
26Swing GUI Components:
Part 1

O b j e c t i v e s
In this chapter you’ll:

■ Learn how to use the Nimbus
look-and-feel.

■ Build GUIs and handle events
generated by user
interactions with GUIs.

■ Understand the packages
containing GUI components,
event-handling classes and
interfaces.

■ Create and manipulate
buttons, labels, lists, text
fields and panels.

■ Handle mouse events and
keyboard events.

■ Use layout managers to
arrange GUI components.

jhtp_26_GUI1.fm Page 1 Monday, May 1, 2017 3:15 PM

26_2 Chapter 26 Swing GUI Components: Part 1

26.1 Introduction
[Note: JavaFX (Chapters 12, 13 and 22) is Java’s GUI, graphics and multimedia API of
the future. We provide this chapter and Chapters 27 and 35 as is from this book’s Tenth
Edition for those still interested in Swing GUIs.]

A graphical user interface (GUI) presents a user-friendly mechanism for interacting with
an application. A GUI (pronounced “GOO-ee”) gives an application a distinctive “look-
and-feel.” GUIs are built from GUI components. These are sometimes called controls or
widgets—short for window gadgets. A GUI component is an object with which the user
interacts via the mouse, the keyboard or another form of input, such as voice recognition.
In this chapter and Chapter 35, Swing GUI Components: Part 2, you’ll learn about many
of Java’s so-called Swing GUI components from the javax.swing package. We cover oth-
er GUI components as they’re needed throughout the book. In Chapter 12 and two online
chapters, you’ll learn about JavaFX—Java’s latest APIs for GUI, graphics and multimedia.

IDE Support for GUI Design
Many IDEs provide GUI design tools with which you can specify a component’s size, lo-
cation and other attributes in a visual manner by using the mouse, the keyboard and drag-
and-drop. The IDEs generate the GUI code for you. This greatly simplifies creating GUIs,

26.1 Introduction
26.2 Java’s Nimbus Look-and-Feel
26.3 Simple GUI-Based Input/Output with

JOptionPane
26.4 Overview of Swing Components
26.5 Displaying Text and Images in a

Window
26.6 Text Fields and an Introduction to

Event Handling with Nested Classes
26.7 Common GUI Event Types and

Listener Interfaces
26.8 How Event Handling Works
26.9 JButton

26.10 Buttons That Maintain State
26.10.1 JCheckBox
26.10.2 JRadioButton

26.11 JComboBox; Using an Anonymous
Inner Class for Event Handling

26.12 JList
26.13 Multiple-Selection Lists
26.14 Mouse Event Handling
26.15 Adapter Classes
26.16 JPanel Subclass for Drawing with

the Mouse
26.17 Key Event Handling
26.18 Introduction to Layout Managers

26.18.1 FlowLayout
26.18.2 BorderLayout
26.18.3 GridLayout

26.19 Using Panels to Manage More
Complex Layouts

26.20 JTextArea
26.21 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

Look-and-Feel Observation 26.1
Providing different applications with consistent, intuitive user-interface components gives
users a sense of familiarity with a new application, so that they can learn it more quickly
and use it more productively.

jhtp_26_GUI1.fm Page 2 Monday, May 1, 2017 3:15 PM

26.1 Introduction 26_3

but each IDE generates this code differently. For this reason, we wrote the GUI code by
hand, as you’ll see in the source-code files for this chapter’s examples. We encourage you
to build each GUI visually using your preferred IDE(s).

Sample GUI: The SwingSet3 Demo Application
As an example of a GUI, consider Fig. 26.1, which shows the SwingSet3 demo application
from the JDK demos and samples download at http://www.oracle.com/technetwork/
java/javase/downloads/index.html. This application is a nice way for you to browse
through the various GUI components provided by Java’s Swing GUI APIs. Simply click a
component name (e.g., JFrame, JTabbedPane, etc.) in the GUI Components area at the left
of the window to see a demonstration of the GUI component in the right side of the win-
dow. The source code for each demo is shown in the text area at the bottom of the win-
dow. We’ve labeled a few of the GUI components in the application. At the top of the
window is a title bar that contains the window’s title. Below that is a menu bar containing
menus (File and View). In the top-right region of the window is a set of buttons—typi-
cally, users click buttons to perform tasks. In the GUI Components area of the window is a
combo box; the user can click the down arrow at the right side of the box to select from a
list of items. The menus, buttons and combo box are part of the application’s GUI. They
enable you to interact with the application.

Fig. 26.1 | SwingSet3 application demonstrates many of Java’s Swing GUI components.

menu menu bar buttoncombo boxtitle bar text area scroll bar

jhtp_26_GUI1.fm Page 3 Monday, May 1, 2017 3:15 PM

26_4 Chapter 26 Swing GUI Components: Part 1

26.2 Java’s Nimbus Look-and-Feel
A GUI’s look consists of its visual aspects, such as its colors and fonts, and its feel consists
of the components you use to interact with the GUI, such as buttons and menus. Together
these are known as the GUI’s look-and-feel. Swing has a cross-platform look-and-feel
known as Nimbus. For GUI screen captures like Fig. 26.1, we’ve configured our systems
to use Nimbus as the default look-and-feel. There are three ways that you can use Nimbus:

1. Set it as the default for all Java applications that run on your computer.

2. Set it as the look-and-feel at the time that you launch an application by passing a
command-line argument to the java command.

3. Set it as the look-and-feel programatically in your application (see Section 35.6).

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

In addition to the standalone JRE, there is a JRE nested in your JDK’s installation folder.
If you’re using an IDE that depends on the JDK, you may also need to place the
swing.properties file in the nested jre folder’s lib folder.

If you prefer to select Nimbus on an application-by-application basis, place the fol-
lowing command-line argument after the java command and before the application’s
name when you run the application:

26.3 Simple GUI-Based Input/Output with
JOptionPane
The applications in Chapters 2–10 display text in the command window and obtain input
from the command window. Most applications you use on a daily basis use windows or di-
alog boxes (also called dialogs) to interact with the user. For example, an e-mail program al-
lows you to type and read messages in a window the program provides. Dialog boxes are
windows in which programs display important messages to the user or obtain information
from the user. Java’s JOptionPane class (package javax.swing) provides prebuilt dialog box-
es for both input and output. These are displayed by invoking static JOptionPane meth-
ods. Figure 26.2 presents a simple addition application that uses two input dialogs to obtain
integers from the user and a message dialog to display the sum of the integers the user enters.

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

-Dswing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

1 // Fig. 26.2: Addition.java
2 // Addition program that uses JOptionPane for input and output.
3 import javax.swing.JOptionPane;
4
5 public class Addition
6 {

Fig. 26.2 | Addition program that uses JOptionPane for input and output. (Part 1 of 2.)

jhtp_26_GUI1.fm Page 4 Monday, May 1, 2017 3:15 PM

26.3 Simple GUI-Based Input/Output with JOptionPane 26_5

Input Dialogs
Line 3 imports class JOptionPane. Lines 10–11 declare the local String variable first-
Number and assign it the result of the call to JOptionPane static method showInputDia-
log. This method displays an input dialog (see the screen capture in Fig. 26.2(a)), using
the method’s String argument ("Enter first integer") as a prompt.

7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15 // convert String inputs to int values for use in a calculation
16 int number1 = Integer.parseInt(firstNumber);
17 int number2 = Integer.parseInt(secondNumber);
18
19 int sum = number1 + number2;
20
21
22
23
24 }
25 }

Look-and-Feel Observation 26.2
The prompt in an input dialog typically uses sentence-style capitalization—a style that
capitalizes only the first letter of the first word in the text unless the word is a proper noun
(for example, Jones).

Fig. 26.2 | Addition program that uses JOptionPane for input and output. (Part 2 of 2.)

// obtain user input from JOptionPane input dialogs
String firstNumber =
 JOptionPane.showInputDialog("Enter first integer");
String secondNumber =
 JOptionPane.showInputDialog("Enter second integer");

// display result in a JOptionPane message dialog
JOptionPane.showMessageDialog(null, "The sum is " + sum,
 "Sum of Two Integers", JOptionPane.PLAIN_MESSAGE);

(a) Input dialog displayed by lines 10–11

(b) Input dialog displayed by lines 12–13

When the user clicks OK,
showInputDialog returns

to the program the 100 typed
by the user as a String; the

program must convert the
String to an int

Text field in which the
user types a value

Prompt to the user

(c) Message dialog displayed by lines 22–23—When the user clicks
OK, the message dialog is dismissed (removed from the screen)

jhtp_26_GUI1.fm Page 5 Monday, May 1, 2017 3:15 PM

26_6 Chapter 26 Swing GUI Components: Part 1

The user types characters in the text field, then clicks OK or presses the Enter key to
submit the String to the program. Clicking OK also dismisses (hides) the dialog. [Note:
If you type in the text field and nothing appears, activate the text field by clicking it with
the mouse.] Unlike Scanner, which can be used to input values of several types from the
user at the keyboard, an input dialog can input only Strings. This is typical of most GUI
components. The user can type any characters in the input dialog’s text field. Our program
assumes that the user enters a valid integer. If the user clicks Cancel, showInputDialog
returns null. If the user either types a noninteger value or clicks the Cancel button in the
input dialog, an exception will occur and the program will not operate correctly. Lines 12–
13 display another input dialog that prompts the user to enter the second integer. Each
JOptionPane dialog that you display is a so called modal dialog—while the dialog is on
the screen, the user cannot interact with the rest of the application.

Converting Strings to int Values
To perform the calculation, we convert the Strings that the user entered to int values.
Recall that the Integer class’s static method parseInt converts its String argument to
an int value and might throw a NumberFormatException. Lines 16–17 assign the convert-
ed values to local variables number1 and number2, and line 19 sums these values.

Message Dialogs
Lines 22–23 use JOptionPane static method showMessageDialog to display a message
dialog (the last screen of Fig. 26.2) containing the sum. The first argument helps the Java
application determine where to position the dialog box. A dialog is typically displayed from
a GUI application with its own window. The first argument refers to that window (known
as the parent window) and causes the dialog to appear centered over the parent (as we’ll do
in Section 26.9). If the first argument is null, the dialog box is displayed at the center of
your screen. The second argument is the message to display—in this case, the result of con-
catenating the String "The sum is " and the value of sum. The third argument—"Sum of
Two Integers"—is the String that should appear in the title bar at the top of the dialog.
The fourth argument—JOptionPane.PLAIN_MESSAGE—is the type of message dialog to dis-
play. A PLAIN_MESSAGE dialog does not display an icon to the left of the message. Class
JOptionPane provides several overloaded versions of methods showInputDialog and
showMessageDialog, as well as methods that display other dialog types. For complete in-
formation, visit http://docs.oracle.com/javase/8/docs/api/javax/swing/JOption-
Pane.html.

Look-and-Feel Observation 26.3
Do not overuse modal dialogs, as they can reduce the usability of your applications. Use a
modal dialog only when it’s necessary to prevent users from interacting with the rest of an
application until they dismiss the dialog.

Look-and-Feel Observation 26.4
The title bar of a window typically uses book-title capitalization—a style that capital-
izes the first letter of each significant word in the text and does not end with any punctu-
ation (for example, Capitalization in a Book Title).

jhtp_26_GUI1.fm Page 6 Monday, May 1, 2017 3:15 PM

26.4 Overview of Swing Components 26_7

JOptionPane Message Dialog Constants
The constants that represent the message dialog types are shown in Fig. 26.3. All message
dialog types except PLAIN_MESSAGE display an icon to the left of the message. These icons
provide a visual indication of the message’s importance to the user. A QUESTION_MESSAGE
icon is the default icon for an input dialog box (see Fig. 26.2).

26.4 Overview of Swing Components
Though it’s possible to perform input and output using the JOptionPane dialogs, most
GUI applications require more elaborate user interfaces. The remainder of this chapter
discusses many GUI components that enable application developers to create robust
GUIs. Figure 26.4 lists several basic Swing GUI components that we discuss.

Swing vs. AWT
There are actually two sets of Java GUI components. In Java’s early days, GUIs were built
with components from the Abstract Window Toolkit (AWT) in package java.awt.

Message dialog type Icon Description

ERROR_MESSAGE Indicates an error.

INFORMATION_MESSAGE Indicates an informational message.

WARNING_MESSAGE Warns of a potential problem.

QUESTION_MESSAGE Poses a question. This dialog normally requires a
response, such as clicking a Yes or a No button.

PLAIN_MESSAGE no
icon

A dialog that contains a message, but no icon.

Fig. 26.3 | JOptionPane static constants for message dialogs.

Component Description

JLabel Displays uneditable text and/or icons.

JTextField Typically receives input from the user.

JButton Triggers an event when clicked with the mouse.

JCheckBox Specifies an option that can be selected or not selected.

JComboBox A drop-down list of items from which the user can make a selection.

JList A list of items from which the user can make a selection by clicking on any one
of them. Multiple elements can be selected.

JPanel An area in which components can be placed and organized.

Fig. 26.4 | Some basic Swing GUI components.

jhtp_26_GUI1.fm Page 7 Monday, May 1, 2017 3:15 PM

26_8 Chapter 26 Swing GUI Components: Part 1

These look like the native GUI components of the platform on which a Java program ex-
ecutes. For example, a Button object displayed in a Java program running on Microsoft
Windows looks like those in other Windows applications. On Apple macOS, the Button
looks like those in other Mac applications. Sometimes, even the manner in which a user
can interact with an AWT component differs between platforms. The component’s appear-
ance and the way in which the user interacts with it are known as its look-and-feel.

Lightweight vs. Heavyweight GUI Components
Most Swing components are lightweight components—they’re written, manipulated and
displayed completely in Java. AWT components are heavyweight components, because
they rely on the local platform’s windowing system to determine their functionality and
their look-and-feel. Several Swing components are heavyweight components.

Superclasses of Swing’s Lightweight GUI Components
The UML class diagram of Fig. 26.5 shows an inheritance hierarchy of classes from which
lightweight Swing components inherit their common attributes and behaviors.

Class Component (package java.awt) is a superclass that declares the common features
of GUI components in packages java.awt and javax.swing. Any object that is a Con-
tainer (package java.awt) can be used to organize Components by attaching the Compo-
nents to the Container. Containers can be placed in other Containers to organize a GUI.

Class JComponent (package javax.swing) is a subclass of Container. JComponent is
the superclass of all lightweight Swing components and declares their common attributes
and behaviors. Because JComponent is a subclass of Container, all lightweight Swing com-
ponents are also Containers. Some common features supported by JComponent include:

1. A pluggable look-and-feel for customizing the appearance of components (e.g.,
for use on particular platforms). You’ll see an example of this in Section 35.6.

2. Shortcut keys (called mnemonics) for direct access to GUI components through
the keyboard. You’ll see an example of this in Section 35.4.

Look-and-Feel Observation 26.5
Swing GUI components allow you to specify a uniform look-and-feel for your application
across all platforms or to use each platform’s custom look-and-feel. An application can
even change the look-and-feel during execution to enable users to choose their own pre-
ferred look-and-feel.

Fig. 26.5 | Common superclasses of the lightweight Swing components.

Object

Component

Container

JComponent

jhtp_26_GUI1.fm Page 8 Monday, May 1, 2017 3:15 PM

26.5 Displaying Text and Images in a Window 26_9

3. Brief descriptions of a GUI component’s purpose (called tool tips) that are dis-
played when the mouse cursor is positioned over the component for a short time.
You’ll see an example of this in the next section.

4. Support for accessibility, such as braille screen readers for the visually impaired.

5. Support for user-interface localization—that is, customizing the user interface to
display in different languages and use local cultural conventions.

26.5 Displaying Text and Images in a Window
Our next example introduces a framework for building GUI applications. Several concepts
in this framework will appear in many of our GUI applications. This is our first example
in which the application appears in its own window. Most windows you’ll create that can
contain Swing GUI components are instances of class JFrame or a subclass of JFrame.
JFrame is an indirect subclass of class java.awt.Window that provides the basic attributes
and behaviors of a window—a title bar at the top, and buttons to minimize, maximize and
close the window. Since an application’s GUI is typically specific to the application, most
of our examples will consist of two classes—a subclass of JFrame that helps us demonstrate
new GUI concepts and an application class in which main creates and displays the appli-
cation’s primary window.

Labeling GUI Components
A typical GUI consists of many components. GUI designers often provide text stating the
purpose of each. Such text is known as a label and is created with a JLabel—a subclass of
JComponent. A JLabel displays read-only text, an image, or both text and an image. Ap-
plications rarely change a label’s contents after creating it.

The application of Figs. 26.6–26.7 demonstrates several JLabel features and presents
the framework we use in most of our GUI examples. We did not highlight the code in this
example, since most of it is new. [Note: There are many more features for each GUI com-
ponent than we can cover in our examples. To learn the complete details of each GUI
component, visit its page in the online documentation. For class JLabel, visit http://
docs.oracle.com/javase/8/docs/api/javax/swing/JLabel.html.]

Look-and-Feel Observation 26.6
Text in a JLabel normally uses sentence-style capitalization.

1 // Fig. 26.6: LabelFrame.java
2 // JLabels with text and icons.
3 import java.awt.FlowLayout; // specifies how components are arranged
4 import javax.swing.JFrame; // provides basic window features
5 import javax.swing.JLabel; // displays text and images
6 import javax.swing.SwingConstants; // common constants used with Swing
7 import javax.swing.Icon; // interface used to manipulate images
8 import javax.swing.ImageIcon; // loads images
9

Fig. 26.6 | JLabels with text and icons. (Part 1 of 2.)

jhtp_26_GUI1.fm Page 9 Monday, May 1, 2017 3:15 PM

26_10 Chapter 26 Swing GUI Components: Part 1

10 public class LabelFrame extends JFrame
11 {
12 private final JLabel label1; // JLabel with just text
13 private final JLabel label2; // JLabel constructed with text and icon
14 private final JLabel label3; // JLabel with added text and icon
15
16 // LabelFrame constructor adds JLabels to JFrame
17 public LabelFrame()
18 {
19 super("Testing JLabel");
20 setLayout(new FlowLayout()); // set frame layout
21
22
23
24
25 add(label1); // add label1 to JFrame
26
27
28
29
30
31
32 add(label2); // add label2 to JFrame
33
34
35
36
37
38
39
40 add(label3); // add label3 to JFrame
41 }
42 }

1 // Fig. 26.7: LabelTest.java
2 // Testing LabelFrame.
3 import javax.swing.JFrame;
4
5 public class LabelTest
6 {
7 public static void main(String[] args)
8 {
9 LabelFrame labelFrame = new LabelFrame();

10 labelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 labelFrame.setSize(260, 180);
12 labelFrame.setVisible(true);
13 }
14 }

Fig. 26.7 | Testing LabelFrame. (Part 1 of 2.)

Fig. 26.6 | JLabels with text and icons. (Part 2 of 2.)

// JLabel constructor with a string argument
label1 = new JLabel("Label with text");
label1.setToolTipText("This is label1");

// JLabel constructor with string, Icon and alignment arguments
Icon bug = new ImageIcon(getClass().getResource("bug1.png"));
label2 = new JLabel("Label with text and icon", bug,
 SwingConstants.LEFT);
label2.setToolTipText("This is label2");

label3 = new JLabel(); // JLabel constructor no arguments
label3.setText("Label with icon and text at bottom");
label3.setIcon(bug); // add icon to JLabel
label3.setHorizontalTextPosition(SwingConstants.CENTER);
label3.setVerticalTextPosition(SwingConstants.BOTTOM);
label3.setToolTipText("This is label3");

jhtp_26_GUI1.fm Page 10 Monday, May 1, 2017 3:15 PM

26.5 Displaying Text and Images in a Window 26_11

Class LabelFrame (Fig. 26.6) extends JFrame to inherit the features of a window.
We’ll use an instance of class LabelFrame to display a window containing three JLabels.
Lines 12–14 declare the three JLabel instance variables that are instantiated in the Label-
Frame constructor (lines 17–41). Typically, the JFrame subclass’s constructor builds the
GUI that’s displayed in the window when the application executes. Line 19 invokes super-
class JFrame’s constructor with the argument "Testing JLabel". JFrame’s constructor
uses this String as the text in the window’s title bar.

Specifying the Layout
When building a GUI, you must attach each GUI component to a container, such as a
window created with a JFrame. Also, you typically must decide where to position each GUI
component—known as specifying the layout. Java provides several layout managers that
can help you position components, as you’ll learn later in this chapter and in Chapter 35.

Many IDEs provide GUI design tools in which you can specify components’ exact
sizes and locations in a visual manner by using the mouse; then the IDE will generate the
GUI code for you. Such IDEs can greatly simplify GUI creation.

To ensure that our GUIs can be used with any IDE, we did not use an IDE to create
the GUI code. We use Java’s layout managers to size and position components. With the
FlowLayout layout manager, components are placed in a container from left to right in the
order in which they’re added. When no more components can fit on the current line, they
continue to display left to right on the next line. If the container is resized, a FlowLayout
reflows the components, possibly with fewer or more rows based on the new container
width. Every container has a default layout, which we’re changing for LabelFrame to a
FlowLayout (line 20). Method setLayout is inherited into class LabelFrame indirectly
from class Container. The argument to the method must be an object of a class that imple-
ments the LayoutManager interface (e.g., FlowLayout). Line 20 creates a new FlowLayout
object and passes its reference as the argument to setLayout.

Creating and Attaching label1
Now that we’ve specified the window’s layout, we can begin creating and attaching GUI
components to the window. Line 23 creates a JLabel object and passes "Label with text"
to the constructor. The JLabel displays this text on the screen. Line 24 uses method set-
ToolTipText (inherited by JLabel from JComponent) to specify the tool tip that’s dis-
played when the user positions the mouse cursor over the JLabel in the GUI. You can see
a sample tool tip in the second screen capture of Fig. 26.7. When you execute this appli-

Fig. 26.7 | Testing LabelFrame. (Part 2 of 2.)

jhtp_26_GUI1.fm Page 11 Monday, May 1, 2017 3:15 PM

26_12 Chapter 26 Swing GUI Components: Part 1

cation, hover the mouse pointer over each JLabel to see its tool tip. Line 25 (Fig. 26.6)
attaches label1 to the LabelFrame by passing label1 to the add method, which is inher-
ited indirectly from class Container.

