
27Graphics and Java 2D

O b j e c t i v e s
In this chapter you’ll:

■ Understand graphics
contexts and graphics
objects.

■ Manipulate colors and fonts.

■ Use methods of class
Graphics to draw various
shapes.

■ Use methods of class
Graphics2D from the Java
2D API to draw various
shapes.

■ Specify Paint and Stroke
characteristics of shapes
displayed with
Graphics2D.

jhtp_27_GraphicsJava2D.FM Page 1 Monday, May 1, 2017 4:36 PM

27_2 Chapter 27 Graphics and Java 2D

27.1 Introduction
[Note: JavaFX (Chapters 12, 13 and 22) is Java’s GUI, graphics and multimedia API of
the future. This chapter is provided as is for those still interested in Swing GUIs.]

In this chapter, we overview several of Java’s capabilities for drawing two-dimensional
shapes, controlling colors and controlling fonts. Part of Java’s initial appeal was its support
for graphics that enabled programmers to visually enhance their applications. Java con-
tains more sophisticated drawing capabilities as part of the Java 2D API (presented in this
chapter) and its successor technology JavaFX (presented in Chapter 12 and two online
chapters). This chapter begins by introducing many of Java’s original drawing capabilities.
Next we present several of the more powerful Java 2D capabilities, such as controlling the
style of lines used to draw shapes and the way shapes are filled with colors and patterns. The
classes that were part of Java’s original graphics capabilities are now considered to be part
of the Java 2D API.

Figure 27.1 shows a portion of the class hierarchy that includes various graphics
classes and Java 2D API classes and interfaces covered in this chapter. Class Color contains
methods and constants for manipulating colors. Class JComponent contains method
paintComponent, which is used to draw graphics on a component. Class Font contains
methods and constants for manipulating fonts. Class FontMetrics contains methods for
obtaining font information. Class Graphics contains methods for drawing strings, lines,
rectangles and other shapes. Class Graphics2D, which extends class Graphics, is used for
drawing with the Java 2D API. Class Polygon contains methods for creating polygons. The
bottom half of the figure lists several classes and interfaces from the Java 2D API. Class
BasicStroke helps specify the drawing characteristics of lines. Classes GradientPaint and
TexturePaint help specify the characteristics for filling shapes with colors or patterns.
Classes GeneralPath, Line2D, Arc2D, Ellipse2D, Rectangle2D and RoundRectangle2D
represent several Java 2D shapes.

To begin drawing in Java, we must first understand Java’s coordinate system
(Fig. 27.2), which is a scheme for identifying every point on the screen. By default, the
upper-left corner of a GUI component (e.g., a window) has the coordinates (0, 0). A coor-
dinate pair is composed of an x-coordinate (the horizontal coordinate) and a y-coordinate
(the vertical coordinate). The x-coordinate is the horizontal distance moving right from
the left edge of the screen. The y-coordinate is the vertical distance moving down from the
top of the screen. The x-axis describes every horizontal coordinate, and the y-axis every ver-
tical coordinate. The coordinates are used to indicate where graphics should be displayed
on a screen. Coordinate units are measured in pixels (which stands for “picture elements”).
A pixel is a display monitor’s smallest unit of resolution.

27.1 Introduction
27.2 Graphics Contexts and Graphics

Objects
27.3 Color Control
27.4 Manipulating Fonts

27.5 Drawing Lines, Rectangles and Ovals
27.6 Drawing Arcs
27.7 Drawing Polygons and Polylines
27.8 Java 2D API
27.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

jhtp_27_GraphicsJava2D.FM Page 2 Monday, May 1, 2017 4:36 PM

27.1 Introduction 27_3

Fig. 27.1 | Classes and interfaces used in this chapter from Java’s original graphics
capabilities and from the Java 2D API.

Portability Tip 27.1
Different display monitors have different resolutions (i.e., the density of the pixels varies).
This can cause graphics to appear in different sizes on different monitors or on the same
monitor with different settings.

java.awt.Color

java.lang.Object

java.awt.Component

java.awt.Font

java.awt.FontMetrics

java.awt.Graphics

java.awt.Polygon

java.awt.geom.Arc2D

java.awt.geom.Ellipse2D

java.awt.geom.Rectangle2D

java.awt.geom.RoundRectangle2D

java.awt.Graphics2D

java.awt.Container javax.swing.JComponent

«interface»
java.awt.Paint

«interface»
java.awt.Shape

«interface»
java.awt.Stroke

java.awt.BasicStroke

java.awt.GradientPaint

java.awt.TexturePaint

java.awt.geom.GeneralPath

java.awt.geom.Line2D

java.awt.geom.RectangularShape

jhtp_27_GraphicsJava2D.FM Page 3 Monday, May 1, 2017 4:36 PM

27_4 Chapter 27 Graphics and Java 2D

27.2 Graphics Contexts and Graphics Objects
A graphics context enables drawing on the screen. A Graphics object manages a graphics
context and draws pixels on the screen that represent text and other graphical objects (e.g.,
lines, ellipses, rectangles and other polygons). Graphics objects contain methods for drawing,
font manipulation, color manipulation and the like.

