete text):

For long documentation, JShell displays part of it, then shows the message

You can press Tab to view the next page of documentation. The next jshell> prompt
shows the portion of the snippet you’ve typed so far:

25.7.4 Viewing a public Field’s Documentation
You can use the Tab feature to learn more about a class’s public fields. For example, if you
enter Math.PI followed by Tab, JShell displays

which shows Math.PI’s type and indicates that you can use Tab again to view the docu-
mentation. Doing so displays:

jshell> Math.pow(
double Math.pow(double a, double b)

<press tab again to see documentation>

jshell> Math.pow(

jshell> Math.pow(
double Math.pow(double a, double b)
Returns the value of the first argument raised to the power of the
second argument.Special cases:
 * If the second argument is positive or negative zero, then the
 result is 1.0.
...
<press tab again to see next page>

<press tab again to see next page>

jshell> Math.pow(

jshell> Math.PI
PI

Signatures:
Math.PI:double

<press tab again to see documentation>

jhtp_25_REPL.FM Page 1132 Tuesday, April 11, 2017 2:58 PM

25.7 Exploring a Class’s Members and Viewing Documentation 1133

and the next jshell> prompt shows the portion of the snippet you’ve typed so far.

25.7.5 Viewing a Class’s Documentation
You also can type a class name then Tab to view the class’s fully qualified name. For exam-
ple, typing Math then Tab shows:

indicating that class Math is in the package java.lang. Typing Tab again shows the begin-
ning of the class’s documentation:

In this case, there is more documentation to view, so you can press Tab to view it. Whether
or not you view the remaining documentation, the jshell> prompt shows the portion of
the snippet you’ve typed so far:

25.7.6 Viewing Method Overloads
Many classes have overloaded methods. When you press Tab to view an overloaded meth-
od’s parameters, JShell displays the complete list of overloads, showing the parameters for
every overload. For example, method Math.abs has four overloads:

jshell> Math.PI
Math.PI:double
The double value that is closer than any other to pi, the ratio of
the circumference of a circle to its diameter.

jshell> Math.PI

jshell> Math
Math MathContext

Signatures:
java.lang.Math

<press tab again to see documentation>

jshell> Math

jshell> Math
java.lang.Math
The class Math contains methods for performing basic numeric opera-
tions such as the elementary exponential, logarithm, square root,
and trigonometric functions. Unlike some of the numeric methods of
...

<press tab again to see next page>

jshell> Math

jshell> Math.abs(
$1 $2

Signatures:
int Math.abs(int a)
long Math.abs(long a)
float Math.abs(float a)
double Math.abs(double a)

<press tab again to see documentation>

jshell> Math.abs(

jhtp_25_REPL.FM Page 1133 Tuesday, April 11, 2017 2:58 PM

1134 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

When you press Tab again to view the documentation, JShell shows you the first overload’s
documentation:

You can then press Tab to view the documentation for the next overload in the list. Again,
whether or not you view the remaining documentation, the jshell> prompt shows the
portion of the snippet you’ve typed so far.

25.7.7 Exploring Members of a Specific Object
The exploration features shown in Sections 25.7.1–25.7.6 also apply to the members of a
specific object. Let’s create and explore a String object:

To view the methods you can call on the dayName object, type "dayName." and press Tab:

Exploring toUpperCase
Let’s investigate the toUpperCase method. Continue by typing "toU" and pressing Tab to
auto-complete its name:

jshell> Math.abs(
int Math.abs(int a)
Returns the absolute value of an int value.If the argument is not
negative, the argument is returned. If the argument is negative,
the negation of the argument is returned.
...

<press tab again to see next page>

jshell> String dayName = "Monday"
dayName ==> "Monday"

jshell>

jshell> dayName.
charAt(chars() codePointAt(
codePointBefore(codePointCount(codePoints()
compareTo(compareToIgnoreCase(concat(
contains(contentEquals(endsWith(
equals(equalsIgnoreCase(getBytes(
getChars(getClass() hashCode()
indexOf(intern() isEmpty()
lastIndexOf(length() matches(
notify() notifyAll() offsetByCodePoints(
regionMatches(replace(replaceAll(
replaceFirst(split(startsWith(
subSequence(substring(toCharArray()
toLowerCase(toString() toUpperCase(
trim() wait(

jshell> dayName.

jshell> dayName.toUpperCase(
toUpperCase(

jshell> dayName.toUpperCase(

jhtp_25_REPL.FM Page 1134 Tuesday, April 11, 2017 2:58 PM

25.7 Exploring a Class’s Members and Viewing Documentation 1135

Then, type Tab to view its parameters:

This method has two overloads. You can now use Tab to read about each overload, or sim-
ply choose the one you wish to use, by specifying the appropriate arguments (if any). In
this case, we’ll use the no-argument version to create a new String containing MONDAY, so
we simply enter the closing right parenthesis of the method call and press Enter:

Exploring substring
Let’s assume you want to create the new String "DAY"—a subset of the implicit variable
$2’s characters. For this purpose class String provides the overloaded method substring.
First type "$2.subs" and press Tab to auto-complete its the method’s name:

Next, use Tab to view the method’s overloads:

Next, use Tab again to view the first overload’s documentation:

As you can see from the documentation, this overload of the method enables you to obtain
a substring starting from a specific character index (that is, position) and continuing
through the end of the String. The first character in the String is at index 0. This is the
version of the method we wish to use to obtain "DAY" from "MONDAY", so we can return to
our code snippet at the jshell> prompt:

jshell> dayName.toUpperCase(
Signatures:
String String.toUpperCase(Locale locale)
String String.toUpperCase()

<press tab again to see documentation>

jshell> dayName.toUpperCase(

jshell> dayName.toUpperCase()
$2 ==> "MONDAY"

jshell>

jshell> $2.substring(
substring(

jshell>

jshell> $2.substring(
Signatures:
String String.substring(int beginIndex)
String String.substring(int beginIndex, int endIndex)

<press tab again to see documentation>

jshell> $2.substring(

jshell> $2.substring(
String String.substring(int beginIndex)
Returns a string that is a substring of this string.The substring
begins with the character at the specified index and extends to the
end of this string.
...
<press tab again to see next page>

jshell> $2.substring(

jhtp_25_REPL.FM Page 1135 Tuesday, April 11, 2017 2:58 PM

1136 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

Finally, we can complete our call to substring and press Enter to view the results:

25.8 Declaring Methods
[Note: This section may be read after studying Chapter 6, Methods: A Deeper Look, and
the preceding portions of Chapter 25.]