The Icon Interface and Class ImageIcon
Icons are a popular way to enhance the look-and-feel of an application and are also com-
monly used to indicate functionality. For example, the same icon is used to play most of
today’s media on devices like DVD players and MP3 players. Several Swing components
can display images. An icon is normally specified with an Icon (package javax.swing) ar-
gument to a constructor or to the component’s setIcon method. Class ImageIcon sup-
ports several image formats, including Graphics Interchange Format (GIF), Portable
Network Graphics (PNG) and Joint Photographic Experts Group (JPEG).

Line 28 declares an ImageIcon. The file bug1.png contains the image to load and store
in the ImageIcon object. This image is included in the directory for this example. The
ImageIcon object is assigned to Icon reference bug.

Loading an Image Resource
In line 28, the expression getClass().getResource("bug1.png") invokes method get-
Class (inherited indirectly from class Object) to retrieve a reference to the Class object
that represents the LabelFrame class declaration. That reference is then used to invoke
Class method getResource, which returns the location of the image as a URL. The Im-
ageIcon constructor uses the URL to locate the image, then loads it into memory. As we
discussed in Chapter 1, the JVM loads class declarations into memory, using a class loader.
The class loader knows where each class it loads is located on disk. Method getResource
uses the Class object’s class loader to determine the location of a resource, such as an image
file. In this example, the image file is stored in the same location as the LabelFrame.class
file. The techniques described here enable an application to load image files from locations
that are relative to the class file’s location.

Creating and Attaching label2
Lines 29–30 use another JLabel constructor to create a JLabel that displays the text "La-
bel with text and icon" and the Icon bug created in line 28. The last constructor argu-
ment indicates that the label’s contents are left justified, or left aligned (i.e., the icon and
text are at the left side of the label’s area on the screen). Interface SwingConstants (package
javax.swing) declares a set of common integer constants (such as SwingConstants.LEFT,
SwingConstants.CENTER and SwingConstants.RIGHT) that are used with many Swing
components. By default, the text appears to the right of the image when a label contains
both text and an image. The horizontal and vertical alignments of a JLabel can be set with

Common Programming Error 26.1
If you do not explicitly add a GUI component to a container, the GUI component will
not be displayed when the container appears on the screen.

Look-and-Feel Observation 26.7
Use tool tips to add descriptive text to your GUI components. This text helps the user de-
termine the GUI component’s purpose in the user interface.

jhtp_26_GUI1.fm Page 12 Monday, May 1, 2017 3:15 PM

26.6 Text Fields and an Introduction to Event Handling with Nested Classes 26_13

methods setHorizontalAlignment and setVerticalAlignment, respectively. Line 31
specifies the tool-tip text for label2, and line 32 adds label2 to the JFrame.

Creating and Attaching label3
Class JLabel provides methods to change a JLabel’s appearance after it’s been instantiat-
ed. Line 34 creates an empty JLabel with the no-argument constructor. Line 35 uses JLa-
bel method setText to set the text displayed on the label. Method getText can be used
to retrieve the JLabel’s current text. Line 36 uses JLabel method setIcon to specify the
Icon to display. Method getIcon can be used to retrieve the current Icon displayed on a
label. Lines 37–38 use JLabel methods setHorizontalTextPosition and setVertical-
TextPosition to specify the text position in the label. In this case, the text will be centered
horizontally and will appear at the bottom of the label. Thus, the Icon will appear above the
text. The horizontal-position constants in SwingConstants are LEFT, CENTER and RIGHT
(Fig. 26.8). The vertical-position constants in SwingConstants are TOP, CENTER and
BOTTOM (Fig. 26.8). Line 39 (Fig. 26.6) sets the tool-tip text for label3. Line 40 adds la-
bel3 to the JFrame.

Creating and Displaying a LabelFrame Window
Class LabelTest (Fig. 26.7) creates an object of class LabelFrame (line 9), then specifies
the default close operation for the window. By default, closing a window simply hides the
window. However, when the user closes the LabelFrame window, we would like the ap-
plication to terminate. Line 10 invokes LabelFrame’s setDefaultCloseOperation method
(inherited from class JFrame) with constant JFrame.EXIT_ON_CLOSE as the argument to in-
dicate that the program should terminate when the window is closed by the user. This line
is important. Without it the application will not terminate when the user closes the win-
dow. Next, line 11 invokes LabelFrame’s setSize method to specify the width and height
of the window in pixels. Finally, line 12 invokes LabelFrame’s setVisible method with
the argument true to display the window on the screen. Try resizing the window to see
how the FlowLayout changes the JLabel positions as the window width changes.

26.6 Text Fields and an Introduction to Event Handling
with Nested Classes
Normally, a user interacts with an application’s GUI to indicate the tasks that the appli-
cation should perform. For example, when you write an e-mail in an e-mail application,
clicking the Send button tells the application to send the e-mail to the specified e-mail ad-
dresses. GUIs are event driven. When the user interacts with a GUI component, the in-

Constant Description Constant Description

Horizontal-position constants Vertical-position constants

LEFT Place text on the left TOP Place text at the top

CENTER Place text in the center CENTER Place text in the center

RIGHT Place text on the right BOTTOM Place text at the bottom

Fig. 26.8 | Positioning constants (static members of interface SwingConstants).

jhtp_26_GUI1.fm Page 13 Monday, May 1, 2017 3:15 PM

26_14 Chapter 26 Swing GUI Components: Part 1

teraction—known as an event—drives the program to perform a task. Some common user
interactions that cause an application to perform a task include clicking a button, typing in
a text field, selecting an item from a menu, closing a window and moving the mouse. The
code that performs a task in response to an event is called an event handler, and the process
of responding to events is known as event handling.

Let’s consider two other GUI components that can generate events—JTextFields
and JPasswordFields (package javax.swing). Class JTextField extends class JTextCom-
ponent (package javax.swing.text), which provides many features common to Swing’s
text-based components. Class JPasswordField extends JTextField and adds methods
that are specific to processing passwords. Each of these components is a single-line area in
which the user can enter text via the keyboard. Applications can also display text in a
JTextField (see the output of Fig. 26.10). A JPasswordField shows that characters are
being typed as the user enters them, but hides the actual characters with an echo character,
assuming that they represent a password that should remain known only to the user.

When the user types in a JTextField or a JPasswordField, then presses Enter, an
event occurs. Our next example demonstrates how a program can perform a task in response
to that event. The techniques shown here are applicable to all GUI components that gen-
erate events.

The application of Figs. 26.9–26.10 uses classes JTextField and JPasswordField to
create and manipulate four text fields. When the user types in one of the text fields, then
presses Enter, the application displays a message dialog box containing the text the user
typed. You can type only in the text field that’s “in focus.” When you click a component,
it receives the focus. This is important, because the text field with the focus is the one that
generates an event when you press Enter. In this example, when you press Enter in the
JPasswordField, the password is revealed. We begin by discussing the setup of the GUI,
then discuss the event-handling code.

1 // Fig. 26.9: TextFieldFrame.java
2 // JTextFields and JPasswordFields.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JTextField;
8 import javax.swing.JPasswordField;
9 import javax.swing.JOptionPane;

10
11 public class TextFieldFrame extends JFrame
12 {
13 private final JTextField textField1; // text field with set size
14 private final JTextField textField2; // text field with text
15 private final JTextField textField3; // text field with text and size
16 private final JPasswordField passwordField; // password field with text
17
18 // TextFieldFrame constructor adds JTextFields to JFrame
19 public TextFieldFrame()
20 {

Fig. 26.9 | JTextFields and JPasswordFields. (Part 1 of 3.)

jhtp_26_GUI1.fm Page 14 Monday, May 1, 2017 3:15 PM

26.6 Text Fields and an Introduction to Event Handling with Nested Classes 26_15

21 super("Testing JTextField and JPasswordField");
22 setLayout(new FlowLayout());
23
24
25
26 add(textField1); // add textField1 to JFrame
27
28
29
30 add(textField2); // add textField2 to JFrame
31
32
33
34
35 add(textField3); // add textField3 to JFrame
36
37 // construct password field with default text
38
39 add(passwordField); // add passwordField to JFrame
40
41 // register event handlers
42
43
44
45
46
47 }
48
49 // private inner class for event handling
50
51 {
52 // process text field events
53 @Override
54
55 {
56 String string = "";
57
58 // user pressed Enter in JTextField textField1
59 if ()
60 string = String.format("textField1: %s",
61);
62
63 // user pressed Enter in JTextField textField2
64 else if ()
65 string = String.format("textField2: %s",
66);
67
68 // user pressed Enter in JTextField textField3
69 else if ()
70 string = String.format("textField3: %s",
71);
72

Fig. 26.9 | JTextFields and JPasswordFields. (Part 2 of 3.)

// construct text field with 10 columns
textField1 = new JTextField(10);

// construct text field with default text
textField2 = new JTextField("Enter text here");

// construct text field with default text and 21 columns
textField3 = new JTextField("Uneditable text field", 21);
textField3.setEditable(false); // disable editing

passwordField = new JPasswordField("Hidden text");

TextFieldHandler handler = new TextFieldHandler();
textField1.addActionListener(handler);
textField2.addActionListener(handler);
textField3.addActionListener(handler);
passwordField.addActionListener(handler);

private class TextFieldHandler implements ActionListener

public void actionPerformed(ActionEvent event)

event.getSource() == textField1

event.getActionCommand()

event.getSource() == textField2

event.getActionCommand()

event.getSource() == textField3

event.getActionCommand()

jhtp_26_GUI1.fm Page 15 Monday, May 1, 2017 3:15 PM

26_16 Chapter 26 Swing GUI Components: Part 1

Class TextFieldFrame extends JFrame and declares three JTextField variables and a
JPasswordField variable (lines 13–16). Each of the corresponding text fields is instanti-
ated and attached to the TextFieldFrame in the constructor (lines 19–47).

Creating the GUI
Line 22 sets the TextFieldFrame’s layout to FlowLayout. Line 25 creates textField1 with
10 columns of text. A text column’s width in pixels is determined by the average width of
a character in the text field’s current font. When text is displayed in a text field and the
text is wider than the field itself, a portion of the text at the right side is not visible. If you’re
typing in a text field and the cursor reaches the right edge, the text at the left edge is pushed
off the left side of the field and is no longer visible. Users can use the left and right arrow
keys to move through the complete text. Line 26 adds textField1 to the JFrame.

Line 29 creates textField2 with the initial text "Enter text here" to display in the
text field. The width of the field is determined by the width of the default text specified in
the constructor. Line 30 adds textField2 to the JFrame.

Line 33 creates textField3 and calls the JTextField constructor with two argu-
ments—the default text "Uneditable text field" to display and the text field’s width in
columns (21). Line 34 uses method setEditable (inherited by JTextField from class
JTextComponent) to make the text field uneditable—i.e., the user cannot modify the text
in the field. Line 35 adds textField3 to the JFrame.

Line 38 creates passwordField with the text "Hidden text" to display in the text
field. The width of the field is determined by the width of the default text. When you exe-
cute the application, notice that the text is displayed as a string of asterisks. Line 39 adds
passwordField to the JFrame.

Steps Required to Set Up Event Handling for a GUI Component
This example should display a message dialog containing the text from a text field when
the user presses Enter in that text field. Before an application can respond to an event for
a particular GUI component, you must:

1. Create a class that represents the event handler and implements an appropriate
interface—known as an event-listener interface.

2. Indicate that an object of the class from Step 1 should be notified when the event
occurs—known as registering the event handler.

73 // user pressed Enter in JTextField passwordField
74 else if ()
75 string = String.format("passwordField: %s",
76);
77
78 // display JTextField content
79 JOptionPane.showMessageDialog(null, string);
80 }
81 } // end private inner class TextFieldHandler
82 }

Fig. 26.9 | JTextFields and JPasswordFields. (Part 3 of 3.)

event.getSource() == passwordField

event.getActionCommand()

jhtp_26_GUI1.fm Page 16 Monday, May 1, 2017 3:15 PM

26.6 Text Fields and an Introduction to Event Handling with Nested Classes 26_17

Using a Nested Class to Implement an Event Handler
All the classes discussed so far were so-called top-level classes—that is, they were not de-
clared inside another class. Java allows you to declare classes inside other classes—these are
called nested classes. Nested classes can be static or non-static. Non-static nested
classes are called inner classes and are frequently used to implement event handlers.

An inner-class object must be created by an object of the top-level class that contains
the inner class. Each inner-class object implicitly has a reference to an object of its top-level
class. The inner-class object is allowed to use this implicit reference to directly access all
the variables and methods of the top-level class. A nested class that’s static does not
require an object of its top-level class and does not implicitly have a reference to an object
of the top-level class. As you’ll see in Chapter 27, Graphics and Java 2D, the Java 2D
graphics API uses static nested classes extensively.

Inner Class TextFieldHandler
The event handling in this example is performed by an object of the private inner class
TextFieldHandler (lines 50–81). This class is private because it will be used only to cre-
ate event handlers for the text fields in top-level class TextFieldFrame. As with other class
members, inner classes can be declared public, protected or private. Since event han-
dlers tend to be specific to the application in which they’re defined, they’re often imple-
mented as private inner classes or as anonymous inner classes (Section 26.11).

GUI components can generate many events in response to user interactions. Each
event is represented by a class and can be processed only by the appropriate type of event
handler. Normally, a component’s supported events are described in the Java API docu-
mentation for that component’s class and its superclasses. When the user presses Enter in
a JTextField or JPasswordField, an ActionEvent (package java.awt.event) occurs.
Such an event is processed by an object that implements the interface ActionListener
(package java.awt.event). The information discussed here is available in the Java API
documentation for classes JTextField and ActionEvent. Since JPasswordField is a sub-
class of JTextField, JPasswordField supports the same events.

To prepare to handle the events in this example, inner class TextFieldHandler
implements interface ActionListener and declares the only method in that interface—
actionPerformed (lines 53–80). This method specifies the tasks to perform when an
ActionEvent occurs. So, inner class TextFieldHandler satisfies Step 1 listed earlier in this
section. We’ll discuss the details of method actionPerformed shortly.

Registering the Event Handler for Each Text Field
In the TextFieldFrame constructor, line 42 creates a TextFieldHandler object and as-
signs it to variable handler. This object’s actionPerformed method will be called auto-
matically when the user presses Enter in any of the GUI’s text fields. However, before this
can occur, the program must register this object as the event handler for each text field.
Lines 43–46 are the event-registration statements that specify handler as the event handler
for the three JTextFields and the JPasswordField. The application calls JTextField
method addActionListener to register the event handler for each component. This meth-
od receives as its argument an ActionListener object, which can be an object of any class
that implements ActionListener. The object handler is an ActionListener, because
class TextFieldHandler implements ActionListener. After lines 43–46 execute, the ob-
ject handler listens for events. Now, when the user presses Enter in any of these four text

jhtp_26_GUI1.fm Page 17 Monday, May 1, 2017 3:15 PM

26_18 Chapter 26 Swing GUI Components: Part 1

fields, method actionPerformed (line 53–80) in class TextFieldHandler is called to han-
dle the event. If an event handler is not registered for a particular text field, the event that
occurs when the user presses Enter in that text field is consumed—i.e., it’s simply ignored
by the application.

Details of Class TextFieldHandler’s actionPerformed Method
In this example, we use one event-handling object’s actionPerformed method (lines 53–
80) to handle the events generated by four text fields. Since we’d like to output the name
of each text field’s instance variable for demonstration purposes, we must determine which
text field generated the event each time actionPerformed is called. The event source is the
component with which the user interacted. When the user presses Enter while a text field
or the password field has the focus, the system creates a unique ActionEvent object that
contains information about the event that just occurred, such as the event source and the
text in the text field. The system passes this ActionEvent object to the event listener’s ac-
tionPerformed method. Line 56 declares the String that will be displayed. The variable
is initialized with the empty string—a String containing no characters. The compiler re-
quires the variable to be initialized in case none of the branches of the nested if in lines
59–76 executes.

ActionEvent method getSource (called in lines 59, 64, 69 and 74) returns a reference
to the event source. The condition in line 59 asks, “Is the event source textField1?” This
condition compares references with the == operator to determine if they refer to the same
object. If they both refer to textField1, the user pressed Enter in textField1. Then, lines
60–61 create a String containing the message that line 79 displays in a message dialog.
Line 61 uses ActionEvent method getActionCommand to obtain the text the user typed in
the text field that generated the event.

In this example, we display the text of the password in the JPasswordField when the
user presses Enter in that field. Sometimes it’s necessary to programatically process the
characters in a password. Class JPasswordField method getPassword returns the pass-
word’s characters as an array of type char.

Class TextFieldTest
Class TextFieldTest (Fig. 26.10) contains the main method that executes this application
and displays an object of class TextFieldFrame. When you execute the application, even
the uneditable JTextField (textField3) can generate an ActionEvent. To test this, click
the text field to give it the focus, then press Enter. Also, the actual text of the password is
displayed when you press Enter in the JPasswordField. Of course, you would normally
not display the password!

This application used a single object of class TextFieldHandler as the event listener
for four text fields. Starting in Section 26.10, you’ll see that it’s possible to declare several

Software Engineering Observation 26.1
The event listener for an event must implement the appropriate event-listener interface.

Common Programming Error 26.2
If you forget to register an event-handler object for a particular GUI component’s event
type, events of that type will be ignored.

jhtp_26_GUI1.fm Page 18 Monday, May 1, 2017 3:15 PM

26.6 Text Fields and an Introduction to Event Handling with Nested Classes 26_19

1 // Fig. 26.10: TextFieldTest.java
2 // Testing TextFieldFrame.
3 import javax.swing.JFrame;
4
5 public class TextFieldTest
6 {
7 public static void main(String[] args)
8 {
9 TextFieldFrame textFieldFrame = new TextFieldFrame();

10 textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textFieldFrame.setSize(350, 100);
12 textFieldFrame.setVisible(true);
13 }
14 }

Fig. 26.10 | Testing TextFieldFrame.

jhtp_26_GUI1.fm Page 19 Monday, May 1, 2017 3:15 PM

26_20 Chapter 26 Swing GUI Components: Part 1

event-listener objects of the same type and register each object for a separate GUI compo-
nent’s event. This technique enables us to eliminate the if…else logic used in this
example’s event handler by providing separate event handlers for each component’s events.

Java SE 8: Implementing Event Listeners with Lambdas
Recall that interfaces like ActionListener that have only one abstract method are func-
tional interfaces in Java SE 8. In Section 17.16, we showed how to use lambdas to imple-
ment such event-listener interfaces.

26.7 Common GUI Event Types and Listener Interfaces
In Section 26.6, you learned that information about the event that occurs when the user
presses Enter in a text field is stored in an ActionEvent object. Many different types of
events can occur when the user interacts with a GUI. The event information is stored in
an object of a class that extends AWTEvent (from package java.awt). Figure 26.11 illus-
trates a hierarchy containing many event classes from the package java.awt.event. Some
of these are discussed in this chapter and Chapter 35. These event types are used with both
AWT and Swing components. Additional event types that are specific to Swing GUI com-
ponents are declared in package javax.swing.event.

Let’s summarize the three parts to the event-handling mechanism that you saw in
Section 26.6—the event source, the event object and the event listener. The event source is

Fig. 26.11 | Some event classes of package java.awt.event.

Object

EventObject

AWTEvent

ContainerEvent

FocusEvent

PaintEvent

WindowEvent

InputEvent

ActionEvent

AdjustmentEvent

ItemEvent

TextEvent

ComponentEvent

MouseEventKeyEvent

MouseWheelEvent

jhtp_26_GUI1.fm Page 20 Monday, May 1, 2017 3:15 PM

26.7 Common GUI Event Types and Listener Interfaces 26_21

the GUI component with which the user interacts. The event object encapsulates infor-
mation about the event that occurred, such as a reference to the event source and any
event-specific information that may be required by the event listener for it to handle the
event. The event listener is an object that’s notified by the event source when an event
occurs; in effect, it “listens” for an event, and one of its methods executes in response to
the event. A method of the event listener receives an event object when the event listener
is notified of the event. The event listener then uses the event object to respond to the
event. This event-handling model is known as the delegation event model—an event’s
processing is delegated to an object (the event listener) in the application.

For each event-object type, there’s typically a corresponding event-listener interface.
An event listener for a GUI event is an object of a class that implements one or more of
the event-listener interfaces from packages java.awt.event and javax.swing.event.
Many of the event-listener types are common to both Swing and AWT components. Such
types are declared in package java.awt.event, and some of them are shown in Fig. 26.12.
Additional event-listener types that are specific to Swing components are declared in
package javax.swing.event.

Each event-listener interface specifies one or more event-handling methods that must
be declared in the class that implements the interface. Recall from Section 10.9 that any
class which implements an interface must declare all the abstract methods of that inter-
face; otherwise, the class is an abstract class and cannot be used to create objects.

When an event occurs, the GUI component with which the user interacted notifies
its registered listeners by calling each listener’s appropriate event-handling method. For
example, when the user presses the Enter key in a JTextField, the registered listener’s
actionPerformed method is called. In the next section, we complete our discussion of
how the event handling works in the preceding example.

Fig. 26.12 | Some common event-listener interfaces of package java.awt.event.

«interface»
ActionListener

«interface»
ComponentListener

«interface»
ContainerListener

«interface»
FocusListener

«interface»
ItemListener

«interface»
KeyListener

«interface»
MouseListener

«interface»
MouseMotionListener

«interface»
TextListener

«interface»
WindowListener

«interface»
java.util.EventListener

«interface»
AdjustmentListener

jhtp_26_GUI1.fm Page 21 Monday, May 1, 2017 3:15 PM

26_22 Chapter 26 Swing GUI Components: Part 1

26.8 How Event Handling Works
Let’s illustrate how the event-handling mechanism works, using textField1 from the ex-
ample of Fig. 26.9. We have two remaining open questions from Section 26.7:

1. How did the event handler get registered?

2. How does the GUI component know to call actionPerformed rather than some
other event-handling method?

The first question is answered by the event registration performed in lines 43–46 of
Fig. 26.9. Figure 26.13 diagrams JTextField variable textField1, TextFieldHandler
variable handler and the objects to which they refer.

Registering Events
Every JComponent has an instance variable called listenerList that refers to an object of
class EventListenerList (package javax.swing.event). Each object of a JComponent
subclass maintains references to its registered listeners in the listenerList. For simplicity,
we’ve diagramed listenerList as an array below the JTextField object in Fig. 26.13.