Class Graphics is an abstract class (i.e., you cannot instantiate Graphics objects).
This contributes to Java’s portability. Because drawing is performed differently on every
platform that supports Java, there cannot be only one implementation of the drawing
capabilities across all systems. When Java is implemented on a particular platform, a sub-
class of Graphics is created that implements the drawing capabilities. This implementa-
tion is hidden by class Graphics, which supplies the interface that enables us to use
graphics in a platform-independent manner.

Recall from Chapter 26 that class Component is the superclass for many of the classes
in package java.awt. Class JComponent (package javax.swing), which inherits indirectly
from class Component, contains a paintComponent method that can be used to draw
graphics. Method paintComponent takes a Graphics object as an argument. This object is
passed to the paintComponent method by the system when a lightweight Swing compo-
nent needs to be repainted. The header for the paintComponent method is

Parameter g receives a reference to an instance of the system-specific subclass of Graphics.
The preceding method header should look familiar to you—it’s the same one we used in
some of the applications in Chapter 26. Actually, class JComponent is a superclass of JPan-
el. Many capabilities of class JPanel are inherited from class JComponent.

You seldom call method paintComponent directly, because drawing graphics is an
event-driven process. As we mentioned in Chapter 11, Java uses a multithreaded model of
program execution. Each thread is a parallel activity. Each program can have many threads.
When you create a GUI-based application, one of those threads is known as the event-
dispatch thread (EDT)—it’s used to process all GUI events. All manipulation of the on-
screen GUI components must be performed in that thread. When a GUI application exe-
cutes, the application container calls method paintComponent (in the event-dispatch
thread) for each lightweight component as the GUI is displayed. For paintComponent to
be called again, an event must occur (such as covering and uncovering the component with
another window).

Fig. 27.2 | Java coordinate system. Units are measured in pixels.

public void paintComponent(Graphics g)

(0, 0)

(x, y)

+y

+x

y-axis

x-axis

jhtp_27_GraphicsJava2D.FM Page 4 Monday, May 1, 2017 4:36 PM

27.3 Color Control 27_5

If you need paintComponent to execute (i.e., if you want to update the graphics drawn
on a Swing component), you can call method repaint, which returns void, takes no argu-
ments and is inherited by all JComponents indirectly from class Component (package
java.awt).

27.3 Color Control
Class Color declares methods and constants for manipulating colors in a Java program.
The predeclared color constants are summarized in Fig. 27.3, and several color methods
and constructors are summarized in Fig. 27.4. Two of the methods in Fig. 27.4 are Graph-
ics methods that are specific to colors.

Color constant RGB value

public static final Color RED 255, 0, 0

public static final Color GREEN 0, 255, 0

public static final Color BLUE 0, 0, 255

public static final Color ORANGE 255, 200, 0

public static final Color PINK 255, 175, 175

public static final Color CYAN 0, 255, 255

public static final Color MAGENTA 255, 0, 255

public static final Color YELLOW 255, 255, 0

public static final Color BLACK 0, 0, 0

public static final Color WHITE 255, 255, 255

public static final Color GRAY 128, 128, 128

public static final Color LIGHT_GRAY 192, 192, 192

public static final Color DARK_GRAY 64, 64, 64

Fig. 27.3 | Color constants and their RGB values.

Method Description

Color constructors and methods

public Color(int r, int g, int b)

Creates a color based on red, green and blue components expressed as integers
from 0 to 255.

public Color(float r, float g, float b)

Creates a color based on red, green and blue components expressed as floating-
point values from 0.0 to 1.0.

public int getRed()

Returns a value between 0 and 255 representing the red content.

Fig. 27.4 | Color methods and color-related Graphics methods. (Part 1 of 2.)

jhtp_27_GraphicsJava2D.FM Page 5 Monday, May 1, 2017 4:36 PM

27_6 Chapter 27 Graphics and Java 2D

Every color is created from a red, a green and a blue value. Together these are called
RGB values. All three RGB components can be integers in the range from 0 to 255, or all
three can be floating-point values in the range 0.0 to 1.0. The first RGB component spec-
ifies the amount of red, the second the amount of green and the third the amount of blue.
The larger the value, the greater the amount of that particular color. Java enables you to
choose from 256 × 256 × 256 (approximately 16.7 million) colors. Not all computers are
capable of displaying all these colors. The screen will display the closest color it can.