You can use JShell to prototype methods. For example, let’s assume we’d like to write code
that displays the cubes of the values from 1 through 10. For the purpose of this discussion,
we’re going to define two methods:

• Method displayCubes will iterate 10 times, calling method cube each time.

• Method cube will receive one int value and return the cube of that value.

25.8.1 Forward Referencing an Undeclared Method—Declaring Method
displayCubes
Let’s begin with method displayCubes. Start a new JShell session or /reset the current
one, then enter the following method declaration:

When you complete the method declaration, JShell displays:

Again, we manually added the indentation. Note that after you type the method body’s
opening left brace, JShell displays continuation prompts (...>) before each subsequent
line until you complete the method declaration by entering its closing right brace. Also,
although JShell says "created method displayCubes()", it indicates that you cannot call
this method until "cube(int) is declared". This is not fatal in JShell—it recognizes that
displayCubes depends on an undeclared method (cube)—this is known as forward ref-
erencing an undeclared method. Once you define cube, you can call displayCubes.

25.8.2 Declaring a Previously Undeclared Method
Next, let’s declare method cube, but purposely make a logic error by returning the square
rather than the cube of its argument:

jshell> $2.substring(3)
$3 ==> "DAY"

jshell>

void displayCubes() {
 for (int i = 1; i <= 10; i++) {
 System.out.println("Cube of " + i + " is " + cube(i));
 }
}

| created method displayCubes(), however, it cannot be invoked
until method cube(int) is declared

jshell>

jhtp_25_REPL.FM Page 1136 Tuesday, April 11, 2017 2:58 PM

25.8 Declaring Methods 1137

At this point, you can use JShell’s /methods command to see the complete list of methods
that are declared in the current JShell session:

Note that JShell displays each method’s return type to the right of the parameter list.

25.8.3 Testing cube and Replacing Its Declaration
Now that method cube is declared, let’s test it with the argument 2:

The method correctly returns the 4 (that is, 2 * 2), based on how the method is implemented.
However, our the method’s purpose was to calculate the cube of the argument, so the result
should have been 8 (2 * 2 * 2). You can edit cube’s snippet to correct the problem. Because
cube was declared as a multiline snippet, the easiest way to edit the declaration is using JShell
Edit Pad. You could use /list to determine cube’s snippet ID then use /edit followed by
the ID to open the snippet. You also edit the method by specifying its name, as in:

In the JShell Edit Pad window, change cube’s body to:

then press Exit. JShell displays:

25.8.4 Testing Updated Method cube and Method displayCubes
Now that method cube is properly declared, let’s test it again with the arguments 2 and 10:

jshell> int cube(int x) {
 ...> return x * x;
 ...> }
| created method cube(int)

jshell>

jshell> /methods
| void displayCubes()
| int cube(int)

jshell>

jshell> cube(2)
$3 ==> 4

jshell>

jshell> /edit cube

 return x * x * x;

jshell> /edit cube
| modified method cube(int)

jshell>

jshell> cube(2)
$5 ==> 8

jshell> cube(10)
$6 ==> 1000

jshell>

jhtp_25_REPL.FM Page 1137 Tuesday, April 11, 2017 2:58 PM

1138 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

The method properly returns the cubes of 2 (that is, 8) and 10 (that is, 1000), and stores
the results in the implicit variables $5 and $6.

Now let’s test displayCubes. If you type "di" and press Tab, JShell auto-completes
the name, including the parentheses of the method call, because displayCubes receives no
parameters. The following shows the results of the call:

25.9 Exceptions
[Note: This section may be read after studying Chapter 7 and the preceding sections of
Chapter 25.]

In Section 7.5, we introduced Java’s exception-handling mechanism, showing how to
catch an exception that occurred when we attempted to use an out-of-bounds array index.
In JShell, catching exceptions is not required—it automatically catches each exception and
displays information about it, then displays the next JShell prompt, so you can continue
your session. This is particularly important for checked exceptions (Section 11.5) that are
required to be caught in regular Java programs—as you know, catching an exception re-
quires wrapping the code in a try…catch statement. By automatically, catching all excep-
tions, JShell makes it easier for you to experiment with methods that throw checked
exceptions.

In the following new JShell session, we declare an array of int values, then demon-
strate both valid and invalid array-access expressions:

The snippet values[10] attempts to access an out-of-bounds element—recall that this re-
sults in an ArrayIndexOutOfBoundsException. Even though we did not wrap the code in
a try…catch, JShell catches the exception and displays the its String representation. This

jshell> displayCubes()
Cube of 1 is 1
Cube of 2 is 8
Cube of 3 is 27
Cube of 4 is 64
Cube of 5 is 125
Cube of 6 is 216
Cube of 7 is 343
Cube of 8 is 512
Cube of 9 is 729
Cube of 10 is 1000

jshell>

jshell> int[] values = {10, 20, 30}
values ==> int[3] { 10, 20, 30 }

jshell> values[1]
$2 ==> 20

jshell> values[10]
| java.lang.ArrayIndexOutOfBoundsException thrown: 10
| at (#3:1)

jshell>

jhtp_25_REPL.FM Page 1138 Tuesday, April 11, 2017 2:58 PM

25.10 Importing Classes and Adding Packages to the CLASSPATH 1139

includes the exception’s type and an error message (in this case, the invalid index 10), fol-
lowed by a so-called stack trace indicating where the problem occurred. The notation

indicates that the exception occurred at line 1 of the code snippet with the ID 3.
Section 6.6 discussed the method-call stack. A stack trace indicates the methods that were
on the method-call stack at the time the exception occurred. A typical stack trace contains
several "at" lines like the one shown here—one per stack frame. After displaying the stack
trace, JShell shows the next jshell> prompt. Chapter 11 discusses stack traces in detail.

25.10 Importing Classes and Adding Packages to the
CLASSPATH
[Note: This section may be read after studying Chapter 21, Custom Generic Data Struc-
tures and the preceding sections of Chapter 25.]

When working in JShell, you can import types from Java 9’s packages. In fact, several
packages are so commonly used by Java developers that JShell automatically imports them
for you. (You can change this with JShell’s /set start command—see Section 25.12.)

You can use JShell’s /imports command to see the current session’s list of import dec-
larations. The following listing shows the packages that are auto-imported when you begin
a new JShell session:

The java.lang package’s contents are always available in JShell, just as in any Java source-
code file.

In addition to the Java API’s packages, you can import your own or third-party packages
to use their types in JShell. First, you use JShell’s /env -class-path command to add the
packages to JShell’s CLASSPATH, which specifies where the additional packages are located.
You can then use import declarations to experiment with the packages’ contents in JShell.