When the following statement (line 43 of Fig. 26.9) executes

a new entry containing a reference to the TextFieldHandler object is placed in textField1’s
listenerList. Although not shown in the diagram, this new entry also includes the listen-
er’s type (ActionListener). Using this mechanism, each lightweight Swing component
maintains its own list of listeners that were registered to handle the component’s events.

Event-Handler Invocation
The event-listener type is important in answering the second question: How does the GUI
component know to call actionPerformed rather than another method? Every GUI com-
ponent supports several event types, including mouse events, key events and others. When

Fig. 26.13 | Event registration for JTextField textField1.

textField1.addActionListener(handler);

This reference is created by the statement
 textField1.addActionListener(handler);

public void actionPerformed(
 ActionEvent event)
{
 // event handled here
}

listenerList

TextFieldHandler objectJTextField object

textField1 handler

...

jhtp_26_GUI1.fm Page 22 Monday, May 1, 2017 3:15 PM

26.9 JButton 26_23

an event occurs, the event is dispatched only to the event listeners of the appropriate type.
Dispatching is simply the process by which the GUI component calls an event-handling
method on each of its listeners that are registered for the event type that occurred.

Each event type has one or more corresponding event-listener interfaces. For example,
ActionEvents are handled by ActionListeners, MouseEvents by MouseListeners and
MouseMotionListeners, and KeyEvents by KeyListeners. When an event occurs, the GUI
component receives (from the JVM) a unique event ID specifying the event type. The GUI
component uses the event ID to decide the listener type to which the event should be dis-
patched and to decide which method to call on each listener object. For an ActionEvent, the
event is dispatched to every registered ActionListener’s actionPerformed method (the only
method in interface ActionListener). For a MouseEvent, the event is dispatched to every
registered MouseListener or MouseMotionListener, depending on the mouse event that
occurs. The MouseEvent’s event ID determines which of the several mouse event-handling
methods are called. All these decisions are handled for you by the GUI components. All you
need to do is register an event handler for the particular event type that your application
requires, and the GUI component will ensure that the event handler’s appropriate method
gets called when the event occurs. We discuss other event types and event-listener interfaces
as they’re needed with each new component we introduce.

26.9 JButton
A button is a component the user clicks to trigger a specific action. A Java application can
use several types of buttons, including command buttons, checkboxes, toggle buttons and
radio buttons. Figure 26.14 shows the inheritance hierarchy of the Swing buttons we cov-
er in this chapter. As you can see, all the button types are subclasses of AbstractButton
(package javax.swing), which declares the common features of Swing buttons. In this
section, we concentrate on buttons that are typically used to initiate a command.

Performance Tip 26.1
GUIs should always remain responsive to the user. Performing a long-running task in an
event handler prevents the user from interacting with the GUI until that task completes.
Section 23.11 demonstrates techniques prevent such problems.

Fig. 26.14 | Swing button hierarchy.

JComponent

AbstractButton

JButton JToggleButton

JCheckBox JRadioButton

jhtp_26_GUI1.fm Page 23 Monday, May 1, 2017 3:15 PM

26_24 Chapter 26 Swing GUI Components: Part 1

A command button (see Fig. 26.16’s output) generates an ActionEvent when the user
clicks it. Command buttons are created with class JButton. The text on the face of a
JButton is called a button label.

The application of Figs. 26.15 and 26.16 creates two JButtons and demonstrates that
JButtons can display Icons. Event handling for the buttons is performed by a single
instance of inner class ButtonHandler (Fig. 26.15, lines 39–48).

Look-and-Feel Observation 26.8
The text on buttons typically uses book-title capitalization.

Look-and-Feel Observation 26.9
A GUI can have many JButtons, but each button label should be unique in the portion
of the GUI that’s currently displayed. Having more than one JButton with the same label
makes the JButtons ambiguous to the user.

1 // Fig. 26.15: ButtonFrame.java
2 // Command buttons and action events.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JButton;
8 import javax.swing.Icon;
9 import javax.swing.ImageIcon;

10 import javax.swing.JOptionPane;
11
12 public class ButtonFrame extends JFrame
13 {
14
15
16
17 // ButtonFrame adds JButtons to JFrame
18 public ButtonFrame()
19 {
20 super("Testing Buttons");
21 setLayout(new FlowLayout());
22
23
24 add(plainJButton); // add plainJButton to JFrame
25
26
27
28
29
30 add(fancyJButton); // add fancyJButton to JFrame
31
32
33

Fig. 26.15 | Command buttons and action events. (Part 1 of 2.)

private final JButton plainJButton; // button with just text
private final JButton fancyJButton; // button with icons

plainJButton = new JButton("Plain Button"); // button with text

Icon bug1 = new ImageIcon(getClass().getResource("bug1.gif"));
Icon bug2 = new ImageIcon(getClass().getResource("bug2.gif"));
fancyJButton = new JButton("Fancy Button", bug1); // set image
fancyJButton.setRolloverIcon(bug2); // set rollover image

// create new ButtonHandler for button event handling
ButtonHandler handler = new ButtonHandler();

jhtp_26_GUI1.fm Page 24 Monday, May 1, 2017 3:15 PM

26.9 JButton 26_25

Lines 14–15 declare JButton variables plainJButton and fancyJButton. The corre-
sponding objects are instantiated in the constructor. Line 23 creates plainJButton with
the button label "Plain Button". Line 24 adds the JButton to the JFrame.

A JButton can display an Icon. To provide the user with an extra level of visual inter-
action with the GUI, a JButton can also have a rollover Icon—an Icon that’s displayed
when the user positions the mouse over the JButton. The icon on the JButton changes as
the mouse moves in and out of the JButton’s area on the screen. Lines 26–27 create two
ImageIcon objects that represent the default Icon and rollover Icon for the JButton cre-
ated at line 28. Both statements assume that the image files are stored in the same directory
as the application. Images are commonly placed in the same directory as the application or
a subdirectory like images). These image files have been provided for you with the
example.

Line 28 creates fancyButton with the text "Fancy Button" and the icon bug1. By
default, the text is displayed to the right of the icon. Line 29 uses setRolloverIcon (inher-
ited from class AbstractButton) to specify the image displayed on the JButton when the
user positions the mouse over it. Line 30 adds the JButton to the JFrame.

JButtons, like JTextFields, generate ActionEvents that can be processed by any
ActionListener object. Lines 33–35 create an object of private inner class ButtonHan-
dler and use addActionListener to register it as the event handler for each JButton. Class
ButtonHandler (lines 39–48) declares actionPerformed to display a message dialog box

34
35
36 }
37
38 // inner class for button event handling
39
40 {
41 // handle button event
42 @Override
43 public void actionPerformed(ActionEvent event)
44 {
45 JOptionPane.showMessageDialog(, String.format(
46 "You pressed: %s",));
47 }
48 }
49 }

Look-and-Feel Observation 26.10
Because class AbstractButton supports displaying text and images on a button, all sub-
classes of AbstractButton also support displaying text and images.

Look-and-Feel Observation 26.11
Rollover icons provide visual feedback indicating that an action will occur when when a
JButton is clicked.

Fig. 26.15 | Command buttons and action events. (Part 2 of 2.)

fancyJButton.addActionListener(handler);
plainJButton.addActionListener(handler);

private class ButtonHandler implements ActionListener

ButtonFrame.this
event.getActionCommand()

jhtp_26_GUI1.fm Page 25 Monday, May 1, 2017 3:15 PM

26_26 Chapter 26 Swing GUI Components: Part 1

containing the label for the button the user pressed. For a JButton event, ActionEvent
method getActionCommand returns the label on the JButton.

Accessing the this Reference in an Object of a Top-Level Class from an Inner Class
When you execute this application and click one of its buttons, notice that the message
dialog that appears is centered over the application’s window. This occurs because the call
to JOptionPane method showMessageDialog (lines 45–46) uses ButtonFrame.this rather
than null as the first argument. When this argument is not null, it represents the so-called

1 // Fig. 26.16: ButtonTest.java
2 // Testing ButtonFrame.
3 import javax.swing.JFrame;
4
5 public class ButtonTest
6 {
7 public static void main(String[] args)
8 {
9 ButtonFrame buttonFrame = new ButtonFrame();

10 buttonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 buttonFrame.setSize(275, 110);
12 buttonFrame.setVisible(true);
13 }
14 }

Fig. 26.16 | Testing ButtonFrame.

jhtp_26_GUI1.fm Page 26 Monday, May 1, 2017 3:15 PM

26.10 Buttons That Maintain State 26_27

parent GUI component of the message dialog (in this case the application window is the
parent component) and enables the dialog to be centered over that component when the
dialog is displayed. ButtonFrame.this represents the this reference of the object of top-
level class ButtonFrame.

26.10 Buttons That Maintain State
The Swing GUI components contain three types of state buttons—JToggleButton,
JCheckBox and JRadioButton—that have on/off or true/false values. Classes JCheckBox
and JRadioButton are subclasses of JToggleButton (Fig. 26.14). A JRadioButton is dif-
ferent from a JCheckBox in that normally several JRadioButtons are grouped together and
are mutually exclusive—only one in the group can be selected at any time, just like the but-
tons on a car radio. We first discuss class JCheckBox.

26.10.1 JCheckBox
The application of Figs. 26.17–26.18 uses two JCheckBoxes to select the desired font style
of the text displayed in a JTextField. When selected, one applies a bold style and the other
an italic style. If both are selected, the style is bold and italic. When the application initially
executes, neither JCheckBox is checked (i.e., they’re both false), so the font is plain. Class
CheckBoxTest (Fig. 26.18) contains the main method that executes this application.

Software Engineering Observation 26.2
When used in an inner class, keyword this refers to the current inner-class object being
manipulated. An inner-class method can use its outer-class object’s this by preceding this
with the outer-class name and a dot (.) separator, as in ButtonFrame.this.

1 // Fig. 26.17: CheckBoxFrame.java
2 // JCheckBoxes and item events.
3 import java.awt.FlowLayout;
4 import java.awt.Font;
5 import java.awt.event.ItemListener;
6 import java.awt.event.ItemEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JTextField;
9 import javax.swing.JCheckBox;

10
11 public class CheckBoxFrame extends JFrame
12 {
13 private final JTextField textField; // displays text in changing fonts
14
15
16
17 // CheckBoxFrame constructor adds JCheckBoxes to JFrame
18 public CheckBoxFrame()
19 {
20 super("JCheckBox Test");
21 setLayout(new FlowLayout());
22

Fig. 26.17 | JCheckBoxes and item events. (Part 1 of 2.)

private final JCheckBox boldJCheckBox; // to select/deselect bold
private final JCheckBox italicJCheckBox; // to select/deselect italic

jhtp_26_GUI1.fm Page 27 Monday, May 1, 2017 3:15 PM

26_28 Chapter 26 Swing GUI Components: Part 1

23 // set up JTextField and set its font
24 textField = new JTextField("Watch the font style change", 20);
25
26 add(textField); // add textField to JFrame
27
28 boldJCheckBox = new JCheckBox("Bold");
29 italicJCheckBox = new JCheckBox("Italic");
30 add(boldJCheckBox); // add bold checkbox to JFrame
31 add(italicJCheckBox); // add italic checkbox to JFrame
32
33
34
35
36
37 }
38
39 // private inner class for ItemListener event handling
40
41 {
42 // respond to checkbox events
43 @Override
44
45 {
46 Font font = null; // stores the new Font
47
48 // determine which CheckBoxes are checked and create Font
49 if ()
50 font = new Font("Serif", Font.BOLD + Font.ITALIC, 14);
51 else if ()
52 font = new Font("Serif", Font.BOLD, 14);
53 else if ()
54 font = new Font("Serif", Font.ITALIC, 14);
55 else
56 font = new Font("Serif", Font.PLAIN, 14);
57
58 textField.setFont(font);
59 }
60 }
61 }

1 // Fig. 26.18: CheckBoxTest.java
2 // Testing CheckBoxFrame.
3 import javax.swing.JFrame;
4
5 public class CheckBoxTest
6 {
7 public static void main(String[] args)
8 {
9 CheckBoxFrame checkBoxFrame = new CheckBoxFrame();

10 checkBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Fig. 26.18 | Testing CheckBoxFrame. (Part 1 of 2.)

Fig. 26.17 | JCheckBoxes and item events. (Part 2 of 2.)

textField.setFont(new Font("Serif", Font.PLAIN, 14));

// register listeners for JCheckBoxes
CheckBoxHandler handler = new CheckBoxHandler();
boldJCheckBox.addItemListener(handler);
italicJCheckBox.addItemListener(handler);

private class CheckBoxHandler implements ItemListener

public void itemStateChanged(ItemEvent event)

boldJCheckBox.isSelected() && italicJCheckBox.isSelected()

boldJCheckBox.isSelected()

italicJCheckBox.isSelected()

jhtp_26_GUI1.fm Page 28 Monday, May 1, 2017 3:15 PM

26.10 Buttons That Maintain State 26_29

After the JTextField is created and initialized (Fig. 26.17, line 24), line 25 uses
method setFont (inherited by JTextField indirectly from class Component) to set the font
of the JTextField to a new object of class Font (package java.awt). The new Font is ini-
tialized with "Serif" (a generic font name that represents a font such as Times and is sup-
ported on all Java platforms), Font.PLAIN style and 14-point size. Next, lines 28–29 create
two JCheckBox objects. The String passed to the JCheckBox constructor is the checkbox
label that appears to the right of the JCheckBox by default.

When the user clicks a JCheckBox, an ItemEvent occurs. This event can be handled
by an ItemListener object, which must implement method itemStateChanged. In this
example, the event handling is performed by an instance of private inner class CheckBox-
Handler (lines 40–60). Lines 34–36 create an instance of class CheckBoxHandler and reg-
ister it with method addItemListener as the listener for both the JCheckBox objects.

CheckBoxHandler method itemStateChanged (lines 43–59) is called when the user
clicks the boldJCheckBox or italicJCheckBox. In this example, we do not determine which
JCheckBox was clicked—we use both states to determine the font to display. Line 49 uses
JCheckBox method isSelected to determine if both JCheckBoxes are selected. If so, line 50
creates a bold italic font by adding the Font constants Font.BOLD and Font.ITALIC for the
font-style argument of the Font constructor. Line 51 determines whether the boldJ-
CheckBox is selected, and if so line 52 creates a bold font. Line 53 determines whether the
italicJCheckBox is selected, and if so line 54 creates an italic font. If none of the preceding
conditions are true, line 56 creates a plain font using the Font constant Font.PLAIN. Finally,
line 58 sets textField’s new font, which changes the font in the JTextField on the screen.

Relationship Between an Inner Class and Its Top-Level Class
Class CheckBoxHandler used variables boldJCheckBox (lines 49 and 51), italicJCheckBox
(lines 49 and 53) and textField (line 58) even though they are not declared in the inner
class. Recall that an inner class has a special relationship with its top-level class—it’s allowed
to access all the variables and methods of the top-level class. CheckBoxHandler method
itemStateChanged (line 43–59) uses this relationship to determine which JCheckBoxes are
checked and to set the font on the JTextField. Notice that none of the code in inner class
CheckBoxHandler requires an explicit reference to the top-level class object.

11 checkBoxFrame.setSize(275, 100);
12 checkBoxFrame.setVisible(true);
13 }
14 }

Fig. 26.18 | Testing CheckBoxFrame. (Part 2 of 2.)

jhtp_26_GUI1.fm Page 29 Monday, May 1, 2017 3:15 PM

26_30 Chapter 26 Swing GUI Components: Part 1

26.10.2 JRadioButton
Radio buttons (declared with class JRadioButton) are similar to checkboxes in that they
have two states—selected and not selected (also called deselected). However, radio buttons
normally appear as a group in which only one button can be selected at a time (see the out-
put of Fig. 26.20). Radio buttons are used to represent mutually exclusive options (i.e.,
multiple options in the group cannot be selected at the same time). The logical relationship
between radio buttons is maintained by a ButtonGroup object (package javax.swing),
which itself is not a GUI component. A ButtonGroup object organizes a group of buttons
and is not itself displayed in a user interface. Rather, the individual JRadioButton objects
from the group are displayed in the GUI.

The application of Figs. 26.19–26.20 is similar to that of Figs. 26.17–26.18. The user
can alter the font style of a JTextField’s text. The application uses radio buttons that
permit only a single font style in the group to be selected at a time. Class RadioButtonTest
(Fig. 26.20) contains the main method that executes this application.

1 // Fig. 26.19: RadioButtonFrame.java
2 // Creating radio buttons using ButtonGroup and JRadioButton.
3 import java.awt.FlowLayout;
4 import java.awt.Font;
5 import java.awt.event.ItemListener;
6 import java.awt.event.ItemEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JTextField;
9 import javax.swing.JRadioButton;

10 import javax.swing.ButtonGroup;
11
12 public class RadioButtonFrame extends JFrame
13 {
14 private final JTextField textField; // used to display font changes
15 private final Font plainFont; // font for plain text
16 private final Font boldFont; // font for bold text
17 private final Font italicFont; // font for italic text
18 private final Font boldItalicFont; // font for bold and italic text
19
20
21
22
23
24
25 // RadioButtonFrame constructor adds JRadioButtons to JFrame
26 public RadioButtonFrame()
27 {
28 super("RadioButton Test");
29 setLayout(new FlowLayout());
30
31 textField = new JTextField("Watch the font style change", 25);
32 add(textField); // add textField to JFrame
33
34 // create radio buttons
35

Fig. 26.19 | Creating radio buttons using ButtonGroup and JRadioButton. (Part 1 of 2.)

private final JRadioButton plainJRadioButton; // selects plain text
private final JRadioButton boldJRadioButton; // selects bold text
private final JRadioButton italicJRadioButton; // selects italic text
private final JRadioButton boldItalicJRadioButton; // bold and italic
private final ButtonGroup radioGroup; // holds radio buttons

plainJRadioButton = new JRadioButton("Plain", true);

jhtp_26_GUI1.fm Page 30 Monday, May 1, 2017 3:15 PM

26.10 Buttons That Maintain State 26_31

36
37
38
39 add(plainJRadioButton); // add plain button to JFrame
40 add(boldJRadioButton); // add bold button to JFrame
41 add(italicJRadioButton); // add italic button to JFrame
42 add(boldItalicJRadioButton); // add bold and italic button
43
44
45
46
47
48
49
50
51 // create font objects
52 plainFont = new Font("Serif", Font.PLAIN, 14);
53 boldFont = new Font("Serif", Font.BOLD, 14);
54 italicFont = new Font("Serif", Font.ITALIC, 14);
55 boldItalicFont = new Font("Serif", Font.BOLD + Font.ITALIC, 14);
56 textField.setFont(plainFont);
57
58
59
60
61
62
63
64
65
66
67 }
68
69 // private inner class to handle radio button events
70
71 {
72 private Font font; // font associated with this listener
73
74
75 {
76 font = f;
77 }
78
79 // handle radio button events
80 @Override
81 public void itemStateChanged(ItemEvent event)
82 {
83 textField.setFont(font);
84 }
85 }
86 }

Fig. 26.19 | Creating radio buttons using ButtonGroup and JRadioButton. (Part 2 of 2.)

boldJRadioButton = new JRadioButton("Bold", false);
italicJRadioButton = new JRadioButton("Italic", false);
boldItalicJRadioButton = new JRadioButton("Bold/Italic", false);

// create logical relationship between JRadioButtons
radioGroup = new ButtonGroup(); // create ButtonGroup
radioGroup.add(plainJRadioButton); // add plain to group
radioGroup.add(boldJRadioButton); // add bold to group
radioGroup.add(italicJRadioButton); // add italic to group
radioGroup.add(boldItalicJRadioButton); // add bold and italic

// register events for JRadioButtons
plainJRadioButton.addItemListener(
 new RadioButtonHandler(plainFont));
boldJRadioButton.addItemListener(
 new RadioButtonHandler(boldFont));
italicJRadioButton.addItemListener(
 new RadioButtonHandler(italicFont));
boldItalicJRadioButton.addItemListener(
 new RadioButtonHandler(boldItalicFont));

private class RadioButtonHandler implements ItemListener

public RadioButtonHandler(Font f)

jhtp_26_GUI1.fm Page 31 Monday, May 1, 2017 3:15 PM

26_32 Chapter 26 Swing GUI Components: Part 1

Lines 35–42 (Fig. 26.19) in the constructor create four JRadioButton objects and add
them to the JFrame. Each JRadioButton is created with a constructor call like that in line
35. This constructor specifies the label that appears to the right of the JRadioButton by
default and the initial state of the JRadioButton. A true second argument indicates that
the JRadioButton should appear selected when it’s displayed.

Line 45 instantiates ButtonGroup object radioGroup. This object is the “glue” that
forms the logical relationship between the four JRadioButton objects and allows only one
of the four to be selected at a time. It’s possible that no JRadioButtons in a ButtonGroup
are selected, but this can occur only if no preselected JRadioButtons are added to the But-
tonGroup and the user has not selected a JRadioButton yet. Lines 46–49 use ButtonGroup
method add to associate each of the JRadioButtons with radioGroup. If more than one
selected JRadioButton object is added to the group, the selected one that was added first
will be selected when the GUI is displayed.

JRadioButtons, like JCheckBoxes, generate ItemEvents when they’re clicked. Lines
59–66 create four instances of inner class RadioButtonHandler (declared at lines 70–85).
In this example, each event-listener object is registered to handle the ItemEvent generated
when the user clicks a particular JRadioButton. Notice that each RadioButtonHandler
object is initialized with a particular Font object (created in lines 52–55).

Class RadioButtonHandler (line 70–85) implements interface ItemListener so it can
handle ItemEvents generated by the JRadioButtons. The constructor stores the Font

1 // Fig. 26.20: RadioButtonTest.java
2 // Testing RadioButtonFrame.
3 import javax.swing.JFrame;
4
5 public class RadioButtonTest
6 {
7 public static void main(String[] args)
8 {
9 RadioButtonFrame radioButtonFrame = new RadioButtonFrame();

10 radioButtonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 radioButtonFrame.setSize(300, 100);
12 radioButtonFrame.setVisible(true);
13 }
14 }

Fig. 26.20 | Testing RadioButtonFrame.

jhtp_26_GUI1.fm Page 32 Monday, May 1, 2017 3:15 PM

26.11 JComboBox; Using an Anonymous Inner Class for Event Handling 26_33

object it receives as an argument in the event-listener object’s instance variable font
(declared at line 72). When the user clicks a JRadioButton, radioGroup turns off the pre-
viously selected JRadioButton, and method itemStateChanged (lines 80–84) sets the font
in the JTextField to the Font stored in the JRadioButton’s corresponding event-listener
object. Notice that line 83 of inner class RadioButtonHandler uses the top-level class’s
textField instance variable to set the font.