Two of class Color’s constructors are shown in Fig. 27.4—one that takes three int
arguments and one that takes three float arguments, with each argument specifying the
amount of red, green and blue. The int values must be in the range 0–255 and the float
values in the range 0.0–1.0. The new Color object will have the specified amounts of red,
green and blue. Color methods getRed, getGreen and getBlue return integer values from
0 to 255 representing the amounts of red, green and blue, respectively. Graphics method
getColor returns a Color object representing the Graphics object’s current drawing color.
Graphics method setColor sets the current drawing color.

Drawing in Different Colors
Figures 27.5–27.6 demonstrate several methods from Fig. 27.4 by drawing filled rectangles
and Strings in several different colors. When the application begins execution, class Col-
orJPanel’s paintComponent method (lines 10–37 of Fig. 27.5) is called to paint the win-
dow. Line 17 uses Graphics method setColor to set the drawing color. Method setColor
receives a Color object. The expression new Color(255, 0, 0) creates a new Color object
that represents red (red value 255, and 0 for the green and blue values). Line 18 uses
Graphics method fillRect to draw a filled rectangle in the current color. Method fill-
Rect draws a rectangle based on its four arguments. The first two integer values represent
the upper-left x-coordinate and upper-left y-coordinate, where the Graphics object begins
drawing the rectangle. The third and fourth arguments are nonnegative integers that
represent the width and the height of the rectangle in pixels, respectively. A rectangle
drawn using method fillRect is filled by the current color of the Graphics object.

Line 19 uses Graphics method drawString to draw a String in the current color.
The expression g.getColor() retrieves the current color from the Graphics object. We

public int getGreen()

Returns a value between 0 and 255 representing the green content.

public int getBlue()

Returns a value between 0 and 255 representing the blue content.

Graphics methods for manipulating Colors

public Color getColor()

Returns Color object representing current color for the graphics context.

public void setColor(Color c)

Sets the current color for drawing with the graphics context.

Method Description

Fig. 27.4 | Color methods and color-related Graphics methods. (Part 2 of 2.)

jhtp_27_GraphicsJava2D.FM Page 6 Monday, May 1, 2017 4:36 PM

27.3 Color Control 27_7

1 // Fig. 13.5: ColorJPanel.java
2 // Changing drawing colors.
3 import java.awt.Graphics;
4
5 import javax.swing.JPanel;
6
7 public class ColorJPanel extends JPanel
8 {
9 // draw rectangles and Strings in different colors

10 @Override
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g);
14 this.setBackground(Color.WHITE);
15
16 // set new drawing color using integers
17
18
19 g.drawString("Current RGB: " + , 130, 40);
20
21 // set new drawing color using floats
22
23 g.fillRect(15, 50, 100, 20);
24 g.drawString("Current RGB: " + , 130, 65);
25
26 // set new drawing color using static Color objects
27
28 g.fillRect(15, 75, 100, 20);
29 g.drawString("Current RGB: " + g.getColor(), 130, 90);
30
31 // display individual RGB values
32
33
34 g.fillRect(15, 100, 100, 20);
35 g.drawString("RGB values: " + + ", " +
36 + ", " + , 130, 115);
37 }
38 } // end class ColorJPanel

Fig. 27.5 | Changing drawing colors.

1 // Fig. 13.6: ShowColors.java
2 // Demonstrating Colors.
3 import javax.swing.JFrame;
4
5 public class ShowColors
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ColorJPanel
11 JFrame frame = new JFrame("Using colors");

Fig. 27.6 | Demonstrating Colors. (Part 1 of 2.)

import java.awt.Color;

g.setColor(new Color(255, 0, 0));
g.fillRect(15, 25, 100, 20);

g.getColor()

g.setColor(new Color(0.50f, 0.75f, 0.0f));

g.getColor()

g.setColor(Color.BLUE);

Color color = Color.MAGENTA;
g.setColor(color);

color.getRed()
color.getGreen() color.getBlue()

jhtp_27_GraphicsJava2D.FM Page 7 Monday, May 1, 2017 4:36 PM

27_8 Chapter 27 Graphics and Java 2D

then concatenate the Color with string "Current RGB: ", resulting in an implicit call to
class Color’s toString method. The String representation of a Color contains the class
name and package (java.awt.Color) and the red, green and blue values.