Using Our Custom Generic List Class
In Chapter 21, we declared a custom generic List data structure and placed it in the pack-
age com.deitel.datastructures. Here, we’ll add that package to JShell’s CLASSPATH,
import our List class, then use it in JShell. If you have a current JShell session open, use
/exit to terminate it. Then, change directories to the ch21 examples folder and start a new
JShell session.

| at (#3:1)

jshell> /imports
| import java.io.*
| import java.math.*
| import java.net.*
| import java.nio.file.*
| import java.util.*
| import java.util.concurrent.*
| import java.util.function.*
| import java.util.prefs.*
| import java.util.regex.*
| import java.util.stream.*

jshell>

jhtp_25_REPL.FM Page 1139 Tuesday, April 11, 2017 2:58 PM

1140 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

Adding the Location of a Package to the CLASSPATH
The ch21 folder contains a folder named com, which is the first of a nested set of folders
that represent the compiled classes in our package com.deitel.datastructures. The fol-
lowing uses adds this package to the CLASSPATH:

The dot (.) indicates the current folder from which you launched JShell. You also can
specify complete paths to other folders on your system or the paths of JAR (Java archive)
files that contain packages of compiled classes.

Importing a Class from the Package
Now, you can import the List class for use in JShell. The following shows importing our
List class and the complete list of imports in the current session:

Using the Imported Class
Finally, you can use class List. Below we create a List<String> and show that JShell’s
auto-complete capability can display the list of available methods. Then we insert two
Strings into the List, displaying its contents after each insertAtFront operation:

jshell> /env -class-path .
| Setting new options and restoring state.

jshell>

jshell> import com.deitel.datastructures.List

jshell> /imports
| import java.io.*
| import java.math.*
| import java.net.*
| import java.nio.file.*
| import java.util.*
| import java.util.concurrent.*
| import java.util.function.*
| import java.util.prefs.*
| import java.util.regex.*
| import java.util.stream.*
| import com.deitel.datastructures.List

jshell>

jshell> List<String> list = new List<>()
list ==> com.deitel.datastructures.List@31610302

jshell> list.
equals(getClass() hashCode() insertAtBack(
insertAtFront(isEmpty() notify() notifyAll()
print() removeFromBack() removeFromFront() toString()
wait(

jshell> list.insertAtFront("red")

jshell> list.print()
The list is: red

jhtp_25_REPL.FM Page 1140 Tuesday, April 11, 2017 2:58 PM

25.11 Using an External Editor 1141

A Note Regarding imports
As you saw at the beginning of this section, JShell imports the entire java.util package—
which contains the List interface (Section 16.6)—in every JShell session. The Java com-
piler gives precedence to an explicit type import for our class List like

vs. an import-on-demand like

Had we used the following import-on-demand:

then we would have had to refer to our List class by its fully qualified name (that is,
com.deitel.datastructures.List) to differentiate it from java.util.List.

25.11 Using an External Editor
Section 25.3.10 demonstrated JShell Edit Pad for editing code snippets. This tool provides
only simple editing functionality. Many programmers prefer to use more powerful text ed-
itors. Using JShell’s /set editor command, you can specify your preferred text editor. For
example, we have a text editor named EditPlus, located on our Windows system at

The JShell command

sets EditPlus as the snippet editor for the current JShell session. The /set editor com-
mand’s argument is operating-system specific. For example, on Ubuntu Linux, you can use
the built-in gedit text editor with the command

and on macOS,8 you can use the built-in TextEdit application with the command

Editing Snippets with a Custom Text Editor
When you’re using a custom editor, each time you save snippet edits JShell immediately
re-evaluates any snippets that have changed and shows their results (but not the snippets

jshell> list.insertAtFront("blue")

jshell> list.print()
The list is: blue red

jshell>

import com.deitel.datastructures.List;

import java.util.*;

import com.deitel.datastructures.*;

C:\Program Files\EditPlus\editplus.exe

jshell> /set editor C:\Program Files\EditPlus\editplus.exe
| Editor set to: C:\Program Files\EditPlus\editplus.exe

jshell>

/set editor gedit

/set editor -wait open -a TextEdit

8. On macOS, the -wait option is required so that JShell does not simply open the external editor, then
return immediately to the next jshell> prompt.

jhtp_25_REPL.FM Page 1141 Tuesday, April 11, 2017 2:58 PM

1142 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

themselves) in the JShell output. The following shows a new JShell session in which we set
a custom editor, then performed JShell interactions—we explain momentarily the two
lines of output that follow the /edit command:

First we declared the int variables x and y, then we launched the external editor to edit our
snippets. Initially, the editor shows the snippets that declare x and y (Fig. 25.4).

Next, we edited y’s declaration, giving it the new value 20, then we added a new
snippet to display both values and their sum (Fig. 25.5).

When we saved the edits in our text editor, JShell replaced y’s original declaration
with the updated one and showed

to indicate that y’s value changed. Then, JShell executed the new System.out.print snip-
pet and showed its results

Finally, when we closed the external editor and pressed Enter in the command window,
JShell displayed the next jshell> prompt.

jshell> /set editor C:\Program Files\EditPlus\editplus.exe
| Editor set to: C:\Program Files\EditPlus\editplus.exe

jshell> int x = 10
x ==> 10

jshell> int y = 10
y ==> 20

jshell> /edit
y ==> 20
10 + 20 = 30
jshell> /list

 1 : int x = 10;
 3 : int y = 20;
 4 : System.out.print(x + " + " + y + " = " + (x + y))

jshell>

Fig. 25.4 | External editor showing code snippets to edit.

y ==> 20

10 + 20 = 30

jhtp_25_REPL.FM Page 1142 Tuesday, April 11, 2017 2:58 PM

25.12 Summary of JShell Commands 1143

Retaining the Editor Setting
You can retain your editor setting for future JShell sessions as follows:

Restoring the JShell Edit Pad As the Default Editor
If you do not retain your custom editor, subsequent JShell sessions will use JShell Edit Pad.
If you do retain the custom editor, you can restore JShell Edit Pad as the default with

25.12 Summary of JShell Commands
Figure 25.6 shows the basic JShell commands. Many of these commands have been pre-
sented throughout this chapter. Others are discussed in this section.

Fig. 25.5 | External editor showing code snippets to edit.

/set editor -retain commandToLaunchYourEditor

/set editor -retain -default

Command Description

/help or /? Displays JShell’s list of commands.

/help intro Displays a brief introduction to JShell.

/help shortcuts Displays a description of several JShell shortcut keys.

/list By default, lists the valid snippets you’ve entered in the current session. To list
all snippets, use /list -all.

/! Recalls and re-evaluates the last snippet.

/id Recalls and re-evaluates the snippet with the specified id.