26.11 JComboBox; Using an Anonymous Inner Class for
Event Handling
A combo box (sometimes called a drop-down list) enables the user to select one item from
a list (Fig. 26.22). Combo boxes are implemented with class JComboBox, which extends
class JComponent. JComboBox is a generic class, like the class ArrayList (Chapter 7). When
you create a JComboBox, you specify the type of the objects that it manages—the JCombo-
Box then displays a String representation of each object.

1 // Fig. 26.21: ComboBoxFrame.java
2 // JComboBox that displays a list of image names.
3 import java.awt.FlowLayout;
4 import java.awt.event.ItemListener;
5 import java.awt.event.ItemEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JLabel;
8 import javax.swing.JComboBox;
9 import javax.swing.Icon;

10 import javax.swing.ImageIcon;
11
12 public class ComboBoxFrame extends JFrame
13 {
14
15 private final JLabel label; // displays selected icon
16
17 private static final String[] names =
18 {"bug1.gif", "bug2.gif", "travelbug.gif", "buganim.gif"};
19 private final Icon[] icons = {
20 new ImageIcon(getClass().getResource(names[0])),
21 new ImageIcon(getClass().getResource(names[1])),
22 new ImageIcon(getClass().getResource(names[2])),
23 new ImageIcon(getClass().getResource(names[3]))};
24
25 // ComboBoxFrame constructor adds JComboBox to JFrame
26 public ComboBoxFrame()
27 {
28 super("Testing JComboBox");
29 setLayout(new FlowLayout()); // set frame layout
30
31
32
33

Fig. 26.21 | JComboBox that displays a list of image names. (Part 1 of 2.)

private final JComboBox<String> imagesJComboBox; // holds icon names

imagesJComboBox = new JComboBox<String>(names); // set up JComboBox
imagesJComboBox.setMaximumRowCount(3); // display three rows

jhtp_26_GUI1.fm Page 33 Monday, May 1, 2017 3:15 PM

26_34 Chapter 26 Swing GUI Components: Part 1

JComboBoxes generate ItemEvents just as JCheckBoxes and JRadioButtons do. This
example also demonstrates a special form of inner class that’s used frequently in event han-
dling. The application (Figs. 26.21–26.22) uses a JComboBox to provide a list of four image
filenames from which the user can select one image to display. When the user selects a
name, the application displays the corresponding image as an Icon on a JLabel. Class Com-
boBoxTest (Fig. 26.22) contains the main method that executes this application. The
screen captures for this application show the JComboBox list after the selection was made
to illustrate which image filename was selected.

Lines 19–23 (Fig. 26.21) declare and initialize array icons with four new ImageIcon
objects. String array names (lines 17–18) contains the names of the four image files that
are stored in the same directory as the application.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 add(imagesJComboBox); // add combo box to JFrame
50 label = new JLabel(icons[0]); // display first icon
51 add(label); // add label to JFrame
52 }
53 }

1 // Fig. 26.22: ComboBoxTest.java
2 // Testing ComboBoxFrame.
3 import javax.swing.JFrame;
4
5 public class ComboBoxTest
6 {
7 public static void main(String[] args)
8 {
9 ComboBoxFrame comboBoxFrame = new ComboBoxFrame();

10 comboBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 comboBoxFrame.setSize(350, 150);
12 comboBoxFrame.setVisible(true);
13 }
14 }

Fig. 26.22 | Testing ComboBoxFrame. (Part 1 of 2.)

Fig. 26.21 | JComboBox that displays a list of image names. (Part 2 of 2.)

imagesJComboBox.addItemListener(
 new ItemListener() // anonymous inner class
 {
 // handle JComboBox event
 @Override
 public void itemStateChanged(ItemEvent event)
 {
 // determine whether item selected
 if (event.getStateChange() == ItemEvent.SELECTED)
 label.setIcon(icons[
 imagesJComboBox.getSelectedIndex()]);
 }
 } // end anonymous inner class
); // end call to addItemListener

jhtp_26_GUI1.fm Page 34 Monday, May 1, 2017 3:15 PM

26.11 JComboBox; Using an Anonymous Inner Class for Event Handling 26_35

At line 31, the constructor initializes a JComboBox object with the Strings in array
names as the elements in the list. Each item in the list has an index. The first item is added
at index 0, the next at index 1 and so forth. The first item added to a JComboBox appears
as the currently selected item when the JComboBox is displayed. Other items are selected
by clicking the JComboBox, then selecting an item from the list that appears.

Line 32 uses JComboBox method setMaximumRowCount to set the maximum number
of elements that are displayed when the user clicks the JComboBox. If there are additional
items, the JComboBox provides a scrollbar (see the first screen) that allows the user to scroll
through all the elements in the list. The user can click the scroll arrows at the top and
bottom of the scrollbar to move up and down through the list one element at a time, or
else drag the scroll box in the middle of the scrollbar up and down. To drag the scroll box,
position the mouse cursor on it, hold the mouse button down and move the mouse. In
this example, the drop-down list is too short to drag the scroll box, so you can click the up
and down arrows or use your mouse’s wheel to scroll through the four items in the list.
Line 49 attaches the JComboBox to the ComboBoxFrame’s FlowLayout (set in line 29). Line
50 creates the JLabel that displays ImageIcons and initializes it with the first ImageIcon
in array icons. Line 51 attaches the JLabel to the ComboBoxFrame’s FlowLayout.

Using an Anonymous Inner Class for Event Handling
Lines 34–46 are one statement that declares the event listener’s class, creates an object of
that class and registers it as imagesJComboBox’s ItemEvent listener. This event-listener ob-
ject is an instance of an anonymous inner class—a class that’s declared without a name
and typically appears inside a method declaration. As with other inner classes, an anonymous

Look-and-Feel Observation 26.12
Set the maximum row count for a JComboBox to a number of rows that prevents the list
from expanding outside the bounds of the window in which it’s used.

Fig. 26.22 | Testing ComboBoxFrame. (Part 2 of 2.)

Scrollbar to scroll through the
items in the list

Scroll arrowsScroll box

jhtp_26_GUI1.fm Page 35 Monday, May 1, 2017 3:15 PM

26_36 Chapter 26 Swing GUI Components: Part 1

inner class can access its top-level class’s members. However, an anonymous inner class has
limited access to the local variables of the method in which it’s declared. Since an anony-
mous inner class has no name, one object of the class must be created at the point where
the class is declared (starting at line 35).

Lines 34–47 are a call to imagesJComboBox’s addItemListener method. The argu-
ment to this method must be an object that is an ItemListener (i.e., any object of a class
that implements ItemListener). Lines 35–46 are a class-instance creation expression that
declares an anonymous inner class and creates one object of that class. A reference to that
object is then passed as the argument to addItemListener. The syntax ItemListener()
after new begins the declaration of an anonymous inner class that implements interface
ItemListener. This is similar to beginning a class declaration with

The opening left brace at line 36 and the closing right brace at line 46 delimit the
body of the anonymous inner class. Lines 38–45 declare the ItemListener’s itemStat-
eChanged method. When the user makes a selection from imagesJComboBox, this method
sets label’s Icon. The Icon is selected from array icons by determining the index of the
selected item in the JComboBox with method getSelectedIndex in line 44. For each item
selected from a JComboBox, another item is first deselected—so two ItemEvents occur
when an item is selected. We wish to display only the icon for the item the user just
selected. For this reason, line 42 determines whether ItemEvent method getStateChange
returns ItemEvent.SELECTED. If so, lines 43–44 set label’s icon.

The syntax shown in lines 35–46 for creating an event handler with an anonymous
inner class is similar to the code that would be generated by a Java integrated development
environment (IDE). Typically, an IDE enables you to design a GUI visually, then it gen-
erates code that implements the GUI. You simply insert statements in the event-handling
methods that declare how to handle each event.

26.12 JList
A list displays a series of items from which the user may select one or more items (see the output
of Fig. 26.24). Lists are created with class JList, which directly extends class JComponent.
Class JList—which like JComboBox is a generic class—supports single-selection lists (which
allow only one item to be selected at a time) and multiple-selection lists (which allow any
number of items to be selected). In this section, we discuss single-selection lists.

Software Engineering Observation 26.3
An anonymous inner class declared in a method can access the instance variables and
methods of the top-level class object that declared it, as well as the method’s final local
variables, but cannot access the method’s non-final local variables. As of Java SE 8,
anonymous inner classes may also access a methods “effectively final” local variables—see
Chapter 17 for more information.

public class MyHandler implements ItemListener

Software Engineering Observation 26.4
Like any other class, when an anonymous inner class implements an interface, the class
must implement every abstract method in the interface.

jhtp_26_GUI1.fm Page 36 Monday, May 1, 2017 3:15 PM

26.12 JList 26_37

The application of Figs. 26.23–26.24 creates a JList containing 13 color names.
When a color name is clicked in the JList, a ListSelectionEvent occurs and the appli-
cation changes the background color of the application window to the selected color. Class
ListTest (Fig. 26.24) contains the main method that executes this application.

Line 29 (Fig. 26.23) creates JList object colorJList. The argument to the JList
constructor is the array of Objects (in this case Strings) to display in the list. Line 30 uses
JList method setVisibleRowCount to determine the number of items visible in the list.

Line 33 uses JList method setSelectionMode to specify the list’s selection mode.
Class ListSelectionModel (of package javax.swing) declares three constants that specify
a JList’s selection mode—SINGLE_SELECTION (which allows only one item to be selected
at a time), SINGLE_INTERVAL_SELECTION (for a multiple-selection list that allows selection
of several contiguous items) and MULTIPLE_INTERVAL_SELECTION (for a multiple-selection
list that does not restrict the items that can be selected).

1 // Fig. 26.23: ListFrame.java
2 // JList that displays a list of colors.
3 import java.awt.FlowLayout;
4 import java.awt.Color;
5 import javax.swing.JFrame;
6 import javax.swing.JList;
7 import javax.swing.JScrollPane;
8 import javax.swing.event.ListSelectionListener;
9 import javax.swing.event.ListSelectionEvent;

10 import javax.swing.ListSelectionModel;
11
12 public class ListFrame extends JFrame
13 {
14
15 private static final String[] colorNames = {"Black", "Blue", "Cyan",
16 "Dark Gray", "Gray", "Green", "Light Gray", "Magenta",
17 "Orange", "Pink", "Red", "White", "Yellow"};
18 private static final Color[] colors = {Color.BLACK, Color.BLUE,
19 Color.CYAN, Color.DARK_GRAY, Color.GRAY, Color.GREEN,
20 Color.LIGHT_GRAY, Color.MAGENTA, Color.ORANGE, Color.PINK,
21 Color.RED, Color.WHITE, Color.YELLOW};
22
23 // ListFrame constructor add JScrollPane containing JList to JFrame
24 public ListFrame()
25 {
26 super("List Test");
27 setLayout(new FlowLayout());
28
29
30
31
32
33
34
35
36

Fig. 26.23 | JList that displays a list of colors. (Part 1 of 2.)

private final JList<String> colorJList; // list to display colors

colorJList = new JList<String>(colorNames); // list of colorNames
colorJList.setVisibleRowCount(5); // display five rows at once

// do not allow multiple selections
colorJList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

// add a JScrollPane containing JList to frame
add(new JScrollPane(colorJList));

jhtp_26_GUI1.fm Page 37 Monday, May 1, 2017 3:15 PM

26_38 Chapter 26 Swing GUI Components: Part 1

Unlike a JComboBox, a JList does not provide a scrollbar if there are more items in the
list than the number of visible rows. In this case, a JScrollPane object is used to provide
the scrolling capability. Line 36 adds a new instance of class JScrollPane to the JFrame.
The JScrollPane constructor receives as its argument the JComponent that needs scrolling
functionality (in this case, colorJList). Notice in the screen captures that a scrollbar cre-
ated by the JScrollPane appears at the right side of the JList. By default, the scrollbar
appears only when the number of items in the JList exceeds the number of visible items.

Lines 38–49 use JList method addListSelectionListener to register an object that
implements ListSelectionListener (package javax.swing.event) as the listener for the

37
38 colorJList.addListSelectionListener(
39 new ListSelectionListener() // anonymous inner class
40 {
41 // handle list selection events
42 @Override
43 public void valueChanged(ListSelectionEvent event)
44 {
45 getContentPane().setBackground(
46 colors[]);
47 }
48 }
49);
50 }
51 }

1 // Fig. 26.24: ListTest.java
2 // Selecting colors from a JList.
3 import javax.swing.JFrame;
4
5 public class ListTest
6 {
7 public static void main(String[] args)
8 {
9 ListFrame listFrame = new ListFrame(); // create ListFrame

10 listFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 listFrame.setSize(350, 150);
12 listFrame.setVisible(true);
13 }
14 }

Fig. 26.24 | Selecting colors from a JList.

Fig. 26.23 | JList that displays a list of colors. (Part 2 of 2.)

colorJList.getSelectedIndex()

jhtp_26_GUI1.fm Page 38 Monday, May 1, 2017 3:15 PM

26.13 Multiple-Selection Lists 26_39

JList’s selection events. Once again, we use an instance of an anonymous inner class (lines
39–48) as the listener. In this example, when the user makes a selection from colorJList,
method valueChanged (line 42–47) should change the background color of the List-
Frame to the selected color. This is accomplished in lines 45–46. Note the use of JFrame
method getContentPane in line 45. Each JFrame actually consists of three layers—the
background, the content pane and the glass pane. The content pane appears in front of the
background and is where the GUI components in the JFrame are displayed. The glass pane
is used to display tool tips and other items that should appear in front of the GUI compo-
nents on the screen. The content pane completely hides the background of the JFrame;
thus, to change the background color behind the GUI components, you must change the
content pane’s background color. Method getContentPane returns a reference to the
JFrame’s content pane (an object of class Container). In line 45, we then use that reference
to call method setBackground, which sets the content pane’s background color to an ele-
ment in the colors array. The color is selected from the array by using the selected item’s
index. JList method getSelectedIndex returns the selected item’s index. As with arrays
and JComboBoxes, JList indexing is zero based.

26.13 Multiple-Selection Lists
A multiple-selection list enables the user to select many items from a JList (see the output
of Fig. 26.26). A SINGLE_INTERVAL_SELECTION list allows selecting a contiguous range of
items. To do so, click the first item, then press and hold the Shift key while clicking the
last item in the range. A MULTIPLE_INTERVAL_SELECTION list (the default) allows continu-
ous range selection as described for a SINGLE_INTERVAL_SELECTION list. Such a list also al-
lows miscellaneous items to be selected by pressing and holding the Ctrl key while clicking
each item to select. To deselect an item, press and hold the Ctrl key while clicking the item
a second time.

The application of Figs. 26.25–26.26 uses multiple-selection lists to copy items from
one JList to another. One list is a MULTIPLE_INTERVAL_SELECTION list and the other is a
SINGLE_INTERVAL_SELECTION list. When you execute the application, try using the selec-
tion techniques described previously to select items in both lists.

1 // Fig. 26.25: MultipleSelectionFrame.java
2 // JList that allows multiple selections.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JList;
8 import javax.swing.JButton;
9 import javax.swing.JScrollPane;

10 import javax.swing.ListSelectionModel;
11
12 public class MultipleSelectionFrame extends JFrame
13 {
14 private final JList<String> colorJList; // list to hold color names
15 private final JList<String> copyJList; // list to hold copied names

Fig. 26.25 | JList that allows multiple selections. (Part 1 of 2.)

jhtp_26_GUI1.fm Page 39 Monday, May 1, 2017 3:15 PM

26_40 Chapter 26 Swing GUI Components: Part 1

16 private JButton copyJButton; // button to copy selected names
17 private static final String[] colorNames = {"Black", "Blue", "Cyan",
18 "Dark Gray", "Gray", "Green", "Light Gray", "Magenta", "Orange",
19 "Pink", "Red", "White", "Yellow"};
20
21 // MultipleSelectionFrame constructor
22 public MultipleSelectionFrame()
23 {
24 super("Multiple Selection Lists");
25 setLayout(new FlowLayout());
26
27 colorJList = new JList<String>(colorNames); // list of color names
28 colorJList.setVisibleRowCount(5); // show five rows
29
30
31 add(new JScrollPane(colorJList)); // add list with scrollpane
32
33 copyJButton = new JButton("Copy >>>");
34 copyJButton.addActionListener(
35 new ActionListener() // anonymous inner class
36 {
37 // handle button event
38 @Override
39 public void actionPerformed(ActionEvent event)
40 {
41 // place selected values in copyJList
42
43
44
45 }
46 }
47);
48
49 add(copyJButton); // add copy button to JFrame
50
51 copyJList = new JList<String>(); // list to hold copied color names
52 copyJList.setVisibleRowCount(5); // show 5 rows
53
54
55
56
57 add(new JScrollPane(copyJList)); // add list with scrollpane
58 }
59 }

1 // Fig. 26.26: MultipleSelectionTest.java
2 // Testing MultipleSelectionFrame.
3 import javax.swing.JFrame;
4

Fig. 26.26 | Testing MultipleSelectionFrame. (Part 1 of 2.)

Fig. 26.25 | JList that allows multiple selections. (Part 2 of 2.)

colorJList.setSelectionMode(
 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);

copyJList.setListData(
 colorJList.getSelectedValuesList().toArray(
 new String[0]));

copyJList.setFixedCellWidth(100); // set width
copyJList.setFixedCellHeight(15); // set height
copyJList.setSelectionMode(
 ListSelectionModel.SINGLE_INTERVAL_SELECTION);

jhtp_26_GUI1.fm Page 40 Monday, May 1, 2017 3:15 PM

26.13 Multiple-Selection Lists 26_41

Line 27 of Fig. 26.25 creates JList colorJList and initializes it with the Strings in
the array colorNames. Line 28 sets the number of visible rows in colorJList to 5. Lines
29–30 specify that colorJList is a MULTIPLE_INTERVAL_SELECTION list. Line 31 adds a
new JScrollPane containing colorJList to the JFrame. Lines 51–57 perform similar
tasks for copyJList, which is declared as a SINGLE_INTERVAL_SELECTION list. If a JList
does not contain items, it will not diplay in a FlowLayout. For this reason, lines 53–54 use
JList methods setFixedCellWidth and setFixedCellHeight to set copyJList’s width
to 100 pixels and the height of each item in the JList to 15 pixels, respectively.

Normally, an event generated by another GUI component (known as an external
event) specifies when the multiple selections in a JList should be processed. In this
example, the user clicks the JButton called copyJButton to trigger the event that copies
the selected items in colorJList to copyJList.

Lines 34–47 declare, create and register an ActionListener for the copyJButton.
When the user clicks copyJButton, method actionPerformed (lines 38–45) uses JList
method setListData to set the items displayed in copyJList. Lines 43–44 call color-
JList’s method getSelectedValuesList, which returns a List<String> (because the
JList was created as a JList<String>) representing the selected items in colorJList. We
call the List<String>’s toArray method to convert this into an array of Strings that can
be passed as the argument to copyJList’s setListData method. List method toArray
receives as its argument an array representing the type of array that the method will return.
You’ll learn more about List and toArray in Chapter 16.

You might be wondering why copyJList can be used in line 42 even though the
application does not create the object to which it refers until line 49. Remember that
method actionPerformed (lines 38–45) does not execute until the user presses the copy-
JButton, which cannot occur until after the constructor completes execution and the

5 public class MultipleSelectionTest
6 {
7 public static void main(String[] args)
8 {
9 MultipleSelectionFrame multipleSelectionFrame =

10 new MultipleSelectionFrame();
11 multipleSelectionFrame.setDefaultCloseOperation(
12 JFrame.EXIT_ON_CLOSE);
13 multipleSelectionFrame.setSize(350, 150);
14 multipleSelectionFrame.setVisible(true);
15 }
16 }

Fig. 26.26 | Testing MultipleSelectionFrame. (Part 2 of 2.)

jhtp_26_GUI1.fm Page 41 Monday, May 1, 2017 3:15 PM

26_42 Chapter 26 Swing GUI Components: Part 1

application displays the GUI. At that point in the application’s execution, copyJList is
already initialized with a new JList object.

26.14 Mouse Event Handling
This section presents the MouseListener and MouseMotionListener event-listener inter-
faces for handling mouse events. Mouse events can be processed for any GUI component
that derives from java.awt.Component. The methods of interfaces MouseListener and
MouseMotionListener are summarized in Figure 26.27. Package javax.swing.event
contains interface MouseInputListener, which extends interfaces MouseListener and
MouseMotionListener to create a single interface containing all the MouseListener and
MouseMotionListener methods. The MouseListener and MouseMotionListener meth-
ods are called when the mouse interacts with a Component if appropriate event-listener ob-
jects are registered for that Component.

Each of the mouse event-handling methods receives as an argument a MouseEvent
object that contains information about the mouse event that occurred, including the x-
and y-coordinates of its location. These coordinates are measured from the upper-left corner

MouseListener and MouseMotionListener interface methods

Methods of interface MouseListener
public void mousePressed(MouseEvent event)

Called when a mouse button is pressed while the mouse cursor is on a component.

public void mouseClicked(MouseEvent event)

Called when a mouse button is pressed and released while the mouse cursor remains stationary on
a component. Always preceded by a call to mousePressed and mouseReleased.

public void mouseReleased(MouseEvent event)

Called when a mouse button is released after being pressed. Always preceded by a call to mouse-
Pressed and one or more calls to mouseDragged.

public void mouseEntered(MouseEvent event)

Called when the mouse cursor enters the bounds of a component.

public void mouseExited(MouseEvent event)

Called when the mouse cursor leaves the bounds of a component.

Methods of interface MouseMotionListener
public void mouseDragged(MouseEvent event)

Called when the mouse button is pressed while the mouse cursor is on a component and the
mouse is moved while the mouse button remains pressed. Always preceded by a call to mouse-
Pressed. All drag events are sent to the component on which the user began to drag the mouse.

public void mouseMoved(MouseEvent event)

Called when the mouse is moved (with no mouse buttons pressed) when the mouse cursor is on a
component. All move events are sent to the component over which the mouse is currently posi-
tioned.