Lines 22–24 and 27–29 perform the same tasks again. Line 22 uses the Color con-
structor with three float arguments to create a dark green color (0.50f for red, 0.75f for
green and 0.0f for blue). Note the syntax of the values. The letter f appended to a
floating-point literal indicates that the literal should be treated as type float. Recall that
by default, floating-point literals are treated as type double.

Line 27 sets the current drawing color to one of the predeclared Color constants
(Color.BLUE). The Color constants are static, so they’re created when class Color is
loaded into memory at execution time.

The statement in lines 35–36 makes calls to Color methods getRed, getGreen and
getBlue on the predeclared Color.MAGENTA constant. Method main of class ShowColors
(lines 8–18 of Fig. 27.6) creates the JFrame that will contain a ColorJPanel object where
the colors will be displayed.

The JColorChooser component (package javax.swing) enables application users to
select colors. Figures 27.7–27.8 demonstrate a JColorChooser dialog. When you click the

12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 ColorJPanel colorJPanel = new ColorJPanel();
15 frame.add(colorJPanel);
16 frame.setSize(400, 180);
17 frame.setVisible(true);
18 }
19 } // end class ShowColors

Look-and-Feel Observation 27.1
People perceive colors differently. Choose your colors carefully to ensure that your applica-
tion is readable, both for people who can perceive color and for those who are color blind.
Try to avoid using many different colors in close proximity.

Software Engineering Observation 27.1
To change the color, you must create a new Color object (or use one of the predeclared
Color constants). Like String objects, Color objects are immutable (not modifiable).

Fig. 27.6 | Demonstrating Colors. (Part 2 of 2.)

jhtp_27_GraphicsJava2D.FM Page 8 Monday, May 1, 2017 4:36 PM

27.3 Color Control 27_9

Change Color button, a JColorChooser dialog appears. When you select a color and press
the dialog’s OK button, the background color of the application window changes.

1 // Fig. 13.7: ShowColors2JFrame.java
2 // Choosing colors with JColorChooser.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9

10 import javax.swing.JPanel;
11
12 public class ShowColors2JFrame extends JFrame
13 {
14 private final JButton changeColorJButton;
15 private Color color = Color.LIGHT_GRAY;
16 private final JPanel colorJPanel;
17
18 // set up GUI
19 public ShowColors2JFrame()
20 {
21 super("Using JColorChooser");
22
23 // create JPanel for display color
24 colorJPanel = new JPanel();
25 colorJPanel.setBackground(color);
26
27 // set up changeColorJButton and register its event handler
28 changeColorJButton = new JButton("Change Color");
29 changeColorJButton.addActionListener(
30 new ActionListener() // anonymous inner class
31 {
32 // display JColorChooser when user clicks button
33 @Override
34 public void actionPerformed(ActionEvent event)
35 {
36
37
38
39 // set default color, if no color is returned
40 if (color == null)
41 color = Color.LIGHT_GRAY;
42
43 // change content pane's background color
44
45 } // end method actionPerformed
46 } // end anonymous inner class
47); // end call to addActionListener
48
49 add(colorJPanel, BorderLayout.CENTER);

Fig. 27.7 | Choosing colors with JColorChooser. (Part 1 of 2.)

import javax.swing.JColorChooser;

color = JColorChooser.showDialog(
 ShowColors2JFrame.this, "Choose a color", color);

colorJPanel.setBackground(color);

jhtp_27_GraphicsJava2D.FM Page 9 Monday, May 1, 2017 4:36 PM

27_10 Chapter 27 Graphics and Java 2D

Class JColorChooser provides static method showDialog, which creates a JColor-
Chooser object, attaches it to a dialog box and displays the dialog. Lines 36–37 of Fig. 27.7
invoke this method to display the color-chooser dialog. Method showDialog returns the
selected Color object, or null if the user presses Cancel or closes the dialog without
pressing OK. The method takes three arguments—a reference to its parent Component, a

50 add(changeColorJButton, BorderLayout.SOUTH);
51
52 setSize(400, 130);
53 setVisible(true);
54 } // end ShowColor2JFrame constructor
55 } // end class ShowColors2JFrame

1 // Fig. 13.8: ShowColors2.java
2 // Choosing colors with JColorChooser.
3 import javax.swing.JFrame;
4
5 public class ShowColors2
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 ShowColors2JFrame application = new ShowColors2JFrame();
11 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 }
13 } // end class ShowColors2

Fig. 27.8 | Choosing colors with JColorChooser.

Fig. 27.7 | Choosing colors with JColorChooser. (Part 2 of 2.)