/-n Recalls and re-evaluates a prior snippet—for n, 1 is the last snippet, 2 is the
second-to-last, etc.

/edit By default, opens a JShell Edit Pad window containing the valid snippets you’ve
entered in the current session. See Section 25.11 to learn how to configure an
external editor.

/save Saves the current session’s valid snippets to a specified file.

Fig. 25.6 | Jshell commands. (Part 1 of 2.)

jhtp_25_REPL.FM Page 1143 Tuesday, April 11, 2017 2:58 PM

1144 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.12.1 Getting Help in JShell
JShell’s help documentation is incorporated directly via the /help or /? commands—/?

is simply a shorthand for /help. For a quick introduction to JShell, type:

To display JShell’s list of commands, type

For more information on a given command’s options, type

For example

displays the /list command’s more detailed help documentation. Similarly

displays more detailed help documentation for the /set command’s start option. For a
list of the shortcut key combinations in JShell, type

/open Opens a specified file of code snippets, loads the snippets into the current ses-
sion and evaluates the loaded snippets.

/vars Displays the current session’s variables and their corresponding values.

/methods Displays the signatures of the current session’s declared methods.

/types Displays types declared in the current session.

/imports Displays the current session’s import declarations.

/exit Terminates the current JShell session.

/reset Resets the current JShell session, deleting all code snippets.

/reload Reloads a JShell session and executes the valid snippets (Section 25.12.3).

/drop Deletes a specified snippet from the current session (Section 25.12.4).

/env Makes changes to the JShell environment, such as adding packages or modules
so you can use their types in JShell.

/history Lists everything you’ve typed in the current JShell session, including all snip-
pets (valid, invalid or overwritten) and JShell commands—the /list com-
mand shows only snippets, not JShell commands.

/set Sets various JShell configuration options, such as the editor used in response to
the /edit command, the text used for the JShell prompts, the imports to spec-
ify when a session starts, etc. (Sections 25.12.5–25.12.6).

/help intro

/help

/help command

/help /list

/help /set start

/help shortcuts

Command Description

Fig. 25.6 | Jshell commands. (Part 2 of 2.)

jhtp_25_REPL.FM Page 1144 Tuesday, April 11, 2017 2:58 PM

25.12 Summary of JShell Commands 1145

25.12.2 /edit Command: Additional Features
We’ve discussed using /edit to load all valid snippets, a snippet with a specified ID or a
method with a specified name into JShell Edit Pad. You can specify the identifier for any
variable, method or type declaration that you’d like to edit. For example, if the current
JShell session contains the declaration of a class named Account, the following loads that
class into JShell Edit Pad:

25.12.3 /reload Command
At the time of this writing, you cannot use the /id command to execute a range of previous
snippets. However, JShell’s /reload command can re-execute all valid snippets in the cur-
rent session. Consider the session from Sections 25.3.9–25.3.10:

The following reloads that session one snippet at a time:

/edit Account

jshell> /list

 1 : 45
 2 : 72
 3 : if ($1 < $2) {
 System.out.printf("%d < %d%n", $1, $2);
 }
 4 : if ($1 > $2) {
 System.out.printf("%d > %d%n", $1, $2);
 }
 5 : $1 = 100;
 6 : if ($1 > $2) {
 System.out.printf("%d > %d%n", $1, $2);
 }

jshell>

jshell> /reload
| Restarting and restoring state.
-: 45
-: 72
-: if ($1 < $2) {
 System.out.printf("%d < %d%n", $1, $2);
 }
45 < 72
-: if ($1 > $2) {
 System.out.printf("%d > %d%n", $1, $2);
 }
-: $1 = 100
-: if ($1 > $2) {
 System.out.printf("%d > %d%n", $1, $2);
 }
100 > 72

jshell>

jhtp_25_REPL.FM Page 1145 Tuesday, April 11, 2017 2:58 PM

1146 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

Each reloaded snippet is preceded by -: and in the case of the if statements, the output
(if any) is shown immediately following each if statement. If you prefer not to see the
snippets as they reload, you can use the /reload command’s -quiet option:

In this case, only the results of output statements are displayed. Then, you can view the
snippets that were reloaded with the /list command.

25.12.4 /drop Command
You can eliminate a snippet from the current session with JShell’s /drop command fol-
lowed by a snippet ID or an identifier. The following new JShell session declares a variable
x and a method cube, then drops x via its snippet ID and drops cube via its identifier:

25.12.5 Feedback Modes
JShell has several feedback modes that determine what gets displayed after each interac-
tion. To change the feedback mode, use JShell’s /set feedback command:

where mode is concise, normal (the default), silent or verbose. All of the prior JShell
interactions in this chapter used the normal mode.

Feedback Mode verbose
Below is a new JShell session in which we used verbose mode, which beginning program-
mers might prefer:

jshell> /reload -quiet
| Restarting and restoring state.
45 < 72
100 > 72

jshell>

jshell> int x = 10
x ==> 10

jshell> int cube(int y) {return y * y * y;}
| created method cube(int)

jshell> /list

 1 : int x = 10;
 2 : int cube(int y) {return y * y * y;}

jshell> /drop 1
| dropped variable x

jshell> /drop cube
| dropped method cube(int)

jshell> /list

jshell>

/set feedback mode

jhtp_25_REPL.FM Page 1146 Tuesday, April 11, 2017 2:58 PM

25.12 Summary of JShell Commands 1147

Notice the additional feedback indicating that

• variable x was created,

• variable $3 was created on the first call to cube—JShell refers to the implicit vari-
able as a scratch variable,

• an int was assigned to the variable x, and

• scratch variable $5 was created on the second call to cube.

Feedback Mode concise
Next, we /reset the session then set the feedback mode to concise and repeat the pre-
ceding session:

As you can see, the only feedback displayed is the result of each call to cube. If an error
occurs, its feedback also will be displayed.

Feedback Mode silent
Next, we /reset the session then set the feedback mode to silent and repeat the preced-
ing session:

jshell> /set feedback verbose
| Feedback mode: verbose

jshell> int x = 10
x ==> 10
| created variable x : int

jshell> int cube(int y) {return y * y * y;}
| created method cube(int)

jshell> cube(x)
$3 ==> 1000
| created scratch variable $3 : int

jshell> x = 5
x ==> 5
| assigned to x : int

jshell> cube(x)
$5 ==> 125
| created scratch variable $5 : int

jshell>

jshell> /set feedback concise
jshell> int x = 10
jshell> int cube(int y) {return y * y * y;}
jshell> cube(x)
$3 ==> 1000
jshell> x = 5
jshell> cube(x)
$5 ==> 125
jshell>

jhtp_25_REPL.FM Page 1147 Tuesday, April 11, 2017 2:58 PM

1148 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

In this case, the jshell> prompt becomes -> and only error feedback will be displayed.
You might use this mode if you’ve copied code from a Java source file and want to paste
it into JShell, but do not want to see the feedback for each line.