Fig. 26.27 | MouseListener and MouseMotionListener interface methods.

jhtp_26_GUI1.fm Page 42 Monday, May 1, 2017 3:15 PM

26.14 Mouse Event Handling 26_43

of the GUI component on which the event occurred. The x-coordinates start at 0 and
increase from left to right. The y-coordinates start at 0 and increase from top to bottom. The
methods and constants of class InputEvent (MouseEvent’s superclass) enable you to deter-
mine which mouse button the user clicked.

Java also provides interface MouseWheelListener to enable applications to respond to
the rotation of a mouse wheel. This interface declares method mouseWheelMoved, which
receives a MouseWheelEvent as its argument. Class MouseWheelEvent (a subclass of Mouse-
Event) contains methods that enable the event handler to obtain information about the
amount of wheel rotation.

Tracking Mouse Events on a JPanel
The MouseTracker application (Figs. 26.28–26.29) demonstrates the MouseListener and
MouseMotionListener interface methods. The event-handler class (lines 36–97 of
Fig. 26.28) implements both interfaces. You must declare all seven methods from these two
interfaces when your class implements them both. Each mouse event in this example displays
a String in the JLabel called statusBar that is attached to the bottom of the window.

Software Engineering Observation 26.5
Calls to mouseDragged are sent to the MouseMotionListener for the Component on which
the drag started. Similarly, the mouseReleased call at the end of a drag operation is sent
to the MouseListener for the Component on which the drag operation started.

1 // Fig. 26.28: MouseTrackerFrame.java
2 // Mouse event handling.
3 import java.awt.Color;
4 import java.awt.BorderLayout;
5 import java.awt.event.MouseListener;
6 import java.awt.event.MouseMotionListener;
7 import java.awt.event.MouseEvent;
8 import javax.swing.JFrame;
9 import javax.swing.JLabel;

10 import javax.swing.JPanel;
11
12 public class MouseTrackerFrame extends JFrame
13 {
14 private final JPanel mousePanel; // panel in which mouse events occur
15 private final JLabel statusBar; // displays event information
16
17 // MouseTrackerFrame constructor sets up GUI and
18 // registers mouse event handlers
19 public MouseTrackerFrame()
20 {
21 super("Demonstrating Mouse Events");
22
23
24
25
26

Fig. 26.28 | Mouse event handling. (Part 1 of 3.)

mousePanel = new JPanel();
mousePanel.setBackground(Color.WHITE);
add(mousePanel, BorderLayout.CENTER); // add panel to JFrame

jhtp_26_GUI1.fm Page 43 Monday, May 1, 2017 3:15 PM

26_44 Chapter 26 Swing GUI Components: Part 1

27
28
29
30
31
32
33
34 }
35
36
37
38 {
39 // MouseListener event handlers
40 // handle event when mouse released immediately after press
41 @Override
42
43 {
44 statusBar.setText(String.format("Clicked at [%d, %d]",
45 ,));
46 }
47
48 // handle event when mouse pressed
49 @Override
50
51 {
52 statusBar.setText(String.format("Pressed at [%d, %d]",
53 ,));
54 }
55
56 // handle event when mouse released
57 @Override
58
59 {
60 statusBar.setText(String.format("Released at [%d, %d]",
61 ,));
62 }
63
64 // handle event when mouse enters area
65 @Override
66
67 {
68 statusBar.setText(String.format("Mouse entered at [%d, %d]",
69 ,));
70
71 }
72
73 // handle event when mouse exits area
74 @Override
75
76 {
77 statusBar.setText("Mouse outside JPanel");
78
79 }

Fig. 26.28 | Mouse event handling. (Part 2 of 3.)

statusBar = new JLabel("Mouse outside JPanel");
add(statusBar, BorderLayout.SOUTH); // add label to JFrame

// create and register listener for mouse and mouse motion events
MouseHandler handler = new MouseHandler();
mousePanel.addMouseListener(handler);
mousePanel.addMouseMotionListener(handler);

private class MouseHandler implements MouseListener,
 MouseMotionListener

public void mouseClicked(MouseEvent event)

event.getX() event.getY()

public void mousePressed(MouseEvent event)

event.getX() event.getY()

public void mouseReleased(MouseEvent event)

event.getX() event.getY()

public void mouseEntered(MouseEvent event)

event.getX() event.getY()
mousePanel.setBackground(Color.GREEN);

public void mouseExited(MouseEvent event)

mousePanel.setBackground(Color.WHITE);

jhtp_26_GUI1.fm Page 44 Monday, May 1, 2017 3:15 PM

26.14 Mouse Event Handling 26_45

80
81 // MouseMotionListener event handlers
82 // handle event when user drags mouse with button pressed
83 @Override
84
85 {
86 statusBar.setText(String.format("Dragged at [%d, %d]",
87 ,));
88 }
89
90 // handle event when user moves mouse
91 @Override
92
93 {
94 statusBar.setText(String.format("Moved at [%d, %d]",
95 ,));
96 }
97 } // end inner class MouseHandler
98 }

1 // Fig. 26.29: MouseTrackerFrame.java
2 // Testing MouseTrackerFrame.
3 import javax.swing.JFrame;
4
5 public class MouseTracker
6 {
7 public static void main(String[] args)
8 {
9 MouseTrackerFrame mouseTrackerFrame = new MouseTrackerFrame();

10 mouseTrackerFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseTrackerFrame.setSize(300, 100);
12 mouseTrackerFrame.setVisible(true);
13 }
14 }

Fig. 26.29 | Testing MouseTrackerFrame.

Fig. 26.28 | Mouse event handling. (Part 3 of 3.)

public void mouseDragged(MouseEvent event)

event.getX() event.getY()

public void mouseMoved(MouseEvent event)

event.getX() event.getY()

jhtp_26_GUI1.fm Page 45 Monday, May 1, 2017 3:15 PM

26_46 Chapter 26 Swing GUI Components: Part 1

Line 23 creates JPanel mousePanel. This JPanel’s mouse events are tracked by the
app. Line 24 sets mousePanel’s background color to white. When the user moves the
mouse into the mousePanel, the application will change mousePanel’s background color
to green. When the user moves the mouse out of the mousePanel, the application will
change the background color back to white. Line 25 attaches mousePanel to the JFrame.
As you’ve learned, you typically must specify the layout of the GUI components in a
JFrame. In that section, we introduced the layout manager FlowLayout. Here we use the
default layout of a JFrame’s content pane—BorderLayout, which arranges component
NORTH, SOUTH, EAST, WEST and CENTER regions. NORTH corresponds to the container’s top.
This example uses the CENTER and SOUTH regions. Line 25 uses a two-argument version of
method add to place mousePanel in the CENTER region. The BorderLayout automatically
sizes the component in the CENTER to use all the space in the JFrame that is not occupied
by components in the other regions. Section 26.18.2 discusses BorderLayout in more
detail.

Lines 27–28 in the constructor declare JLabel statusBar and attach it to the
JFrame’s SOUTH region. This JLabel occupies the width of the JFrame. The region’s height
is determined by the JLabel.

Line 31 creates an instance of inner class MouseHandler (lines 36–97) called handler
that responds to mouse events. Lines 32–33 register handler as the listener for mouse-
Panel’s mouse events. Methods addMouseListener and addMouseMotionListener are
inherited indirectly from class Component and can be used to register MouseListeners and
MouseMotionListeners, respectively. A MouseHandler object is a MouseListener and is a
MouseMotionListener because the class implements both interfaces. We chose to imple-
ment both interfaces here to demonstrate a class that implements more than one interface,
but we could have implemented interface MouseInputListener instead.

When the mouse enters and exits mousePanel’s area, methods mouseEntered (lines
65–71) and mouseExited (lines 74–79) are called, respectively. Method mouseEntered
displays a message in the statusBar indicating that the mouse entered the JPanel and
changes the background color to green. Method mouseExited displays a message in the
statusBar indicating that the mouse is outside the JPanel (see the first sample output
window) and changes the background color to white.

The other five events display a string in the statusBar that includes the event and the
coordinates at which it occurred. MouseEvent methods getX and getY return the x- and y-
coordinates, respectively, of the mouse at the time the event occurred.

26.15 Adapter Classes
Many event-listener interfaces, such as MouseListener and MouseMotionListener, con-
tain multiple methods. It’s not always desirable to declare every method in an event-listen-
er interface. For example, an application may need only the mouseClicked handler from
MouseListener or the mouseDragged handler from MouseMotionListener. Interface Win-
dowListener specifies seven window event-handling methods. For many of the listener in-
terfaces that have multiple methods, packages java.awt.event and javax.swing.event
provide event-listener adapter classes. An adapter class implements an interface and pro-
vides a default implementation (with an empty method body) of each method in the in-
terface. Figure 26.30 shows several java.awt.event adapter classes and the interfaces they

jhtp_26_GUI1.fm Page 46 Monday, May 1, 2017 3:15 PM

26.15 Adapter Classes 26_47

implement. You can extend an adapter class to inherit the default implementation of every
method and subsequently override only the method(s) you need for event handling.

Extending MouseAdapter
The application of Figs. 26.31–26.32 demonstrates how to determine the number of
mouse clicks (i.e., the click count) and how to distinguish between the different mouse
buttons. The event listener in this application is an object of inner class MouseClickHan-
dler (Fig. 26.31, lines 25–46) that extends MouseAdapter, so we can declare just the
mouseClicked method we need in this example.

Software Engineering Observation 26.6
When a class implements an interface, the class has an is-a relationship with that
interface. All direct and indirect subclasses of that class inherit this interface. Thus, an
object of a class that extends an event-adapter class is an object of the corresponding event-
listener type (e.g., an object of a subclass of MouseAdapter is a MouseListener).

Event-adapter class in java.awt.event Implements interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

Fig. 26.30 | Event-adapter classes and the interfaces they implement.

Common Programming Error 26.3
If you extend an adapter class and misspell the name of the method you’re overriding, and
you do not declare the method with @Override, your method simply becomes another
method in the class. This is a logic error that is difficult to detect, since the program will
call the empty version of the method inherited from the adapter class.

1 // Fig. 26.31: MouseDetailsFrame.java
2 // Demonstrating mouse clicks and distinguishing between mouse buttons.
3 import java.awt.BorderLayout;
4 import java.awt.event.MouseAdapter;
5 import java.awt.event.MouseEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JLabel;
8
9 public class MouseDetailsFrame extends JFrame

10 {
11 private String details; // String displayed in the statusBar
12 private final JLabel statusBar; // JLabel at bottom of window
13

Fig. 26.31 | Demonstrating mouse clicks and distinguishing between mouse buttons. (Part 1 of 2.)

jhtp_26_GUI1.fm Page 47 Monday, May 1, 2017 3:15 PM

26_48 Chapter 26 Swing GUI Components: Part 1

14 // constructor sets title bar String and register mouse listener
15 public MouseDetailsFrame()
16 {
17 super("Mouse clicks and buttons");
18
19 statusBar = new JLabel("Click the mouse");
20 add(statusBar, BorderLayout.SOUTH);
21
22 }
23
24 // inner class to handle mouse events
25 private class MouseClickHandler extends MouseAdapter
26 {
27 // handle mouse-click event and determine which button was pressed
28 @Override
29 public void mouseClicked(MouseEvent event)
30 {
31 int xPos = event.getX(); // get x-position of mouse
32 int yPos = event.getY(); // get y-position of mouse
33
34 details = String.format("Clicked %d time(s)",
35);
36
37 if () // right mouse button
38 details += " with right mouse button";
39 else if () // middle mouse button
40 details += " with center mouse button";
41 else // left mouse button
42 details += " with left mouse button";
43
44 statusBar.setText(details); // display message in statusBar
45 }
46 }
47 }

1 // Fig. 26.32: MouseDetails.java
2 // Testing MouseDetailsFrame.
3 import javax.swing.JFrame;
4
5 public class MouseDetails
6 {
7 public static void main(String[] args)
8 {
9 MouseDetailsFrame mouseDetailsFrame = new MouseDetailsFrame();

10 mouseDetailsFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseDetailsFrame.setSize(400, 150);
12 mouseDetailsFrame.setVisible(true);
13 }
14 }

Fig. 26.32 | Testing MouseDetailsFrame. (Part 1 of 2.)

Fig. 26.31 | Demonstrating mouse clicks and distinguishing between mouse buttons. (Part 2 of 2.)

addMouseListener(new MouseClickHandler()); // add handler

event.getClickCount()

event.isMetaDown()

event.isAltDown()

jhtp_26_GUI1.fm Page 48 Monday, May 1, 2017 3:15 PM

26.15 Adapter Classes 26_49

A user of a Java application may be on a system with a one-, two- or three-button
mouse. Class MouseEvent inherits several methods from class InputEvent that can distin-
guish among mouse buttons on a multibutton mouse or can mimic a multibutton mouse
with a combined keystroke and mouse-button click. Figure 26.33 shows the InputEvent
methods used to distinguish among mouse-button clicks. Java assumes that every mouse
contains a left mouse button. Thus, it’s simple to test for a left-mouse-button click. How-
ever, users with a one- or two-button mouse must use a combination of keystrokes and
mouse-button clicks at the same time to simulate the missing buttons on the mouse. In
the case of a one- or two-button mouse, a Java application assumes that the center mouse
button is clicked if the user holds down the Alt key and clicks the left mouse button on a
two-button mouse or the only mouse button on a one-button mouse. In the case of a one-
button mouse, a Java application assumes that the right mouse button is clicked if the user
holds down the Meta key (sometimes called the Command key or the “Apple” key on a
Mac) and clicks the mouse button.

InputEvent method Description

isMetaDown() Returns true when the user clicks the right mouse button on a
mouse with two or three buttons. To simulate a right-mouse-
button click on a one-button mouse, the user can hold down
the Meta key on the keyboard and click the mouse button.

isAltDown() Returns true when the user clicks the middle mouse button on a
mouse with three buttons. To simulate a middle-mouse-button
click on a one- or two-button mouse, the user can press the Alt
key and click the only or left mouse button, respectively.

Fig. 26.33 | InputEvent methods that help determine whether the right or center mouse
button was clicked.

Fig. 26.32 | Testing MouseDetailsFrame. (Part 2 of 2.)

jhtp_26_GUI1.fm Page 49 Monday, May 1, 2017 3:15 PM

26_50 Chapter 26 Swing GUI Components: Part 1

Line 21 of Fig. 26.31 registers a MouseListener for the MouseDetailsFrame. The
event listener is an object of class MouseClickHandler, which extends MouseAdapter. This
enables us to declare only method mouseClicked (lines 28–45). This method first captures
the coordinates where the event occurred and stores them in local variables xPos and yPos
(lines 31–32). Lines 34–35 create a String called details containing the number of con-
secutive mouse clicks, which is returned by MouseEvent method getClickCount at line 35.
Lines 37–42 use methods isMetaDown and isAltDown to determine which mouse button
the user clicked and append an appropriate String to details in each case. The resulting
String is displayed in the statusBar. Class MouseDetails (Fig. 26.32) contains the main
method that executes the application. Try clicking with each of your mouse’s buttons
repeatedly to see the click count increment.

26.16 JPanel Subclass for Drawing with the Mouse
Section 26.14 showed how to track mouse events in a JPanel. In this section, we use a
JPanel as a dedicated drawing area in which the user can draw by dragging the mouse. In
addition, this section demonstrates an event listener that extends an adapter class.

Method paintComponent
Lightweight Swing components that extend class JComponent (such as JPanel) contain
method paintComponent, which is called when a lightweight Swing component is dis-
played. By overriding this method, you can specify how to draw shapes using Java’s graph-
ics capabilities. When customizing a JPanel for use as a dedicated drawing area, the
subclass should override method paintComponent and call the superclass version of paint-
Component as the first statement in the body of the overridden method to ensure that the
component displays correctly. The reason is that subclasses of JComponent support trans-
parency. To display a component correctly, the program must determine whether the
component is transparent. The code that determines this is in superclass JComponent’s
paintComponent implementation. When a component is transparent, paintComponent
will not clear its background when the program displays the component. When a compo-
nent is opaque, paintComponent clears the component’s background before the compo-
nent is displayed. The transparency of a Swing lightweight component can be set with
method setOpaque (a false argument indicates that the component is transparent).

Defining the Custom Drawing Area
The Painter application of Figs. 26.34–26.35 demonstrates a customized subclass of
JPanel that’s used to create a dedicated drawing area. The application uses the mouse-

Error-Prevention Tip 26.1
In a JComponent subclass’s paintComponent method, the first statement should always
call the superclass’s paintComponent method to ensure that an object of the subclass dis-
plays correctly.

Common Programming Error 26.4
If an overridden paintComponent method does not call the superclass’s version, the sub-
class component may not display properly. If an overridden paintComponent method calls
the superclass’s version after other drawing is performed, the drawing will be erased.

jhtp_26_GUI1.fm Page 50 Monday, May 1, 2017 3:15 PM

26.16 JPanel Subclass for Drawing with the Mouse 26_51

Dragged event handler to create a simple drawing application. The user can draw pictures
by dragging the mouse on the JPanel. This example does not use method mouseMoved, so
our event-listener class (the anonymous inner class at lines 20–29 of Fig. 26.34) extends
MouseMotionAdapter. Since this class already declares both mouseMoved and mouse-
Dragged, we can simply override mouseDragged to provide the event handling this appli-
cation requires.

1 // Fig. 26.34: PaintPanel.java
2 // Adapter class used to implement event handlers.
3 import java.awt.Point;
4 import java.awt.Graphics;
5 import java.awt.event.MouseEvent;
6 import java.awt.event.MouseMotionAdapter;
7 import java.util.ArrayList;
8 import javax.swing.JPanel;
9

10 public class PaintPanel extends JPanel
11 {
12 // list of Point references
13
14
15 // set up GUI and register mouse event handler
16 public PaintPanel()
17 {
18 // handle frame mouse motion event
19 addMouseMotionListener(
20 // anonymous inner class
21 {
22 // store drag coordinates and repaint
23 @Override
24
25 {
26 points.add();
27
28 }
29 }
30);
31 }
32
33 // draw ovals in a 4-by-4 bounding box at specified locations on window
34 @Override
35 public void paintComponent(Graphics g)
36 {
37 super.paintComponent(g); // clears drawing area
38
39 // draw all points
40 for (Point point : points)
41 g.fillOval(, 4, 4);
42 }
43 }

Fig. 26.34 | Adapter class used to implement event handlers.

private final ArrayList<Point> points = new ArrayList<>();

new MouseMotionAdapter()

public void mouseDragged(MouseEvent event)

event.getPoint()
repaint(); // repaint JFrame

point.x, point.y

jhtp_26_GUI1.fm Page 51 Monday, May 1, 2017 3:15 PM

26_52 Chapter 26 Swing GUI Components: Part 1

Class PaintPanel (Fig. 26.34) extends JPanel to create the dedicated drawing area.
Class Point (package java.awt) represents an x-y coordinate. We use objects of this class to
store the coordinates of each mouse drag event. Class Graphics is used to draw. In this
example, we use an ArrayList of Points (line 13) to store the location at which each mouse
drag event occurs. As you’ll see, method paintComponent uses these Points to draw.

Lines 19–30 register a MouseMotionListener to listen for the PaintPanel’s mouse
motion events. Lines 20–29 create an object of an anonymous inner class that extends the
adapter class MouseMotionAdapter. Recall that MouseMotionAdapter implements Mouse-
MotionListener, so the anonymous inner class object is a MouseMotionListener. The
anonymous inner class inherits default mouseMoved and mouseDragged implementations,
so it already implements all the interface’s methods. However, the default implementa-
tions do nothing when they’re called. So, we override method mouseDragged at lines 23–
28 to capture the coordinates of a mouse drag event and store them as a Point object. Line
26 invokes the MouseEvent’s getPoint method to obtain the Point where the event
occurred and stores it in the ArrayList. Line 27 calls method repaint (inherited indi-
rectly from class Component) to indicate that the PaintPanel should be refreshed on the
screen as soon as possible with a call to the PaintPanel’s paintComponent method.

Method paintComponent (lines 34–42), which receives a Graphics parameter, is
called automatically any time the PaintPanel needs to be displayed on the screen—such
as when the GUI is first displayed—or refreshed on the screen—such as when method
repaint is called or when the GUI component has been hidden by another window on the
screen and subsequently becomes visible again.

Line 37 invokes the superclass version of paintComponent to clear the PaintPanel’s
background (JPanels are opaque by default). Lines 40–41 draw an oval at the location spec-
ified by each Point in the ArrayList. Graphics method fillOval draws a solid oval. The
method’s four parameters represent a rectangular area (called the bounding box) in which the
oval is displayed. The first two parameters are the upper-left x-coordinate and the upper-left
y-coordinate of the rectangular area. The last two coordinates represent the rectangular area’s
width and height. Method fillOval draws the oval so it touches the middle of each side of
the rectangular area. In line 41, the first two arguments are specified by using class Point’s
two public instance variables—x and y. You’ll learn more Graphics features in Chapter 27.

Using the Custom JPanel in an Application
Class Painter (Fig. 26.35) contains the main method that executes this application. Line
14 creates a PaintPanel object on which the user can drag the mouse to draw. Line 15
attaches the PaintPanel to the JFrame.

Look-and-Feel Observation 26.13
Calling repaint for a Swing GUI component indicates that the component should be re-
freshed on the screen as soon as possible. The component’s background is cleared only if
the component is opaque. JComponent method setOpaque can be passed a boolean argu-
ment indicating whether the component is opaque (true) or transparent (false).

Look-and-Feel Observation 26.14
Drawing on any GUI component is performed with coordinates that are measured from
the upper-left corner (0, 0) of that GUI component, not the upper-left corner of the screen.

jhtp_26_GUI1.fm Page 52 Monday, May 1, 2017 3:15 PM

26.17 Key Event Handling 26_53

26.17 Key Event Handling
This section presents the KeyListener interface for handling key events. Key events are
generated when keys on the keyboard are pressed and released. A class that implements
KeyListener must provide declarations for methods keyPressed, keyReleased and key-
Typed, each of which receives a KeyEvent as its argument. Class KeyEvent is a subclass of
InputEvent. Method keyPressed is called in response to pressing any key. Method key-
Typed is called in response to pressing any key that is not an action key. (The action keys
are any arrow key, Home, End, Page Up, Page Down, any function key, etc.) Method key-
Released is called when the key is released after any keyPressed or keyTyped event.