Select a color from
one of the color

swatches

(a) Initial application window (b) JColorChooser window

(c) Application window after changing JPanel’s
background color

jhtp_27_GraphicsJava2D.FM Page 10 Monday, May 1, 2017 4:36 PM

27.3 Color Control 27_11

String to display in the title bar of the dialog and the initial selected Color for the dialog.
The parent component is a reference to the window from which the dialog is displayed (in
this case the JFrame, with the reference name frame). The dialog will be centered on the
parent. If the parent is null, the dialog is centered on the screen. While the color-chooser
dialog is on the screen, the user cannot interact with the parent component until the dialog
is dismissed. This type of dialog is called a modal dialog.

After the user selects a color, lines 40–41 determine whether color is null, and, if so,
set color to Color.LIGHT_GRAY. Line 44 invokes method setBackground to change the
background color of the JPanel. Method setBackground is one of the many Component
methods that can be used on most GUI components. The user can continue to use the
Change Color button to change the background color of the application. Figure 27.8 con-
tains method main, which executes the program.

Figure 27.8(b) shows the default JColorChooser dialog that allows the user to select
a color from a variety of color swatches. There are three tabs across the top of the dialog—
Swatches, HSB and RGB. These represent three different ways to select a color. The HSB
tab allows you to select a color based on hue, saturation and brightness—values that are
used to define the amount of light in a color. Visit http://en.wikipedia.org/wiki/
HSL_and_HSV for more information on HSB. The RGB tab allows you to select a color by
using sliders to select the red, green and blue components. The HSB and RGB tabs are
shown in Fig. 27.9.

Fig. 27.9 | HSB and RGB tabs of the JColorChooser dialog. (Part 1 of 2.)

jhtp_27_GraphicsJava2D.FM Page 11 Monday, May 1, 2017 4:36 PM

27_12 Chapter 27 Graphics and Java 2D

27.4 Manipulating Fonts
This section introduces methods and constants for manipulating fonts. Most font meth-
ods and font constants are part of class Font. Some constructors, methods and constants
of class Font and class Graphics are summarized in Fig. 27.10.

Method or constant Description

Font constants, constructors and methods

public static final int PLAIN A constant representing a plain font style.

public static final int BOLD A constant representing a bold font style.

public static final int ITALIC A constant representing an italic font style.

public Font(String name,

 int style, int size)
Creates a Font object with the specified font name,
style and size.

public int getStyle() Returns an int indicating the current font style.

public int getSize() Returns an int indicating the current font size.

public String getName() Returns the current font name as a string.

public String getFamily() Returns the font’s family name as a string.

public boolean isPlain() Returns true if the font is plain, else false.

public boolean isBold() Returns true if the font is bold, else false.

public boolean isItalic() Returns true if the font is italic, else false.

Fig. 27.10 | Font-related methods and constants. (Part 1 of 2.)

Fig. 27.9 | HSB and RGB tabs of the JColorChooser dialog. (Part 2 of 2.)

Sliders to select
the red, green
and blue color

components

jhtp_27_GraphicsJava2D.FM Page 12 Monday, May 1, 2017 4:36 PM

27.4 Manipulating Fonts 27_13

Class Font’s constructor takes three arguments—the font name, font style and font
size. The font name is any font currently supported by the system on which the program
is running, such as standard Java fonts Monospaced, SansSerif and Serif. The font style
is Font.PLAIN, Font.ITALIC or Font.BOLD (each is a static field of class Font). Font styles
can be used in combination (e.g., Font.ITALIC + Font.BOLD). The font size is measured
in points. A point is 1/72 of an inch. Graphics method setFont sets the current drawing
font—the font in which text will be displayed—to its Font argument.

The application of Figs. 27.11–27.12 displays text in four different fonts, with each
font in a different size. Figure 27.11 uses the Font constructor to initialize Font objects (in
lines 17, 21, 25 and 30) that are each passed to Graphics method setFont to change the
drawing font. Each call to the Font constructor passes a font name (Serif, Monospaced or
SansSerif) as a string, a font style (Font.PLAIN, Font.ITALIC or Font.BOLD) and a font
size. Once Graphics method setFont is invoked, all text displayed following the call will
appear in the new font until the font is changed. Each font’s information is displayed in
lines 18, 22, 26 and 31–32 using method drawString. The coordinates passed to draw-
String correspond to the lower-left corner of the baseline of the font. Line 29 changes the
drawing color to red, so the next string displayed appears in red. Lines 31–32 display infor-
mation about the final Font object. Method getFont of class Graphics returns a Font
object representing the current font. Method getName returns the current font name as a
string. Method getSize returns the font size in points.

Graphics methods for manipulating Fonts

public Font getFont() Returns a