25.12.6 Other JShell Features Configurable with /set
So far, we’ve demonstrated the /set command’s capabilities for setting an external snippet
editor and setting feedback modes. The /set command provides extensive capabilities for
creating custom feedback modes via the commands:

• /set mode

• /set prompt

• /set truncation

• /set format

The /set mode command creates a user-defined custom feedback mode. Then you can use
the other three commands to customize all aspects of JShell’s feedback. The details of these
commands are beyond the scope of this chapter. For more information, see JShell’s help
documentation for each of the preceding commands.

Customizing JShell Startup
Section 25.10 showed the set of common packages JShell imports at the start of each ses-
sion. Using JShell’s /set start command

you can provide a file of Java snippets and JShell commands that will be used in the current
session when it restarts due to a /reset or /reload command. You can also remove all
startup snippets with

or return to the default startup snippets with

In all three cases, the setting applies only to the current session unless you also include
the -retain option. For example, the following command indicates that all subsequent
JShell sessions should load the specified file of startup snippets and commands:

You can restore the defaults for future sessions with

jshell> /set feedback silent
-> int x = 10
-> int cube(int y) {return y * y * y;}
-> cube(x)
-> x = 5
-> cube(x)
-> /set feedback normal
| Feedback mode: normal

jshell>

/set start filename

/set start -none

/set start -default

/set start -retain filename

/set start -retain -default

jhtp_25_REPL.FM Page 1148 Tuesday, April 11, 2017 2:58 PM

25.13 Keyboard Shortcuts for Snippet Editing 1149

25.13 Keyboard Shortcuts for Snippet Editing
In addition to the commands in Fig. 25.6, JShell supports many keyboard shortcuts for
editing code, such as quickly jumping to the beginning or end of a line, or jumping be-
tween words in a line. JShell’s command-line features are implemented by a library named
JLine 2, which provides command-line editing and history capabilites. Figure 25.7 shows
a sample of the shortcuts available.

25.14 How JShell Reinterprets Java for Interactive Use
In JShell:

• A main method is not required.

• Semicolons are not required on standalone statements.

• Variables do not need to be declared in classes or in methods.

• Methods do not need to be declared inside a class’s body.

• Statements do not need to be written inside methods.

• Redeclaring a variable, method or type simply drops the prior declaration and re-
places it with the new one, whereas the Java compiler normally would report an
error.

• You do not need to catch exceptions, though you can if you need to test exception
handling.

• JShell ignores top-level access modifiers (public, private, protected, static,
final)—only abstract (Chapter 10) is allowed as a class modifier.

• The synchronized keyword (Chapter 23, Concurrency) is ignored.

• package statements and Java 9 module statements are not allowed.

Shortcut Description

Ctrl + a Move cursor to beginning of line.

Ctrl + e Move cursor to end of line.

Alt + b Move the cursor backwards by one word.

Alt + f Move the cursor forwards by one word.

Ctrl + r Perform a search for the last command or snippet containing the char-
acters you type after typing Ctrl + r.

Ctrl + t Reverse the two characters to the left of the cursor.

Ctrl + k Cut everything from the cursor to the end of the line.

Ctrl + u Cut everything from the beginning of the line up to, but not including
the character at the cursor position.

Ctrl + w Cut the word before the cursor.

Alt + d Cut the word after the cursor.

Fig. 25.7 | Some keyboard shortcuts for editing the current snippet at the jshell> prompt.

jhtp_25_REPL.FM Page 1149 Tuesday, April 11, 2017 2:58 PM

1150 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.15 IDE JShell Support
At the time of this writing, work is just beginning on JShell support in popular IDEs such
as NetBeans, IntelliJ IDEA and Eclipse. NetBeans currently has an early access plug-in
that enables you to work with JShell in both Java 8 and Java 9—even though JShell is a
Java 9 feature. Some vendors will use JShell’s APIs to provide developers with JShell envi-
ronments that show both the code users type and the results of running that code side-by-
side. Some features you might see in IDE JShell support include:

• Source-code syntax coloring for better code readability.

• Automatic source-code indentation and insertion of closing braces (}), parenthe-
ses ()) and brackets (]) to save programmers time.

• Debugger integration.

• Project integration, such as being able to automatically use classes in the same
project from a JShell session.

25.16 Wrap-Up
In this chapter, you used JShell—Java 9’s new interactive REPL for exploration, discovery
and experimentation. We showed how to start a JShell session and work with various types
of code snippets, including statements, variables, expressions, methods and classes—all
without having to declare a class containing a main method to execute the code.

You saw that you can list the valid snippets in the current session, and recall and exe-
cute prior snippets and commands using the up and down arrow keys. You also saw that
you can list the current session’s variables, methods, types and imports. We showed how
to clear the current JShell session to remove all existing snippets and how to save snippets
to a file then reload them.

We demonstrated JShell’s auto-completion capabilities for code and commands, and
showed how you can explore a class’s members and view documentation directly in JShell.
We explored class Math, demonstrating how to list its static members, how to view a
method’s parameters and overloads, view a method’s documentation and view a public
field’s documentation. We also explored the methods of a String object.

You declared methods and forward referenced an undeclared method that you
declared later in the session, then saw that you could go back and execute the first method.
We also showed that you can replace a method declaration with a new method—in fact,
you can replace any declaration of a variable, method or type.

We showed that JShell catches all exceptions and simply displays a stack trace fol-
lowed by the next jshell> prompt, so you can continue the session. You imported an
existing compiled class from a package, then used that class in a JShell session.

Next, we summarized and demonstrated various other JShell commands. We showed
how to configure a custom snippet editor, view JShell’s help documentation, reload a ses-
sion, drop snippets from a session, configure feedback modes and more. We listed some
additional keyboard shortcuts for editing the current snippet at the jshell> prompt.
Finally, we discussed how JShell reinterprets Java for interactive use and IDE support for
JShell.

jhtp_25_REPL.FM Page 1150 Tuesday, April 11, 2017 2:58 PM

Self-Review Exercises 1151

Self-Review Exercises
We encourage you to use JShell to do Exercises 25.1–25.43 after reading Sections 25.3–25.4.
We’ve included the answers for all these exercises to help you get comfortable with JShell/REPL
quickly.

25.1 Confirm that when you use System.out.println to display a String literal, such as "Happy
Birthday!", the quotes ("") are not displayed. End your statement with a semicolon.