The application of Figs. 26.36–26.37 demonstrates the KeyListener methods. Class
KeyDemoFrame implements the KeyListener interface, so all three methods are declared in
the application. The constructor (Fig. 26.36, lines 17–28) registers the application to
handle its own key events by using method addKeyListener at line 27. Method addKey-

1 // Fig. 26.35: Painter.java
2 // Testing PaintPanel.
3 import java.awt.BorderLayout;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6
7 public class Painter
8 {
9 public static void main(String[] args)

10 {
11 // create JFrame
12 JFrame application = new JFrame("A simple paint program");
13
14
15 application.add(paintPanel, BorderLayout.CENTER);
16
17 // create a label and place it in SOUTH of BorderLayout
18 application.add(new JLabel("Drag the mouse to draw"),
19 BorderLayout.SOUTH);
20
21 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22 application.setSize(400, 200);
23 application.setVisible(true);
24 }
25 }

Fig. 26.35 | Testing PaintPanel.

PaintPanel paintPanel = new PaintPanel();

jhtp_26_GUI1.fm Page 53 Monday, May 1, 2017 3:15 PM

26_54 Chapter 26 Swing GUI Components: Part 1

Listener is declared in class Component, so every subclass of Component can notify Key-
Listener objects of key events for that Component.

1 // Fig. 26.36: KeyDemoFrame.java
2 // Key event handling.
3 import java.awt.Color;
4 import java.awt.event.KeyListener;
5 import java.awt.event.KeyEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JTextArea;
8
9 public class KeyDemoFrame extends JFrame

10 {
11 private final String line1 = ""; // first line of text area
12 private final String line2 = ""; // second line of text area
13 private final String line3 = ""; // third line of text area
14 private final JTextArea textArea; // text area to display output
15
16 // KeyDemoFrame constructor
17 public KeyDemoFrame()
18 {
19 super("Demonstrating Keystroke Events");
20
21 textArea = new JTextArea(10, 15); // set up JTextArea
22 textArea.setText("Press any key on the keyboard...");
23 textArea.setEnabled(false);
24
25 add(textArea); // add text area to JFrame
26
27
28 }
29
30 // handle press of any key
31 @Override
32
33 {
34 line1 = String.format("Key pressed: %s",
35); // show pressed key
36 setLines2and3(event); // set output lines two and three
37 }
38
39 // handle release of any key
40 @Override
41
42 {
43 line1 = String.format("Key released: %s",
44); // show released key
45 setLines2and3(event); // set output lines two and three
46 }
47

Fig. 26.36 | Key event handling. (Part 1 of 2.)

implements KeyListener

textArea.setDisabledTextColor(Color.BLACK);

addKeyListener(this); // allow frame to process key events

public void keyPressed(KeyEvent event)

KeyEvent.getKeyText(event.getKeyCode())

public void keyReleased(KeyEvent event)

KeyEvent.getKeyText(event.getKeyCode())

jhtp_26_GUI1.fm Page 54 Monday, May 1, 2017 3:15 PM

26.17 Key Event Handling 26_55

At line 25, the constructor adds the JTextArea textArea (where the application’s
output is displayed) to the JFrame. A JTextArea is a multiline area in which you can dis-
play text. (We discuss JTextAreas in more detail in Section 26.20.) Notice in the screen
captures that textArea occupies the entire window. This is due to the JFrame’s default
BorderLayout (discussed in Section 26.18.2 and demonstrated in Fig. 26.41). When a
single Component is added to a BorderLayout, the Component occupies the entire Con-
tainer. Line 23 disables the JTextArea so the user cannot type in it. This causes the text
in the JTextArea to become gray. Line 24 uses method setDisabledTextColor to change
the text color in the JTextArea to black for readability.

48 // handle press of an action key
49 @Override
50
51 {
52 line1 = String.format("Key typed: %s",);
53 setLines2and3(event); // set output lines two and three
54 }
55
56 // set second and third lines of output
57 private void setLines2and3(KeyEvent event)
58 {
59 line2 = String.format("This key is %san action key",
60 (? "" : "not "));
61
62
63
64 line3 = String.format("Modifier keys pressed: %s",
65 (temp.equals("") ? "none" : temp)); // output modifiers
66
67 textArea.setText(String.format("%s\n%s\n%s\n",
68 line1, line2, line3)); // output three lines of text
69 }
70 }

1 // Fig. 26.37: KeyDemo.java
2 // Testing KeyDemoFrame.
3 import javax.swing.JFrame;
4
5 public class KeyDemo
6 {
7 public static void main(String[] args)
8 {
9 KeyDemoFrame keyDemoFrame = new KeyDemoFrame();

10 keyDemoFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 keyDemoFrame.setSize(350, 100);
12 keyDemoFrame.setVisible(true);
13 }
14 }

Fig. 26.37 | Testing KeyDemoFrame. (Part 1 of 2.)

Fig. 26.36 | Key event handling. (Part 2 of 2.)

public void keyTyped(KeyEvent event)

event.getKeyChar()

event.isActionKey()

String temp = KeyEvent.getKeyModifiersText(event.getModifiers());

jhtp_26_GUI1.fm Page 55 Monday, May 1, 2017 3:15 PM

26_56 Chapter 26 Swing GUI Components: Part 1

Methods keyPressed (lines 31–37) and keyReleased (lines 40–46) use KeyEvent
method getKeyCode to get the virtual key code of the pressed key. Class KeyEvent con-
tains virtual key-code constants that represent every key on the keyboard. These constants
can be compared with getKeyCode’s return value to test for individual keys on the key-
board. The value returned by getKeyCode is passed to static KeyEvent method getKey-
Text, which returns a string containing the name of the key that was pressed. For a
complete list of virtual key constants, see the online documentation for class KeyEvent
(package java.awt.event). Method keyTyped (lines 49–54) uses KeyEvent method get-
KeyChar (which returns a char) to get the Unicode value of the character typed.

All three event-handling methods finish by calling method setLines2and3 (lines 57–
69) and passing it the KeyEvent object. This method uses KeyEvent method isActionKey
(line 60) to determine whether the key in the event was an action key. Also, InputEvent
method getModifiers is called (line 62) to determine whether any modifier keys (such as
Shift, Alt and Ctrl) were pressed when the key event occurred. The result of this method
is passed to static KeyEvent method getKeyModifiersText, which produces a String
containing the names of the pressed modifier keys.

[Note: If you need to test for a specific key on the keyboard, class KeyEvent provides
a key constant for each one. These constants can be used from the key event handlers to
determine whether a particular key was pressed. Also, to determine whether the Alt, Ctrl,
Meta and Shift keys are pressed individually, InputEvent methods isAltDown, isCon-
trolDown, isMetaDown and isShiftDown each return a boolean indicating whether the
particular key was pressed during the key event.]

Fig. 26.37 | Testing KeyDemoFrame. (Part 2 of 2.)

jhtp_26_GUI1.fm Page 56 Monday, May 1, 2017 3:15 PM

26.18 Introduction to Layout Managers 26_57

26.18 Introduction to Layout Managers
Layout managers arrange GUI components in a container for presentation purposes. You
can use the layout managers for basic layout capabilities instead of determining every GUI
component’s exact position and size. This functionality enables you to concentrate on the
basic look-and-feel and lets the layout managers process most of the layout details. All lay-
out managers implement the interface LayoutManager (in package java.awt). Class Con-
tainer’s setLayout method takes an object that implements the LayoutManager interface
as an argument. There are basically three ways for you to arrange components in a GUI:

1. Absolute positioning: This provides the greatest level of control over a GUI’s ap-
pearance. By setting a Container’s layout to null, you can specify the absolute
position of each GUI component with respect to the upper-left corner of the Con-
tainer by using Component methods setSize and setLocation or setBounds. If
you do this, you also must specify each GUI component’s size. Programming a
GUI with absolute positioning can be tedious, unless you have an integrated de-
velopment environment (IDE) that can generate the code for you.

2. Layout managers: Using layout managers to position elements can be simpler and
faster than creating a GUI with absolute positioning, and makes your GUIs more
resizable, but you lose some control over the size and the precise positioning of
each component.

3. Visual programming in an IDE: IDEs provide tools that make it easy to create
GUIs. Each IDE typically provides a GUI design tool that allows you to drag and
drop GUI components from a tool box onto a design area. You can then position,
size and align GUI components as you like. The IDE generates the Java code that
creates the GUI. In addition, you can typically add event-handling code for a par-
ticular component by double-clicking the component. Some design tools also al-
low you to use the layout managers described in this chapter and in Chapter 35.

Figure 26.38 summarizes the layout managers presented in this chapter. A couple of
additional layout managers are discussed in Chapter 35.

Look-and-Feel Observation 26.15
Most Java IDEs provide GUI design tools for visually designing a GUI; the tools then
write Java code that creates the GUI. Such tools often provide greater control over the size,
position and alignment of GUI components than do the built-in layout managers.

Look-and-Feel Observation 26.16
It’s possible to set a Container’s layout to null, which indicates that no layout manager
should be used. In a Container without a layout manager, you must position and size the
components and take care that, on resize events, all components are repositioned as neces-
sary. A component’s resize events can be processed by a ComponentListener.

jhtp_26_GUI1.fm Page 57 Monday, May 1, 2017 3:15 PM

26_58 Chapter 26 Swing GUI Components: Part 1

26.18.1 FlowLayout
FlowLayout is the simplest layout manager. GUI components are placed in a container
from left to right in the order in which they’re added to the container. When the edge of
the container is reached, components continue to display on the next line. Class FlowLay-
out allows GUI components to be left aligned, centered (the default) and right aligned.

The application of Figs. 26.39–26.40 creates three JButton objects and adds them to
the application, using a FlowLayout. The components are center aligned by default. When
the user clicks Left, the FlowLayout’s alignment is changed to left aligned. When the user
clicks Right, the FlowLayout’s alignment is changed to right aligned. When the user clicks
Center, the FlowLayout’s alignment is changed to center aligned. The sample output win-
dows show each alignment. The last sample output shows the centered alignment after the
window has been resized to a smaller width so that the button Right flows onto a new line.

As seen previously, a container’s layout is set with method setLayout of class Con-
tainer. Line 25 (Fig. 26.39) sets the layout manager to the FlowLayout declared at line
23. Normally, the layout is set before any GUI components are added to a container.

Layout manager Description

FlowLayout Default for javax.swing.JPanel. Places components sequentially, left to
right, in the order they were added. It’s also possible to specify the order
of the components by using the Container method add, which takes a
Component and an integer index position as arguments.

BorderLayout Default for JFrames (and other windows). Arranges the components
into five areas: NORTH, SOUTH, EAST, WEST and CENTER.

GridLayout Arranges the components into rows and columns.

Fig. 26.38 | Layout managers.

Look-and-Feel Observation 26.17
Each individual container can have only one layout manager, but multiple containers in
the same application can each use different layout managers.

1 // Fig. 26.39: FlowLayoutFrame.java
2 // FlowLayout allows components to flow over multiple lines.
3 import java.awt.FlowLayout;
4 import java.awt.Container;
5 import java.awt.event.ActionListener;
6 import java.awt.event.ActionEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JButton;
9

10 public class FlowLayoutFrame extends JFrame
11 {
12 private final JButton leftJButton; // button to set alignment left
13 private final JButton centerJButton; // button to set alignment center

Fig. 26.39 | FlowLayout allows components to flow over multiple lines. (Part 1 of 3.)

jhtp_26_GUI1.fm Page 58 Monday, May 1, 2017 3:15 PM

26.18 Introduction to Layout Managers 26_59

14 private final JButton rightJButton; // button to set alignment right
15 private final FlowLayout layout; // layout object
16 private final Container container; // container to set layout
17
18 // set up GUI and register button listeners
19 public FlowLayoutFrame()
20 {
21 super("FlowLayout Demo");
22
23
24 container = getContentPane(); // get container to layout
25
26
27 // set up leftJButton and register listener
28 leftJButton = new JButton("Left");
29
30 leftJButton.addActionListener(
31 new ActionListener() // anonymous inner class
32 {
33 // process leftJButton event
34 @Override
35 public void actionPerformed(ActionEvent event)
36 {
37
38
39 // realign attached components
40
41 }
42 }
43);
44
45 // set up centerJButton and register listener
46 centerJButton = new JButton("Center");
47
48 centerJButton.addActionListener(
49 new ActionListener() // anonymous inner class
50 {
51 // process centerJButton event
52 @Override
53 public void actionPerformed(ActionEvent event)
54 {
55
56
57 // realign attached components
58
59 }
60 }
61);
62
63 // set up rightJButton and register listener
64 rightJButton = new JButton("Right");
65

Fig. 26.39 | FlowLayout allows components to flow over multiple lines. (Part 2 of 3.)

layout = new FlowLayout();

setLayout(layout);

add(leftJButton); // add Left button to frame

layout.setAlignment(FlowLayout.LEFT);

layout.layoutContainer(container);

add(centerJButton); // add Center button to frame

layout.setAlignment(FlowLayout.CENTER);

layout.layoutContainer(container);

add(rightJButton); // add Right button to frame

jhtp_26_GUI1.fm Page 59 Monday, May 1, 2017 3:15 PM

26_60 Chapter 26 Swing GUI Components: Part 1

Each button’s event handler is specified with a separate anonymous inner-class object
(lines 30–43, 48–61 and 66–79, respectively), and method actionPerformed in each case

66 rightJButton.addActionListener(
67 new ActionListener() // anonymous inner class
68 {
69 // process rightJButton event
70 @Override
71 public void actionPerformed(ActionEvent event)
72 {
73
74
75 // realign attached components
76
77 }
78 }
79);
80 } // end FlowLayoutFrame constructor
81 }

1 // Fig. 26.40: FlowLayoutDemo.java
2 // Testing FlowLayoutFrame.
3 import javax.swing.JFrame;
4
5 public class FlowLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 FlowLayoutFrame flowLayoutFrame = new FlowLayoutFrame();

10 flowLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 flowLayoutFrame.setSize(300, 75);
12 flowLayoutFrame.setVisible(true);
13 }
14 }

Fig. 26.40 | Testing FlowLayoutFrame.

Fig. 26.39 | FlowLayout allows components to flow over multiple lines. (Part 3 of 3.)

layout.setAlignment(FlowLayout.RIGHT);

layout.layoutContainer(container);

jhtp_26_GUI1.fm Page 60 Monday, May 1, 2017 3:15 PM

26.18 Introduction to Layout Managers 26_61

executes two statements. For example, line 37 in the event handler for leftJButton uses
FlowLayout method setAlignment to change the alignment for the FlowLayout to a left-
aligned (FlowLayout.LEFT) FlowLayout. Line 40 uses LayoutManager interface method
layoutContainer (which is inherited by all layout managers) to specify that the JFrame
should be rearranged based on the adjusted layout. According to which button was
clicked, the actionPerformed method for each button sets the FlowLayout’s alignment to
FlowLayout.LEFT (line 37), FlowLayout.CENTER (line 55) or FlowLayout.RIGHT (line 73).

26.18.2 BorderLayout
The BorderLayout layout manager (the default layout manager for a JFrame) arranges
components into five regions: NORTH, SOUTH, EAST, WEST and CENTER. NORTH corresponds to
the top of the container. Class BorderLayout extends Object and implements interface
LayoutManager2 (a subinterface of LayoutManager that adds several methods for en-
hanced layout processing).

A BorderLayout limits a Container to containing at most five components—one in
each region. The component placed in each region can be a container to which other com-
ponents are attached. The components placed in the NORTH and SOUTH regions extend hor-
izontally to the sides of the container and are as tall as the components placed in those
regions. The EAST and WEST regions expand vertically between the NORTH and SOUTH
regions and are as wide as the components placed in those regions. The component placed
in the CENTER region expands to fill all remaining space in the layout (which is the reason the
JTextArea in Fig. 26.37 occupies the entire window). If all five regions are occupied, the
entire container’s space is covered by GUI components. If the NORTH or SOUTH region is not
occupied, the GUI components in the EAST, CENTER and WEST regions expand vertically to
fill the remaining space. If the EAST or WEST region is not occupied, the GUI component
in the CENTER region expands horizontally to fill the remaining space. If the CENTER region is
not occupied, the area is left empty—the other GUI components do not expand to fill the
remaining space. The application of Figs. 26.41–26.42 demonstrates the BorderLayout
layout manager by using five JButtons.

1 // Fig. 26.41: BorderLayoutFrame.java
2 // BorderLayout containing five buttons.
3 import java.awt.BorderLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JButton;
8
9 public class BorderLayoutFrame extends JFrame implements ActionListener

10 {
11 private final JButton[] buttons; // array of buttons to hide portions
12 private static final String[] names = {"Hide North", "Hide South",
13 "Hide East", "Hide West", "Hide Center"};
14
15

Fig. 26.41 | BorderLayout containing five buttons. (Part 1 of 2.)

private final BorderLayout layout;

jhtp_26_GUI1.fm Page 61 Monday, May 1, 2017 3:15 PM

26_62 Chapter 26 Swing GUI Components: Part 1

Line 21 of Fig. 26.41 creates a BorderLayout. The constructor arguments specify the
number of pixels between components that are arranged horizontally (horizontal gap
space) and between components that are arranged vertically (vertical gap space), respec-
tively. The default is one pixel of gap space horizontally and vertically. Line 22 uses
method setLayout to set the content pane’s layout to layout.

We add Components to a BorderLayout with another version of Container method
add that takes two arguments—the Component to add and the region in which the Compo-
nent should appear. For example, line 32 specifies that buttons[0] should appear in the
NORTH region. The components can be added in any order, but only one component should
be added to each region.

16 // set up GUI and event handling
17 public BorderLayoutFrame()
18 {
19 super("BorderLayout Demo");
20
21
22 setLayout(layout);
23 buttons = new JButton[names.length];
24
25 // create JButtons and register listeners for them
26 for (int count = 0; count < names.length; count++)
27 {
28 buttons[count] = new JButton(names[count]);
29
30 }
31
32 add(buttons[0], BorderLayout.NORTH);
33 add(buttons[1], BorderLayout.SOUTH);
34 add(buttons[2], BorderLayout.EAST);
35 add(buttons[3], BorderLayout.WEST);
36 add(buttons[4], BorderLayout.CENTER);
37 }
38
39 // handle button events
40 @Override
41 public void actionPerformed(ActionEvent event)
42 {
43 // check event source and lay out content pane correspondingly
44 for (JButton button : buttons)
45 {
46 if (event.getSource() == button)
47
48 else
49
50 }
51
52
53 }
54 }

Fig. 26.41 | BorderLayout containing five buttons. (Part 2 of 2.)

layout = new BorderLayout(5, 5); // 5 pixel gaps

buttons[count].addActionListener(this);

button.setVisible(false); // hide the button that was clicked

button.setVisible(true); // show other buttons

layout.layoutContainer(getContentPane()); // lay out content pane

jhtp_26_GUI1.fm Page 62 Monday, May 1, 2017 3:15 PM

26.18 Introduction to Layout Managers 26_63

Class BorderLayoutFrame implements ActionListener directly in this example, so
the BorderLayoutFrame will handle the events of the JButtons. For this reason, line 29
passes the this reference to the addActionListener method of each JButton. When the
user clicks a particular JButton in the layout, method actionPerformed (lines 40–53) exe-
cutes. The enhanced for statement at lines 44–50 uses an if…else to hide the particular
JButton that generated the event. Method setVisible (inherited into JButton from class
Component) is called with a false argument (line 47) to hide the JButton. If the current
JButton in the array is not the one that generated the event, method setVisible is called
with a true argument (line 49) to ensure that the JButton is displayed on the screen. Line
52 uses LayoutManager method layoutContainer to recalculate the layout of the content
pane. Notice in the screen captures of Fig. 26.42 that certain regions in the BorderLayout
change shape as JButtons are hidden and displayed in other regions. Try resizing the appli-
cation window to see how the various regions resize based on the window’s width and
height. For more complex layouts, group components in JPanels, each with a separate layout
manager. Place the JPanels on the JFrame using either the default BorderLayout or some
other layout.

Look-and-Feel Observation 26.18
If no region is specified when adding a Component to a BorderLayout, the layout manager
assumes that the Component should be added to region BorderLayout.CENTER.

Common Programming Error 26.5
When more than one component is added to a region in a BorderLayout, only the last
component added to that region will be displayed. There’s no error that indicates this
problem.

1 // Fig. 26.42: BorderLayoutDemo.java
2 // Testing BorderLayoutFrame.
3 import javax.swing.JFrame;
4
5 public class BorderLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 BorderLayoutFrame borderLayoutFrame = new BorderLayoutFrame();

10 borderLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 borderLayoutFrame.setSize(300, 200);
12 borderLayoutFrame.setVisible(true);
13 }
14 }

Fig. 26.42 | Testing BorderLayoutFrame. (Part 1 of 2.)

jhtp_26_GUI1.fm Page 63 Monday, May 1, 2017 3:15 PM

26_64 Chapter 26 Swing GUI Components: Part 1

26.18.3 GridLayout
The GridLayout layout manager divides the container into a grid so that components can
be placed in rows and columns. Class GridLayout inherits directly from class Object and
implements interface LayoutManager. Every Component in a GridLayout has the same
width and height. Components are added to a GridLayout starting at the top-left cell of
the grid and proceeding left to right until the row is full. Then the process continues left
to right on the next row of the grid, and so on. The application of Figs. 26.43–26.44
demonstrates the GridLayout layout manager by using six JButtons.

1 // Fig. 26.43: GridLayoutFrame.java
2 // GridLayout containing six buttons.
3 import java.awt.GridLayout;
4 import java.awt.Container;
5 import java.awt.event.ActionListener;
6 import java.awt.event.ActionEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JButton;

Fig. 26.43 | GridLayout containing six buttons. (Part 1 of 2.)