25.2 Repeat Exercise 25.1, but remove the semicolon at the end of your statement to demon-
strate that semicolons in this position are optional in JShell.

25.3 Confirm that JShell does not execute a // end-of-line comment.

25.4 Show that an executable statement enclosed in a multiline comment—delimited by /* and
*/—does not execute.

25.5 Show what happens when the following code is entered in JShell:

/* incomplete multi-line comment
System.out.println(“Welcome to Java Programming!”)
/* complete multi-line
comment */

25.6 Show that indenting code with spaces does not affect statement execution.

25.7 Declare each of the following variables as type int in JShell to determine which are valid
and which are invalid?

a) first
b) first number
c) first1
d) 1first

25.8 Show that braces do not have to occur in matching pairs inside a string literal.

25.9 Show what happens when you type each of the following code snippets into JShell:
a) System.out.println("seems OK")
b) System.out.println("missing something?)
c) System.out.println"missing something else?")

25.10 Demonstrate that after a System.out.print the next print results appear on the same line
right after the previous one’s. [Hint: To demonstrate this, reset the current session, enter two Sys-
tem.out.print statements, then use the following two commands to save the snippets to a file, then
reload and re-execute them:

/save mysnippets
/open mysnippets

The /open command loads the mysnippets file’s contents then executes them.]

25.11 Demonstrate that after a System.out.println, the next text that prints displays its text at
the left of the next line. [Hint: To demonstrate this, reset the current session, enter a Sys-
tem.out.println statement followed by another print statement, then use the following two com-
mands to save the snippets to a file, then reload and re-execute them:

/save mysnippets
/open mysnippets

The /open command loads the mysnippets file’s contents then executes them.]

25.12 Demonstrate that you can reset a JShell session to remove all prior snippets and start from
scratch without having to exit JShell and start a new session.

jhtp_25_REPL.FM Page 1151 Tuesday, April 11, 2017 2:58 PM

1152 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.13 Using System.out.println, demonstrate that the escape sequence \n causes a newline to be
issued to the output. Use the string

"Welcome\nto\nJShell!"

25.14 Demonstrate that the escape sequence \t causes a tab to be issued to the output. Note that
your output will depend on how tabs are set on your system. Use the string

"before\tafter\nbefore\t\tafter"

25.15 Demonstrate what happens when you include a single backslash (\) in a string. Be sure that
the character after the backslash does not create a valid escape sequence.

25.16 Display a string containing \\\\ (recall that \\ is an escape sequence for a backslash). How
many backslashes are displayed?

25.17 Use the escape sequence \" to display a quoted string.

25.18 What happens when the following code executes in JShell:

System.out.println("Happy Birthday!\rSunny")

25.19 Consider the following statement

System.out.printf("%s%n%s%n", "Welcome to ", "Java Programming!")

Make the following intentional errors (separately) to see what happens.
a) Omit the parentheses around the argument list.
b) Omit the commas.
c) Omit one of the %s%n sequences.
d) Omit one of the strings (i.e., the second or the third argument).
e) Replace the first %s with %d.
f) Replace the string "Welcome to " with the integer 23.

25.20 What happens when you enter the /imports command in a new JShell session?

25.21 Import class Scanner then create a Scanner object input for reading from System.in. What
happens when you execute the statement:

int number = input.nextInt()

and the user enters the string "hello"?

25.22 In a new or /reset JShell session, repeat Exercise 25.21 without importing class Scanner to
demonstrate that the package java.util is already imported in JShell.

25.23 Demonstrate what happens when you don’t precede a Scanner input operation with a
meaningful prompting message telling the user what to input. Enter the following statements:

Scanner input = new Scanner(System.in)
int value = input.nextInt()

25.24 Demonstrate that you can’t place an import statement in a class.

25.25 Demonstrate that identifiers are case sensitive by declaring variables id and ID of types
String and int, respectively. Also use the /list command to show the two snippets representing
the separate variables.

25.26 Demonstrate that initialization statements like

String month = "April"
int age = 65

indeed initialize their variables with the indicated values.

25.27 Demonstrate what happens when you:
a) Add 1 to the largest possible int value 2,147,483,647.
b) Subtract 1 from the smallest possible integer –2,147,483,648.

jhtp_25_REPL.FM Page 1152 Tuesday, April 11, 2017 2:58 PM

Self-Review Exercises 1153

25.28 Demonstrate that large integers like 1234567890 are equivalent to their counterparts with
the underscore separators, namely 1_234_567_890:

a) 1234567890 == 1_234_567_890

b) Print each of these values and show that you get the same result.
c) Divide each of these values by 2 and show that you get the same result.

25.29 Placing spaces around operators in an arithmetic expression does not affect the value of that
expression. In particular, the following expressions are equivalent:

17+23

17 + 23

Demonstrate this with an if statement using the condition

(17+23) == (17 + 23)

25.30 Demonstrate that the parentheses around the argument number1 + number2 in the following
statement are unnecessary:

System.out.printf("Sum is %d%n", (number1 + number2))

25.31 Declare the int variable x and initialize it to 14, then demonstrate that the subsequent as-
signment x = 27 is destructive.

25.32 Demonstrate that printing the value of the following variable is non-destructive:

int y = 29

25.33 Using the declarations:

int b = 7
int m = 9

a) Demonstrate that attempting to do algebraic multiplication by placing the variable
names next to one another as in bm doesn’t work in Java.

b) Demonstrate that the Java expression b * m indeed multiplies the two operands.

25.34 Use the following expressions to demonstrate that integer division yields an integer result:
a) 8 / 4
b) 7 / 5

25.35 Demonstrate what happens when you attempt each of the following integer divisions:
a) 0 / 1
b) 1 / 0
c) 0 / 0

25.36 Demonstrate that the values of the following expressions:
a) (3 + 4 + 5) / 5
b) 3 + 4 + 5 / 5

are different and thus the parentheses in the first expression are required if you want to divide the
entire quantity 3 + 4 + 5 by 5.

25.37 Calculate the value of the following expression:

5 / 2 * 2 + 4 % 3 + 9 - 3

manually being careful to observe the rules of operator precedence. Confirm the result in JShell.

25.38 Test each of the two equality and four relational operators on the two values 7 and 7. For
example, 7 == 7, 7 < 7, etc.