Fig. 26.42 | Testing BorderLayoutFrame. (Part 2 of 2.)

horizontal
gap

vertical
gap

jhtp_26_GUI1.fm Page 64 Monday, May 1, 2017 3:15 PM

26.18 Introduction to Layout Managers 26_65

9
10 public class GridLayoutFrame extends JFrame implements ActionListener
11 {
12 private final JButton[] buttons; // array of buttons
13 private static final String[] names =
14 { "one", "two", "three", "four", "five", "six" };
15 private boolean toggle = true; // toggle between two layouts
16 private final Container container; // frame container
17
18
19
20 // no-argument constructor
21 public GridLayoutFrame()
22 {
23 super("GridLayout Demo");
24
25
26 container = getContentPane();
27
28 buttons = new JButton[names.length];
29
30 for (int count = 0; count < names.length; count++)
31 {
32 buttons[count] = new JButton(names[count]);
33 buttons[count].addActionListener(this); // register listener
34
35 }
36 }
37
38 // handle button events by toggling between layouts
39 @Override
40 public void actionPerformed(ActionEvent event)
41 {
42 if (toggle) // set layout based on toggle
43 container.setLayout(gridLayout2);
44 else
45 container.setLayout(gridLayout1);
46
47 toggle = !toggle;
48
49 }
50 }

1 // Fig. 26.44: GridLayoutDemo.java
2 // Testing GridLayoutFrame.
3 import javax.swing.JFrame;
4
5 public class GridLayoutDemo
6 {

Fig. 26.44 | Testing GridLayoutFrame. (Part 1 of 2.)

Fig. 26.43 | GridLayout containing six buttons. (Part 2 of 2.)

private final GridLayout gridLayout1; // first gridlayout
private final GridLayout gridLayout2; // second gridlayout

gridLayout1 = new GridLayout(2, 3, 5, 5); // 2 by 3; gaps of 5
gridLayout2 = new GridLayout(3, 2); // 3 by 2; no gaps

setLayout(gridLayout1);

add(buttons[count]); // add button to JFrame

container.validate(); // re-lay out container

jhtp_26_GUI1.fm Page 65 Monday, May 1, 2017 3:15 PM

26_66 Chapter 26 Swing GUI Components: Part 1

Lines 24–25 (Fig. 26.43) create two GridLayout objects. The GridLayout con-
structor used at line 24 specifies a GridLayout with 2 rows, 3 columns, 5 pixels of hori-
zontal-gap space between Components in the grid and 5 pixels of vertical-gap space between
Components in the grid. The GridLayout constructor used at line 25 specifies a GridLayout
with 3 rows and 2 columns that uses the default gap space (1 pixel).

The JButton objects in this example initially are arranged using gridLayout1 (set for
the content pane at line 27 with method setLayout). The first component is added to the
first column of the first row. The next component is added to the second column of the
first row, and so on. When a JButton is pressed, method actionPerformed (lines 39–49)
is called. Every call to actionPerformed toggles the layout between gridLayout2 and
gridLayout1, using boolean variable toggle to determine the next layout to set.

Line 48 shows another way to reformat a container for which the layout has changed.
Container method validate recomputes the container’s layout based on the current
layout manager for the Container and the current set of displayed GUI components.

26.19 Using Panels to Manage More Complex Layouts
Complex GUIs (like Fig. 26.1) often require that each component be placed in an exact
location. They often consist of multiple panels, with each panel’s components arranged in
a specific layout. Class JPanel extends JComponent and JComponent extends class Con-
tainer, so every JPanel is a Container. Thus, every JPanel may have components, in-
cluding other panels, attached to it with Container method add. The application of
Figs. 26.45–26.46 demonstrates how a JPanel can be used to create a more complex lay-
out in which several JButtons are placed in the SOUTH region of a BorderLayout.

7 public static void main(String[] args)
8 {
9 GridLayoutFrame gridLayoutFrame = new GridLayoutFrame();

10 gridLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 gridLayoutFrame.setSize(300, 200);
12 gridLayoutFrame.setVisible(true);
13 }
14 }

Fig. 26.44 | Testing GridLayoutFrame. (Part 2 of 2.)

jhtp_26_GUI1.fm Page 66 Monday, May 1, 2017 3:15 PM

26.19 Using Panels to Manage More Complex Layouts 26_67

1 // Fig. 26.45: PanelFrame.java
2 // Using a JPanel to help lay out components.
3 import java.awt.GridLayout;
4 import java.awt.BorderLayout;
5 import javax.swing.JFrame;
6 import javax.swing.JPanel;
7 import javax.swing.JButton;
8
9 public class PanelFrame extends JFrame

10 {
11
12 private final JButton[] buttons;
13
14 // no-argument constructor
15 public PanelFrame()
16 {
17 super("Panel Demo");
18 buttons = new JButton[5];
19
20
21
22 // create and add buttons
23 for (int count = 0; count < buttons.length; count++)
24 {
25 buttons[count] = new JButton("Button " + (count + 1));
26
27 }
28
29
30 }
31 }

Fig. 26.45 | JPanel with five JButtons in a GridLayout attached to the SOUTH region of a
BorderLayout.

1 // Fig. 26.46: PanelDemo.java
2 // Testing PanelFrame.
3 import javax.swing.JFrame;
4
5 public class PanelDemo extends JFrame
6 {
7 public static void main(String[] args)
8 {
9 PanelFrame panelFrame = new PanelFrame();

10 panelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 panelFrame.setSize(450, 200);
12 panelFrame.setVisible(true);
13 }
14 }

Fig. 26.46 | Testing PanelFrame. (Part 1 of 2.)

private final JPanel buttonJPanel; // panel to hold buttons

buttonJPanel = new JPanel();
buttonJPanel.setLayout(new GridLayout(1, buttons.length));

buttonJPanel.add(buttons[count]); // add button to panel

add(buttonJPanel, BorderLayout.SOUTH); // add panel to JFrame

jhtp_26_GUI1.fm Page 67 Monday, May 1, 2017 3:15 PM

26_68 Chapter 26 Swing GUI Components: Part 1

After JPanel buttonJPanel is declared (line 11 of Fig. 26.45) and created (line 19),
line 20 sets buttonJPanel’s layout to a GridLayout of one row and five columns (there are
five JButtons in array buttons). Lines 23–27 add the JButtons in the array to the JPanel.
Line 26 adds the buttons directly to the JPanel—class JPanel does not have a content
pane, unlike a JFrame. Line 29 uses the JFrame’s default BorderLayout to add button-
JPanel to the SOUTH region. The SOUTH region is as tall as the buttons on buttonJPanel.
A JPanel is sized to the components it contains. As more components are added, the
JPanel grows (according to the restrictions of its layout manager) to accommodate the
components. Resize the window to see how the layout manager affects the size of the JBut-
tons.

26.20 JTextArea
A JTextArea provides an area for manipulating multiple lines of text. Like class JTextField,
JTextArea is a subclass of JTextComponent, which declares common methods for JText-
Fields, JTextAreas and several other text-based GUI components.

The application in Figs. 26.47–26.48 demonstrates JTextAreas. One JTextArea dis-
plays text that the user can select. The other is uneditable by the user and is used to display
the text the user selected in the first JTextArea. Unlike JTextFields, JTextAreas do not
have action events—when you press Enter while typing in a JTextArea, the cursor simply
moves to the next line. As with multiple-selection JLists (Section 26.13), an external
event from another GUI component indicates when to process the text in a JTextArea.
For example, when typing an e-mail message, you normally click a Send button to send
the text of the message to the recipient. Similarly, when editing a document in a word pro-
cessor, you normally save the file by selecting a Save or Save As… menu item. In this pro-
gram, the button Copy >>> generates the external event that copies the selected text in the
left JTextArea and displays it in the right JTextArea.

1 // Fig. 26.47: TextAreaFrame.java
2 // Copying selected text from one JText area to another.
3 import java.awt.event.ActionListener;
4 import java.awt.event.ActionEvent;
5 import javax.swing.Box;
6 import javax.swing.JFrame;
7

Fig. 26.47 | Copying selected text from one JTextArea to another. (Part 1 of 2.)

Fig. 26.46 | Testing PanelFrame. (Part 2 of 2.)

import javax.swing.JTextArea;

jhtp_26_GUI1.fm Page 68 Monday, May 1, 2017 3:15 PM

26.20 JTextArea 26_69

8 import javax.swing.JButton;
9

10
11 public class TextAreaFrame extends JFrame
12 {
13
14
15 private final JButton copyJButton; // initiates copying of text
16
17 // no-argument constructor
18 public TextAreaFrame()
19 {
20 super("TextArea Demo");
21
22 String demo = "This is a demo string to\n" +
23 "illustrate copying text\nfrom one textarea to \n" +
24 "another textarea using an\nexternal event\n";
25
26
27
28
29 copyJButton = new JButton("Copy >>>"); // create copy button
30
31 copyJButton.addActionListener(
32 new ActionListener() // anonymous inner class
33 {
34 // set text in textArea2 to selected text from textArea1
35 @Override
36 public void actionPerformed(ActionEvent event)
37 {
38
39 }
40 }
41);
42
43
44
45
46
47 add(box); // add box to frame
48 }
49 }

1 // Fig. 26.48: TextAreaDemo.java
2 // Testing TextAreaFrame.
3 import javax.swing.JFrame;
4
5 public class TextAreaDemo
6 {

Fig. 26.48 | Testing TextAreaFrame. (Part 1 of 2.)

Fig. 26.47 | Copying selected text from one JTextArea to another. (Part 2 of 2.)

import javax.swing.JScrollPane;

private final JTextArea textArea1; // displays demo string
private final JTextArea textArea2; // highlighted text is copied here

Box box = Box.createHorizontalBox(); // create box

textArea1 = new JTextArea(demo, 10, 15);
box.add(new JScrollPane(textArea1)); // add scrollpane

box.add(copyJButton); // add copy button to box

textArea2.setText(textArea1.getSelectedText());

textArea2 = new JTextArea(10, 15);
textArea2.setEditable(false);
box.add(new JScrollPane(textArea2)); // add scrollpane

jhtp_26_GUI1.fm Page 69 Monday, May 1, 2017 3:15 PM

26_70 Chapter 26 Swing GUI Components: Part 1

In the constructor (lines 18–48), line 21 creates a Box container (package
javax.swing) to organize the GUI components. Box is a subclass of Container that uses
a BoxLayout layout manager (discussed in detail in Section 35.9) to arrange the GUI com-
ponents either horizontally or vertically. Box’s static method createHorizontalBox cre-
ates a Box that arranges components from left to right in the order that they’re attached.

Lines 26 and 43 create JTextAreas textArea1 and textArea2. Line 26 uses JText-
Area’s three-argument constructor, which takes a String representing the initial text and
two ints specifying that the JTextArea has 10 rows and 15 columns. Line 43 uses JText-
Area’s two-argument constructor, specifying that the JTextArea has 10 rows and 15 col-
umns. Line 26 specifies that demo should be displayed as the default JTextArea content.
A JTextArea does not provide scrollbars if it cannot display its complete contents. So, line
27 creates a JScrollPane object, initializes it with textArea1 and attaches it to container
box. By default, horizontal and vertical scrollbars appear as necessary in a JScrollPane.

Lines 29–41 create JButton object copyJButton with the label "Copy >>>", add copy-
JButton to container box and register the event handler for copyJButton’s ActionEvent.
This button provides the external event that determines when the program should copy
the selected text in textArea1 to textArea2. When the user clicks copyJButton, line 38
in actionPerformed indicates that method getSelectedText (inherited into JTextArea
from JTextComponent) should return the selected text from textArea1. The user selects
text by dragging the mouse over the desired text to highlight it. Method setText changes
the text in textArea2 to the string returned by getSelectedText.

Lines 43–45 create textArea2, set its editable property to false and add it to con-
tainer box. Line 47 adds box to the JFrame. Recall from Section 26.18.2 that the default
layout of a JFrame is a BorderLayout and that the add method by default attaches its argu-
ment to the CENTER of the BorderLayout.

7 public static void main(String[] args)
8 {
9 TextAreaFrame textAreaFrame = new TextAreaFrame();

10 textAreaFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textAreaFrame.setSize(425, 200);
12 textAreaFrame.setVisible(true);
13 }
14 }

Fig. 26.48 | Testing TextAreaFrame. (Part 2 of 2.)

jhtp_26_GUI1.fm Page 70 Monday, May 1, 2017 3:15 PM

26.21 Wrap-Up 26_71

When text reaches the right edge of a JTextArea the text can wrap to the next line.
This is referred to as line wrapping. By default, JTextArea does not wrap lines.

JScrollPane Scrollbar Policies
This example uses a JScrollPane to provide scrolling for a JTextArea. By default,
JScrollPane displays scrollbars only if they’re required. You can set the horizontal and ver-
tical scrollbar policies of a JScrollPane when it’s constructed. If a program has a reference
to a JScrollPane, the program can use JScrollPane methods setHorizontal-

ScrollBarPolicy and setVerticalScrollBarPolicy to change the scrollbar policies at
any time. Class JScrollPane declares the constants

to indicate that a scrollbar should always appear, constants

to indicate that a scrollbar should appear only if necessary (the defaults) and constants

to indicate that a scrollbar should never appear. If the horizontal scrollbar policy is set to
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER, a JTextArea attached to the JScrollPane
will automatically wrap lines.

26.21 Wrap-Up
In this chapter, you learned many GUI components and how to handle their events. You
also learned about nested classes, inner classes and anonymous inner classes. You saw the
special relationship between an inner-class object and an object of its top-level class. You
learned how to use JOptionPane dialogs to obtain text input from the user and how to
display messages to the user. You also learned how to create applications that execute in
their own windows. We discussed class JFrame and components that enable a user to in-
teract with an application. We also showed you how to display text and images to the user.
You learned how to customize JPanels to create custom drawing areas, which you’ll use
extensively in the next chapter. You saw how to organize components on a window using
layout managers and how to creating more complex GUIs by using JPanels to organize
components. Finally, you learned about the JTextArea component in which a user can
enter text and an application can display text. In Chapter 35, you’ll learn about more ad-
vanced GUI components, such as sliders, menus and more complex layout managers. In
the next chapter, you’ll learn how to add graphics to your GUI application. Graphics allow
you to draw shapes and text with colors and styles.

Look-and-Feel Observation 26.19
To provide line wrapping functionality for a JTextArea, invoke JTextArea method set-
LineWrap with a true argument.

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

JScrollPane.VERTICAL_SCROLLBAR_NEVER
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

jhtp_26_GUI1.fm Page 71 Monday, May 1, 2017 3:15 PM

26_72 Chapter 26 Swing GUI Components: Part 1

Summary

Section 26.1 Introduction
• A graphical user interface (GUI; p. 2) presents a user-friendly mechanism for interacting with an

application. A GUI gives an application a distinctive look-and-feel (p. 2).

• Providing different applications with consistent, intuitive user-interface components gives users
a sense of familarity with a new application, so that they can learn it more quickly.

• GUIs are built from GUI components (p. 2)—sometimes called controls or widgets.

Section 26.2 Java’s Nimbus Look-and-Feel
• As of Java SE 6 update 10, Java comes bundled with a new, elegant, cross-platform look-and-feel

known as Nimbus (p. 4).

• To set Nimbus as the default for all Java applications, create a swing.properties text file in the
lib folder of your JDK and JRE installation folders. Place the following line of code in the file:

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

• To select Nimbus on an application-by-application basis, place the following command-line ar-
gument after the java command and before the application’s name when you run the application:

-Dswing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

Section 26.3 Simple GUI-Based Input/Output with JOptionPane
• Most applications use windows or dialog boxes (p. 4) to interact with the user.

• Class JOptionPane (p. 4) of package javax.swing provides prebuilt dialog boxes for both input
and output. JOptionPane static method showInputDialog (p. 5) displays an input dialog (p. 4).

• A prompt typically uses sentence-style capitalization—capitalizing only the first letter of the first
word in the text unless the word is a proper noun.

• An input dialog can input only input Strings. This is typical of most GUI components.

• JOptionPane static method showMessageDialog (p. 6) displays a message dialog (p. 4).

Section 26.4 Overview of Swing Components
• Most Swing GUI components (p. 2) are located in package javax.swing.

• Together, the appearance and the way in which the user interacts with the application are known
as that application’s look-and-feel. Swing GUI components allow you to specify a uniform look-
and-feel for your application across all platforms or to use each platform’s custom look-and-feel.

• Lightweight Swing components are not tied to actual GUI components supported by the under-
lying platform on which an application executes.

• Several Swing components are heavyweight components (p. 8) that require direct interaction
with the local windowing system (p. 8), which may restrict their appearance and functionality.

• Class Component (p. 8) of package java.awt declares many of the attributes and behaviors com-
mon to the GUI components in packages java.awt (p. 7) and javax.swing.

• Class Container (p. 8) of package java.awt is a subclass of Component. Components are attached
to Containers so the Components can be organized and displayed on the screen.

• Class JComponent (p. 8) of package javax.swing is a subclass of Container. JComponent is the su-
perclass of all lightweight Swing components and declares their common attributes and behav-
iors.

jhtp_26_GUI1.fm Page 72 Monday, May 1, 2017 3:15 PM

Summary 26_73

• Some common JComponent features include a pluggable look-and-feel (p. 8), shortcut keys called
mnemonics (p. 8), tool tips (p. 9), support for assistive technologies and support for user-inter-
face localization (p. 9).

Section 26.5 Displaying Text and Images in a Window
• Class JFrame provides the basic attributes and behaviors of a window.

• A JLabel (p. 9) displays read-only text, an image, or both text and an image. Text in a JLabel
normally uses sentence-style capitalization.

• Each GUI component must be attached to a container, such as a window created with a JFrame.

• Many IDEs provide GUI design tools in which you can specify the exact size and location of a
component by using the mouse; then the IDE will generate the GUI code for you.

• JComponent method setToolTipText (p. 11) specifies the tool tip that’s displayed when the user
positions the mouse cursor over a lightweight component (p. 8).

• Container method add attaches a GUI component to a Container.

• Class ImageIcon (p. 12) supports several image formats, including GIF, PNG and JPEG.

• Method getClass of class Object (p. 12) retrieves a reference to the Class object that represents
the the class declaration for the object on which the method is called.

• Class method getResource (p. 12) returns the location of its argument as a URL. The method
getResource uses the Class object’s class loader to determine the location of the resource.

• The horizontal and vertical alignments of a JLabel can be set with methods setHorizontal-
Alignment (p. 13) and setVerticalAlignment (p. 13), respectively.

• JLabel methods setText (p. 13) and getText (p. 13) set and get the text displayed on a label.

• JLabel methods setIcon (p. 13) and getIcon (p. 13) set and get the Icon (p. 12) on a label.

• JLabel methods setHorizontalTextPosition (p. 13) and setVerticalTextPosition (p. 13)
specify the text position in the label.

• JFrame method setDefaultCloseOperation (p. 13) with constant JFrame.EXIT_ON_CLOSE as the
argument indicates that the program should terminate when the window is closed by the user.

• Component method setSize (p. 13) specifies the width and height of a component.

• Component method setVisible (p. 13) with the argument true displays a JFrame on the screen.

Section 26.6 Text Fields and an Introduction to Event Handling with Nested Classes
• GUIs are event driven—when the user interacts with a GUI component, events (p. 13) drive the

program to perform tasks.

• An event handler (p. 14) performs a task in response to an event.

• Class JTextField (p. 14) extends JTextComponent (p. 14) of package javax.swing.text, which
provides common text-based component features. Class JPasswordField (p. 14) extends JText-
Field and adds several methods that are specific to processing passwords.

• A JPasswordField shows that characters are being typed as the user enters them, but hides the
actual characters with echo characters (p. 14).

• A component receives the focus (p. 14) when the user clicks the component.

• JTextComponent method setEditable (p. 16) can be used to make a text field uneditable.

• To respond to an event for a particular GUI component, you must create a class that represents
the event handler and implements an appropriate event-listener interface (p. 16), then register
an object of the event-handling class as the event handler (p. 16).

jhtp_26_GUI1.fm Page 73 Monday, May 1, 2017 3:15 PM

26_74 Chapter 26 Swing GUI Components: Part 1

• Non-static nested classes (p. 17) are called inner classes and are frequently used for event han-
dling.

• An object of a non-static inner class (p. 17) must be created by an object of the top-level class
(p. 17) that contains the inner class.

• An inner-class object can directly access the instance variables and methods of its top-level class.

• A nested class that’s static does not require an object of its top-level class and does not implicitly
have a reference to an object of the top-level class.

• Pressing Enter in a JTextField or JPasswordField generates an ActionEvent (p. 17) that can be
handled by an ActionListener (p. 17) of package java.awt.event.

• JTextField method addActionListener (p. 17) registers an event handler for a text field’s
ActionEvent.

• The GUI component with which the user interacts is the event source (p. 18).

• An ActionEvent object contains information about the event that just occurred, such as the event
source and the text in the text field.

• ActionEvent method getSource returns a reference to the event source. ActionEvent method ge-
tActionCommand (p. 18) returns the text the user typed in a text field or the label on a JButton.

• JPasswordField method getPassword (p. 18) returns the password the user typed.

Section 26.7 Common GUI Event Types and Listener Interfaces
• Each event-object type typically has a corresponding event-listener interface that specifies one or

more event-handling methods, which must be declared in the class that implements the interface.

Section 26.8 How Event Handling Works
• When an event occurs, the GUI component with which the user interacted notifies its registered

listeners by calling each listener’s appropriate event-handling method.

• Every GUI component supports several event types. When an event occurs, the event is dis-
patched (p. 23) only to the event listeners of the appropriate type.

Section 26.9 JButton
• A button is a component the user clicks to trigger an action. All the button types are subclasses

of AbstractButton (p. 23; package javax.swing). Button labels (p. 24) typically use book-title
capitalization.

• Command buttons (p. 23) are created with class JButton.

• A JButton can display an Icon. A JButton can also have a rollover Icon (p. 25)—an Icon that’s
displayed when the user positions the mouse over the button.

• Method setRolloverIcon (p. 25) of class AbstractButton specifies the image displayed on a but-
ton when the user positions the mouse over it.

Section 26.10 Buttons That Maintain State
• There are three Swing state button types—JToggleButton (p. 27), JCheckBox (p. 27) and JRa-

dioButton (p. 27).

• Classes JCheckBox and JRadioButton are subclasses of JToggleButton.

• Component method setFont (p. 29) sets the component’s font to a new Font object (p. 29) of
package java.awt.

jhtp_26_GUI1.fm Page 74 Monday, May 1, 2017 3:15 PM

Summary 26_75

• Clicking a JCheckBox causes an ItemEvent (p. 29) that can be handled by an ItemListener
(p. 29) which defines method itemStateChanged (p. 29). Method addItemListener registers the
listener for the ItemEvent of a JCheckBox or JRadioButton object.

• JCheckBox method isSelected determines whether a JCheckBox is selected.

• JRadioButtons have two states—selected and not selected. Radio buttons (p. 23) normally ap-
pear as a group (p. 30) in which only one button can be selected at a time.