25.39 Repeat Exercise 25.38 using the values 7 and 9.

25.40 Repeat Exercise 25.38 using the values 11 and 9.

jhtp_25_REPL.FM Page 1153 Tuesday, April 11, 2017 2:58 PM

1154 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.41 Demonstrate that accidentally placing a semicolon after the right parenthesis of the condi-
tion in an if statement can be a logic error.

if (3 == 5); {
 System.out.println("3 is equal to 5");
}

25.42 Given the following declarations:

int x = 1
int y = 2
int z = 3
int a

what are the values of a, x, y and z after the following statement executes?

a = x = y = z = 10

25.43 Manually determine the value of the following expression then use JShell to check your
work:

(3 * 9 * (3 + (9 * 3 / (3))))

Answers to Self-Review Exercises
25.1

25.2

25.3

25.4

25.5 There is no compilation error, because the second /* is considered to be part of the first
multi-line comment.

jshell> System.out.println("Happy Birthday!");
Happy Birthday!

jshell>

jshell> System.out.println("Happy Birthday!")
Happy Birthday!

jshell>

jshell> // comments are not executable

jshell>

jshell> /* opening line of multi-line comment
 ...> System.out.println("Welcome to Java Programming!")
 ...> closing line of multi-line comment */

jshell>

jshell> /* incomplete multi-line comment
 ...> System.out.println("Welcome to Java Programming!")
 ...> /* complete multi-line
 ...> comment */

jshell>

jhtp_25_REPL.FM Page 1154 Tuesday, April 11, 2017 2:58 PM

Answers to Self-Review Exercises 1155

25.6

25.7 a) valid. b) invalid (space not allowed). c) valid. d) invalid (can’t begin with a digit).

25.8

jshell> System.out.println("A")
A

jshell> System.out.println("A") // indented 3 spaces
A

jshell> System.out.println("A") // indented 6 spaces
A

jshell>

jshell> int first
first ==> 0

jshell> int first number
| Error:
| ';' expected
| int first number
| ^

jshell> int first1
first1 ==> 0

jshell> int 1first
| Error:
| '.class' expected
| int 1first
| ^
| Error:
| not a statement
| int 1first
| ^--^
| Error:
| unexpected type
| required: value
| found: class
| int 1first
| ^--^
| Error:
| missing return statement
| int 1first
|> ^---------^

jshell>

jshell> "Unmatched brace { in a string is OK"
$1 ==> "Unmatched brace { in a string is OK"

jshell>

jhtp_25_REPL.FM Page 1155 Tuesday, April 11, 2017 2:58 PM

1156 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.9

25.10

25.11

25.12

jshell> System.out.println("seems OK")
seems OK

jshell> System.out.println("missing something?)
| Error:
| unclosed string literal
| System.out.println("missing something?)
| ^

jshell> System.out.println"missing something else?")
| Error:
| ';' expected
| System.out.println"missing something else?")
| ^
| Error:
| cannot find symbol
| symbol: variable println
| System.out.println"missing something else?")
| ^----------------^

jshell>

jshell> System.out.print("Happy ")
Happy
jshell> System.out.print("Birthday")
Birthday
jshell> /save mysession

jshell> /open mysession
Happy Birthday
jshell>

jshell> System.out.println("Happy ")
Happy
jshell> System.out.println("Birthday")
Birthday
jshell> /save mysession

jshell> /open mysession
Happy
Birthday
jshell>

jshell> int x = 10
x ==> 10

jshell> int y = 20
y ==> 20
 (continued...)

jhtp_25_REPL.FM Page 1156 Tuesday, April 11, 2017 2:58 PM

Answers to Self-Review Exercises 1157

25.13

25.14

25.15

25.16 Two.

25.17

25.18

jshell> x + y
$3 ==> 30

jshell> /reset
| Resetting state.

jshell> /list

jshell>

jshell> System.out.println("Welcome\nto\nJShell!")
Welcome
to
JShell!

jshell>

jshell> System.out.println("before\tafter\nbefore\t\tafter")
before after
before after

jshell>

jshell> System.out.println("Bad escap\e")
| Error:
| illegal escape character
| System.out.println("Bad escap\e")
| ^

jshell>

jshell> System.out.println("Displaying backslashes \\\\")
Displaying backslashes \\

jshell>

jshell> System.out.println("\"This is a string in quotes\"")
"This is a string in quotes"

jshell>

jshell> System.out.println("Happy Birthday!\rSunny")
Sunny Birthday!

jshell>

jhtp_25_REPL.FM Page 1157 Tuesday, April 11, 2017 2:58 PM

1158 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.19 a)

b)

c)

d)

e)

jshell> System.out.printf"%s%n%s%n", "Welcome to ", "Java
Programming!"
| Error:
| ';' expected
| System.out.printf"%s%n%s%n", "Welcome to ", "Java Programming!"
| ^
| Error:
| cannot find symbol
| symbol: variable printf
| System.out.printf"%s%n%s%n", "Welcome to ", "Java Programming!"
| ^---------------^

jshell>

jshell> System.out.printf("%s%n%s%n" "Welcome to " "Java
Programming!")
| Error:
| ')' expected
| System.out.printf("%s%n%s%n" "Welcome to " "Java Programming!")
| ^

jshell>

jshell> System.out.printf("%s%n", "Welcome to ", "Java Programming!")
Welcome to
$6 ==> java.io.PrintStream@6d4b1c02

jshell>

jshell> System.out.printf("%s%n%s%n", "Welcome to ")
Welcome to
| java.util.MissingFormatArgumentException thrown: Format
specifier '%s'
| at Formatter.format (Formatter.java:2524)
| at PrintStream.format (PrintStream.java:974)
| at PrintStream.printf (PrintStream.java:870)
| at (#7:1)

jshell>

jshell> System.out.printf("%d%n%s%n", "Welcome to ", "Java
Programming!")
| java.util.IllegalFormatConversionException thrown: d !=
java.lang.String
| at Formatter$FormatSpecifier.failConversion
(Formatter.java:4275)
| at Formatter$FormatSpecifier.printInteger
(Formatter.java:2790)
| at Formatter$FormatSpecifier.print (Formatter.java:2744)
 (continued...)

jhtp_25_REPL.FM Page 1158 Tuesday, April 11, 2017 2:58 PM

Answers to Self-Review Exercises 1159

f)

25.20

25.21

25.22

| at Formatter.format (Formatter.java:2525)
| at PrintStream.format (PrintStream.java:974)
| at PrintStream.printf (PrintStream.java:870)
| at (#8:1)

jshell>

jshell> System.out.printf("%s%n%s%n", 23, "Java Programming!")
23
Java Programming!
$9 ==> java.io.PrintStream@6d4b1c02

jshell>

jshell> /imports
| import java.io.*
| import java.math.*
| import java.net.*
| import java.nio.file.*
| import java.util.*
| import java.util.concurrent.*
| import java.util.function.*
| import java.util.prefs.*
| import java.util.regex.*
| import java.util.stream.*

jshell>

jshell> import java.util.Scanner

jshell> Scanner input = new Scanner(System.in)
input ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] ...
\E][infinity string=\Q∞\E]

jshell> int number = input.nextInt()
hello
| java.util.InputMismatchException thrown:
| at Scanner.throwFor (Scanner.java:860)
| at Scanner.next (Scanner.java:1497)
| at Scanner.nextInt (Scanner.java:2161)
| at Scanner.nextInt (Scanner.java:2115)
| at (#2:1)

jshell>

jshell> Scanner input = new Scanner(System.in)
input ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] ...
\E][infinity string=\Q∞\E]

 (continued...)

jhtp_25_REPL.FM Page 1159 Tuesday, April 11, 2017 2:58 PM

1160 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.23 JShell appears to hang while it waits for the user to type a value and press Enter.