• JRadioButtons are used to represent mutually exclusive options (p. 30).

• The logical relationship between JRadioButtons is maintained by a ButtonGroup object (p. 30).

• ButtonGroup method add (p. 32) associates each JRadioButton with a ButtonGroup. If more than
one selected JRadioButton object is added to a group, the selected one that was added first will
be selected when the GUI is displayed.

• JRadioButtons generate ItemEvents when they’re clicked.

Section 26.11 JComboBox; Using an Anonymous Inner Class for Event Handling
• A JComboBox (p. 33) provides a list of items from which the user can make a single selection.

JComboBoxes generate ItemEvents.

• Each item in a JComboBox has an index (p. 35). The first item added to a JComboBox appears as
the currently selected item when the JComboBox is displayed.

• JComboBox method setMaximumRowCount (p. 35) sets the maximum number of elements that are
displayed when the user clicks the JComboBox.

• An anonymous inner class (p. 35) is a class without a name and typically appears inside a method
declaration. One object of the anonymous inner class must be created when the class is declared.

• JComboBox method getSelectedIndex (p. 36) returns the index of the selected item.

Section 26.12 JList
• A JList displays a series of items from which the user may select one or more items. Class JList

supports single-selection lists (p. 36) and multiple-selection lists.

• When the user clicks an item in a JList, a ListSelectionEvent (p. 37) occurs. JList method
addListSelectionListener (p. 38) registers a ListSelectionListener (p. 38) for a JList’s se-
lection events. A ListSelectionListener of package javax.swing.event must implement meth-
od valueChanged.

• JList method setVisibleRowCount (p. 37) specifies the number of visible items in the list.

• JList method setSelectionMode (p. 37) specifies a list’s selection mode.

• A JList can be attached to a JScrollPane (p. 38) to provide a scrollbar for the JList.

• JFrame method getContentPane (p. 39) returns a reference to the JFrame’s content pane where
GUI components are displayed.

• JList method getSelectedIndex (p. 39) returns the selected item’s index.

Section 26.13 Multiple-Selection Lists
• A multiple-selection list enables the user to select many items from a JList.

• JList method setFixedCellWidth (p. 41) sets a JList’s width. Method setFixedCellHeight
(p. 41) sets the height of each item in a JList.

• Normally, an external event (p. 41) generated by another GUI component (such as a JButton)
specifies when the multiple selections in a JList should be processed.

jhtp_26_GUI1.fm Page 75 Monday, May 1, 2017 3:15 PM

26_76 Chapter 26 Swing GUI Components: Part 1

• JList method setListData (p. 41) sets the items displayed in a JList. JList method getSelect-
edValues (p. 41) returns an array of Objects representing the selected items in a JList.

Section 26.14 Mouse Event Handling
• The MouseListener (p. 23) and MouseMotionListener event-listener interfaces are used to han-

dle mouse events. Mouse events can be trapped for any GUI component that extends Component.

• Interface MouseInputListener of package javax.swing.event extends interfaces MouseListener
and MouseMotionListener to create a single interface containing all their methods.

• Each mouse event-handling method receives a MouseEvent object (p. 23) that contains informa-
tion about the event, including the x- and y-coordinates where the event occurred. Coordinates
are measured from the upper-left corner of the GUI component on which the event occurred.

• The methods and constants of class InputEvent (MouseEvent’s superclass) enable an application
to determine which mouse button the user clicked.

• Interface MouseWheelListener enables applications to respond to mouse-wheel events.

Section 26.15 Adapter Classes
• An adapter class (p. 46) implements an interface and provides default implementations of its

methods. When you extend an adapter class, you can override just the method(s) you need.

• MouseEvent method getClickCount (p. 50) returns the number of consecutive mouse-button
clicks. Methods isMetaDown (p. 50) and isAltDown (p. 50) determine which button was clicked.

Section 26.16 JPanel Subclass for Drawing with the Mouse
• JComponents method paintComponent (p. 50) is called when a lightweight Swing component is

displayed. Override this method to specify how to draw shapes using Java’s graphics capabilities.

• When overriding paintComponent, call the superclass version as the first statement in the body.

• Subclasses of JComponent support transparency. When a component is opaque (p. 50), paint-
Component clears its background before the component is displayed.

• The transparency of a Swing lightweight component can be set with method setOpaque (p. 50;
a false argument indicates that the component is transparent).

• Class Point (p. 52) package java.awt represents an x-y coordinate.

• Class Graphics (p. 52) is used to draw.

• MouseEvent method getPoint (p. 52) obtains the Point where a mouse event occurred.

• Method repaint (p. 52), inherited indirectly from class Component, indicates that a component
should be refreshed on the screen as soon as possible.

• Method paintComponent receives a Graphics parameter and is called automatically whenever a
lightweight component needs to be displayed on the screen.

• Graphics method fillOval (p. 52) draws a solid oval. The first two arguments are the upper-left
x-y coordinate of the bounding box, and the last two are the bounding box’s width and height.

Section 26.17 Key Event Handling
• Interface KeyListener is used to handle key events that are generated when keys on the keyboard are

pressed and released. Method addKeyListener of class Component (p. 53) registers a KeyListener.

• KeyEvent method getKeyCode (p. 56) gets the virtual key code (p. 56) of the pressed key. Class
KeyEvent contains virtual key-code constants that represent every key on the keyboard.

• KeyEvent method getKeyText (p. 56) returns a string containing the name of the pressed key.

• KeyEvent method getKeyChar (p. 56) gets the Unicode value of the character typed.

jhtp_26_GUI1.fm Page 76 Monday, May 1, 2017 3:15 PM

Self-Review Exercises 26_77

• KeyEvent method isActionKey (p. 56) determines whether the key in an event was an action key
(p. 53).

• InputEvent method getModifiers (p. 56) determines whether any modifier keys (such as Shift,
Alt and Ctrl) were pressed when the key event occurred.

• KeyEvent method getKeyModifiersText (p. 56) returns a string containing the pressed modifier
keys.

Section 26.18 Introduction to Layout Managers
• Layout managers (p. 11) arrange GUI components in a container for presentation purposes.

• All layout managers implement the interface LayoutManager of package java.awt.

• Container method setLayout specifies the layout of a container.

• FlowLayout places components left to right in the order in which they’re added to the container.
When the container’s edge is reached, components continue to display on the next line. Flow-
Layout allows GUI components to be left aligned, centered (the default) and right aligned.

• FlowLayout method setAlignment changes the alignment for a FlowLayout.

• BorderLayout (the default for a JFrame) arranges components into five regions: NORTH, SOUTH,
EAST, WEST and CENTER. NORTH corresponds to the top of the container.

• A BorderLayout limits a Container to containing at most five components—one in each region.

• GridLayout (p. 64) divides a container into a grid of rows and columns.

• Container method validate (p. 66) recomputes a container’s layout based on the current layout
manager for the Container and the current set of displayed GUI components.

Section 26.19 Using Panels to Manage More Complex Layouts
• Complex GUIs often consist of multiple panels with different layouts. Every JPanel may have

components, including other panels, attached to it with Container method add.

Section 26.20 JTextArea
• A JTextArea (p. 68)—a subclass of JTextComponent—may contain multiple lines of text.

• Class Box (p. 70) is a subclass of Container that uses a BoxLayout layout manager (p. 70) to ar-
range the GUI components either horizontally or vertically.

• Box static method createHorizontalBox (p. 70) creates a Box that arranges components from
left to right in the order that they’re attached.

• Method getSelectedText (p. 70) returns the selected text from a JTextArea.

• You can set the horizontal and vertical scrollbar policies (p. 71) of a JScrollPane when it’s con-
structed. JScrollPane methods setHorizontalScrollBarPolicy (p. 71) and setVertical-
ScrollBarPolicy (p. 71) can be used to change the scrollbar policies at any time.

Self-Review Exercises
26.1 Fill in the blanks in each of the following statements:

a) Method is called when the mouse is moved with no buttons pressed and an
event listener is registered to handle the event.

b) Text that cannot be modified by the user is called text.
c) A(n) arranges GUI components in a Container.
d) The add method for attaching GUI components is a method of class .
e) GUI is an acronym for .
f) Method is used to specify the layout manager for a container.

jhtp_26_GUI1.fm Page 77 Monday, May 1, 2017 3:15 PM

26_78 Chapter 26 Swing GUI Components: Part 1

g) A mouseDragged method call is preceded by a(n) method call and followed by
a(n) method call.

h) Class contains methods that display message dialogs and input dialogs.
i) An input dialog capable of receiving input from the user is displayed with method

 of class .
j) A dialog capable of displaying a message to the user is displayed with method

of class .
k) Both JTextFields and JTextAreas directly extend class .

26.2 Determine whether each statement is true or false. If false, explain why.
a) BorderLayout is the default layout manager for a JFrame’s content pane.
b) When the mouse cursor is moved into the bounds of a GUI component, method

mouseOver is called.
c) A JPanel cannot be added to another JPanel.
d) In a BorderLayout, two buttons added to the NORTH region will be placed side by side.
e) A maximum of five components can be added to a BorderLayout.
f) Inner classes are not allowed to access the members of the enclosing class.
g) A JTextArea’s text is always read-only.
h) Class JTextArea is a direct subclass of class Component.

26.3 Find the error(s) in each of the following statements, and explain how to correct it (them):
a) buttonName = JButton("Caption");
b) JLabel aLabel, JLabel;
c) txtField = new JTextField(50, "Default Text");
d) setLayout(new BorderLayout());

button1 = new JButton("North Star");

button2 = new JButton("South Pole");

add(button1);

add(button2);

Answers to Self-Review Exercises
26.1 a) mouseMoved. b) uneditable (read-only). c) layout manager. d) Container. e) graphical
user interface. f) setLayout. g) mousePressed, mouseReleased. h) JOptionPane. i) showInputDi-
alog, JOptionPane. j) showMessageDialog, JOptionPane. k) JTextComponent.

26.2 Answers for a) through h):
a) True.
b) False. Method mouseEntered is called.
c) False. A JPanel can be added to another JPanel, because JPanel is an indirect subclass

of Component. So, a JPanel is a Component. Any Component can be added to a Container.
d) False. Only the last button added will be displayed. Remember that only one compo-

nent should be added to each region in a BorderLayout.
e) True. [Note: Panels containing multiple components can be added to each region.]
f) False. Inner classes have access to all members of the enclosing class declaration.
g) False. JTextAreas are editable by default.
h) False. JTextArea derives from class JTextComponent.

26.3 Answers for a) through d):
a) new is needed to create an object.
b) JLabel is a class name and cannot be used as a variable name.
c) The arguments passed to the constructor are reversed. The String must be passed first.

jhtp_26_GUI1.fm Page 78 Monday, May 1, 2017 3:15 PM

Exercises 26_79

d) BorderLayout has been set, and components are being added without specifying the re-
gion, so both are added to the center region. Proper add statements might be
add(button1, BorderLayout.NORTH);

add(button2, BorderLayout.SOUTH);

Exercises
26.4 Fill in the blanks in each of the following statements:

a) The JTextField class directly extends class .
b) Container method attaches a GUI component to a container.
c) Method is called when a mouse button is released (without moving the

mouse).
d) The class is used to create a group of JRadioButtons.

26.5 Determine whether each statement is true or false. If false, explain why.
a) Only one layout manager can be used per Container.
b) GUI components can be added to a Container in any order in a BorderLayout.
c) JRadioButtons provide a series of mutually exclusive options (i.e., only one can be true

at a time).
d) Graphics method setFont is used to set the font for text fields.
e) A JList displays a scrollbar if there are more items in the list than can be displayed.
f) A Mouse object has a method called mouseDragged.

26.6 Determine whether each statement is true or false. If false, explain why.
a) A JPanel is a JComponent.
b) A JPanel is a Component.
c) A JLabel is a Container.
d) A JList is a JPanel.
e) An AbstractButton is a JButton.
f) A JTextField is an Object.
g) ButtonGroup is a subclass of JComponent.

26.7 Find any errors in each of the following lines of code, and explain how to correct them.
a) import javax.swing.JFrame
b) panelObject.GridLayout(8, 8);
c) container.setLayout(new FlowLayout(FlowLayout.DEFAULT));
d) container.add(eastButton, EAST);

26.8 Create the following GUI. You do not have to provide any functionality.

26.9 Create the following GUI. You do not have to provide any functionality.

jhtp_26_GUI1.fm Page 79 Monday, May 1, 2017 3:15 PM

26_80 Chapter 26 Swing GUI Components: Part 1

jhtp_26_GUI1.fm Page 80 Monday, May 1, 2017 3:15 PM

Exercises 26_81

26.10 Create the following GUI. You do not have to provide any functionality.

26.11 Create the following GUI. You do not have to provide any functionality.

26.12 (Temperature Conversion) Write a temperature-conversion application that converts from
Fahrenheit to Celsius. The Fahrenheit temperature should be entered from the keyboard (via a
JTextField). A JLabel should be used to display the converted temperature. Use the following for-
mula for the conversion:

26.13 (Temperature-Conversion Modification) Enhance the temperature-conversion application
of Exercise 26.12 by adding the Kelvin temperature scale. The application should also allow the user
to make conversions between any two scales. Use the following formula for the conversion between
Kelvin and Celsius (in addition to the formula in Exercise 26.12):

Kelvin = Celsius + 273.15

26.14 (Guess-the-Number Game) Write an application that plays “guess the number” as follows:
Your application chooses the number to be guessed by selecting an integer at random in the range
1–1000. The application then displays the following in a label:

I have a number between 1 and 1000. Can you guess my number?
Please enter your first guess.

A JTextField should be used to input the guess. As each guess is input, the background color
should change to either red or blue. Red indicates that the user is getting “warmer,” and blue,
“colder.” A JLabel should display either "Too High" or "Too Low" to help the user zero in. When
the user gets the correct answer, "Correct!" should be displayed, and the JTextField used for
input should be changed to be uneditable. A JButton should be provided to allow the user to play
the game again. When the JButton is clicked, a new random number should be generated and the
input JTextField changed to be editable.

26.15 (Displaying Events) It’s often useful to display the events that occur during the execution
of an application. This can help you understand when the events occur and how they’re generated.
Write an application that enables the user to generate and process every event discussed in this chap-
ter. The application should provide methods from the ActionListener, ItemListener, ListSelec-
tionListener, MouseListener, MouseMotionListener and KeyListener interfaces to display
messages when the events occur. Use method toString to convert the event objects received in each

Celsius = × (Fahrenheit – 32)
5
9

jhtp_26_GUI1.fm Page 81 Monday, May 1, 2017 3:15 PM

26_82 Chapter 26 Swing GUI Components: Part 1

event handler into Strings that can be displayed. Method toString creates a String containing all
the information in the event object.

26.16 (GUI-Based Craps Game) Modify the application of Section 6.10 to provide a GUI that
enables the user to click a JButton to roll the dice. The application should also display four JLabels
and four JTextFields, with one JLabel for each JTextField. The JTextFields should be used to
display the values of each die and the sum of the dice after each roll. The point should be displayed
in the fourth JTextField when the user does not win or lose on the first roll and should continue
to be displayed until the game is lost.

(Optional) GUI and Graphics Case Study Exercise: Expanding the Interface
26.17 (Interactive Drawing Application) In this exercise, you’ll implement a GUI application
that uses the MyShape hierarchy from GUI and Graphics Case Study Exercise 10.2 to create an in-
teractive drawing application. You’ll create two classes for the GUI and provide a test class that
launches the application. The classes of the MyShape hierarchy require no additional changes.

The first class to create is a subclass of JPanel called DrawPanel, which represents the area on
which the user draws the shapes. Class DrawPanel should have the following instance variables:

a) An array shapes of type MyShape that will store all the shapes the user draws.
b) An integer shapeCount that counts the number of shapes in the array.
c) An integer shapeType that determines the type of shape to draw.
d) A MyShape currentShape that represents the current shape the user is drawing.
e) A Color currentColor that represents the current drawing color.
f) A boolean filledShape that determines whether to draw a filled shape.
g) A JLabel statusLabel that represents the status bar. The status bar will display the co-

ordinates of the current mouse position.

Class DrawPanel should also declare the following methods:
a) Overridden method paintComponent that draws the shapes in the array. Use instance

variable shapeCount to determine how many shapes to draw. Method paintComponent
should also call currentShape’s draw method, provided that currentShape is not null.

b) Set methods for the shapeType, currentColor and filledShape.
c) Method clearLastShape should clear the last shape drawn by decrementing instance

variable shapeCount. Ensure that shapeCount is never less than zero.
d) Method clearDrawing should remove all the shapes in the current drawing by setting

shapeCount to zero.

Methods clearLastShape and clearDrawing should call repaint (inherited from JPanel) to refresh
the drawing on the DrawPanel by indicating that the system should call method paintComponent.

Class DrawPanel should also provide event handling to enable the user to draw with the
mouse. Create a single inner class that both extends MouseAdapter and implements MouseMotion-
Listener to handle all mouse events in one class.

In the inner class, override method mousePressed so that it assigns currentShape a new shape
of the type specified by shapeType and initializes both points to the mouse position. Next, override
method mouseReleased to finish drawing the current shape and place it in the array. Set the second
point of currentShape to the current mouse position and add currentShape to the array. Instance
variable shapeCount determines the insertion index. Set currentShape to null and call method
repaint to update the drawing with the new shape.

Override method mouseMoved to set the text of the statusLabel so that it displays the mouse
coordinates—this will update the label with the coordinates every time the user moves (but does
not drag) the mouse within the DrawPanel. Next, override method mouseDragged so that it sets the
second point of the currentShape to the current mouse position and calls method repaint. This

jhtp_26_GUI1.fm Page 82 Monday, May 1, 2017 3:15 PM

Exercises 26_83

will allow the user to see the shape while dragging the mouse. Also, update the JLabel in mouse-
Dragged with the current position of the mouse.

Create a constructor for DrawPanel that has a single JLabel parameter. In the constructor, ini-
tialize statusLabel with the value passed to the parameter. Also initialize array shapes with 100
entries, shapeCount to 0, shapeType to the value that represents a line, currentShape to null and
currentColor to Color.BLACK. The constructor should then set the background color of the Draw-
Panel to Color.WHITE and register the MouseListener and MouseMotionListener so the JPanel
properly handles mouse events.

Next, create a JFrame subclass called DrawFrame that provides a GUI that enables the user to
control various aspects of drawing. For the layout of the DrawFrame, we recommend a BorderLay-
out, with the components in the NORTH region, the main drawing panel in the CENTER region, and a
status bar in the SOUTH region, as in Fig. 26.49. In the top panel, create the components listed
below. Each component’s event handler should call the appropriate method in class DrawPanel.

a) A button to undo the last shape drawn.
b) A button to clear all shapes from the drawing.
c) A combo box for selecting the color from the 13 predefined colors.
d) A combo box for selecting the shape to draw.
e) A checkbox that specifies whether a shape should be filled or unfilled.

Declare and create the interface components in DrawFrame’s constructor. You’ll need to create
the status bar JLabel before you create the DrawPanel, so you can pass the JLabel as an argument
to DrawPanel’s constructor. Finally, create a test class that initializes and displays the DrawFrame to
execute the application.

26.18 (GUI-Based Version of the ATM Case Study) Reimplement the Optional ATM Case Study
of Chapters 33–34 as a GUI-based application. Use GUI components to approximate the ATM
user interface shown in Fig. 33.1. For the cash dispenser and the deposit slot use JButtons labeled
Remove Cash and Insert Envelope. This will enable the application to receive events indicating when
the user takes the cash and inserts a deposit envelope, respectively.

Fig. 26.49 | Interface for drawing shapes.

jhtp_26_GUI1.fm Page 83 Monday, May 1, 2017 3:15 PM

26_84 Chapter 26 Swing GUI Components: Part 1

Making a Difference
26.19 (Ecofont) Ecofont (http://www.ecofont.com/en/products/green/font/download-the-
ink-saving-font.html)—developed by SPRANQ (a Netherlands-based company)—is a free,
open-source computer font designed to reduce by as much as 20% the amount of ink used for print-
ing, thus reducing also the number of ink cartridges used and the environmental impact of the man-
ufacturing and shipping processes (using less energy, less fuel for shipping, and so on). The font,
based on sans-serif Verdana, has small circular “holes” in the letters that are not visible in smaller
sizes—such as the 9- or 10-point type frequently used. Download Ecofont, then install the font file
Spranq_eco_sans_regular.ttf using the instructions from the Ecofont website. Next, develop a
GUI-based program that allows you to type in a text string to be displayed in the Ecofont. Create
Increase Font Size and Decrease Font Size buttons that allow you to scale up or down by one point
at a time. Start with a default font size of 9 points. As you scale up, you’ll be able to see the holes in
the letters more clearly. As you scale down, the holes will be less apparent. What is the smallest font
size at which you begin to notice the holes?

26.20 (Typing Tutor: Tuning a Crucial Skill in the Computer Age) Typing quickly and correctly
is an essential skill for working effectively with computers and the Internet. In this exercise, you’ll
build a GUI application that can help users learn to “touch type” (i.e., type correctly without look-
ing at the keyboard). The application should display a virtual keyboard (Fig. 26.50) and should al-
low the user to watch what he or she is typing on the screen without looking at the actual keyboard.
Use JButtons to represent the keys. As the user presses each key, the application highlights the cor-
responding JButton on the GUI and adds the character to a JTextArea that shows what the user has
typed so far. [Hint: To highlight a JButton, use its setBackground method to change its background
color. When the key is released, reset its original background color. You can obtain the JButton’s
original background color with the getBackground method before you change its color.]

Fig. 26.50 | Typing tutor.

jhtp_26_GUI1.fm Page 84 Monday, May 1, 2017 3:15 PM

 Making a Difference 26_85

You can test your program by typing a pangram—a phrase that contains every letter of the
alphabet at least once—such as “The quick brown fox jumped over a lazy dog.” You can find other
pangrams on the web.

To make the program more interesting you could monitor the user’s accuracy. You could have
the user type specific phrases that you’ve prestored in your program and that you display on the
screen above the virtual keyboard. You could keep track of how many keystrokes the user types cor-
rectly and how many are typed incorrectly. You could also keep track of which keys the user is hav-
ing difficulty with and display a report showing those keys.

jhtp_26_GUI1.fm Page 85 Monday, May 1, 2017 3:15 PM