25.24

25.25

jshell> int number = input.nextInt()
hello
| java.util.InputMismatchException thrown:
| at Scanner.throwFor (Scanner.java:860)
| at Scanner.next (Scanner.java:1497)
| at Scanner.nextInt (Scanner.java:2161)
| at Scanner.nextInt (Scanner.java:2115)
| at (#2:1)

jshell>

jshell> Scanner input = new Scanner(System.in)
input ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] ...
\E][infinity string=\Q∞\E]

jshell> int value = input.nextInt()

jshell> class Demonstration {
 ...> import java.util.Scanner;
 ...> }
| Error:
| illegal start of type
| import java.util.Scanner;
| ^
| Error:
| <identifier> expected
| import java.util.Scanner;
| ^

jshell> import java.util.Scanner

jshell> class Demonstration {
 ...> }
| created class Demonstration

jshell>

jshell> /reset
| Resetting state.

jshell> String id = "Natasha"
id ==> "Natasha"

jshell> int ID = 413
ID ==> 413

jshell> /list
 (continued...)

jhtp_25_REPL.FM Page 1160 Tuesday, April 11, 2017 2:58 PM

Answers to Self-Review Exercises 1161

25.26

25.27

25.28

25.29

 1 : String id = "Natasha";
 2 : int ID = 413;

jshell>

jshell> String month = "April"
month ==> "April"

jshell> System.out.println(month)
April

jshell> int age = 65
age ==> 65

jshell> System.out.println(age)
65

jshell>

jshell> 2147483647 + 1
$9 ==> -2147483648

jshell> -2147483648 - 1
$10 ==> 2147483647

jshell>

jshell> 1234567890 == 1_234_567_890
$4 ==> true

jshell> System.out.println(1234567890)
1234567890

jshell> System.out.println(1_234_567_890)
1234567890

jshell> 1234567890 / 2
$5 ==> 617283945

jshell> 1_234_567_890 / 2
$6 ==> 617283945

jshell>

jshell> (17+23) == (17 + 23)
$7 ==> true

jshell>

jhtp_25_REPL.FM Page 1161 Tuesday, April 11, 2017 2:58 PM

1162 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.30

25.31

25.32

25.33

jshell> int number1 = 10
number1 ==> 10

jshell> int number2 = 20
number2 ==> 20

jshell> System.out.printf("Sum is %d%n", (number1 + number2))
Sum is 30
$10 ==> java.io.PrintStream@1794d431

jshell> System.out.printf("Sum is %d%n", number1 + number2)
Sum is 30
$11 ==> java.io.PrintStream@1794d431

jshell>

jshell> int x = 14
x ==> 14

jshell> x = 27
x ==> 27

jshell>

jshell> int y = 29
y ==> 29

jshell> System.out.println(y)
29

jshell> y
y ==> 29

jshell> int b = 7
b ==> 7

jshell> int m = 9
m ==> 9

jshell> bm
| Error:
| cannot find symbol
| symbol: variable bm
| bm
| ^^

jshell> b * m
$3 ==> 63

jshell>

jhtp_25_REPL.FM Page 1162 Tuesday, April 11, 2017 2:58 PM

Answers to Self-Review Exercises 1163

25.34 a) 2. b) 1.

25.35

25.36

25.37

25.38

jshell> 8 / 4
$4 ==> 2

jshell> 7 / 5
$5 ==> 1

jshell>

jshell> 0 / 1
$6 ==> 0

jshell> 1 / 0
| java.lang.ArithmeticException thrown: / by zero
| at (#7:1)

jshell> 0 / 0
| java.lang.ArithmeticException thrown: / by zero
| at (#8:1)

jshell>

jshell> (3 + 4 + 5) / 5
$9 ==> 2

jshell> 3 + 4 + 5 / 5
$10 ==> 8

jshell>

jshell> 5 / 2 * 2 + 4 % 3 + 9 - 3
$11 ==> 11

jshell>

jshell> 7 == 7
$12 ==> true

jshell> 7 != 7
$13 ==> false

jshell> 7 < 7
$14 ==> false

jshell> 7 <= 7
$15 ==> true

jshell> 7 > 7
$16 ==> false
 (continued...)

jhtp_25_REPL.FM Page 1163 Tuesday, April 11, 2017 2:58 PM

1164 Chapter 25 Introduction to JShell: Java 9’s REPL for Interactive Java

25.39

25.40

25.41

jshell> 7 >= 7
$17 ==> true

jshell>

jshell> 7 == 9
$18 ==> false

jshell> 7 != 9
$19 ==> true

jshell> 7 < 9
$20 ==> true

jshell> 7 <= 9
$21 ==> true

jshell> 7 > 9
$22 ==> false

jshell> 7 >= 9
$23 ==> false

jshell>

jshell> 11 == 9
$24 ==> false

jshell> 11 != 9
$25 ==> true

jshell> 11 < 9
$26 ==> false

jshell> 11 <= 9
$27 ==> false

jshell> 11 > 9
$28 ==> true

jshell> 11 >= 9
$29 ==> true

jshell>

jshell> if (3 == 5); {
 ...> System.out.println("3 is equal to 5");
 ...> }
3 is equal to 5

jshell>

jhtp_25_REPL.FM Page 1164 Tuesday, April 11, 2017 2:58 PM

Answers to Self-Review Exercises 1165

25.42

25.43

jshell> int x = 1
x ==> 1

jshell> int y = 2
y ==> 2

jshell> int z = 3
z ==> 3

jshell> int a
a ==> 0

jshell> a = x = y = z = 10
a ==> 10

jshell> x
x ==> 10

jshell> y
y ==> 10

jshell> z
z ==> 10

jshell>

jshell> (3 * 9 * (3 + (9 * 3 / (3))))
$42 ==> 324

jshell>

jhtp_25_REPL.FM Page 1165 Tuesday, April 11, 2017 2:58 PM

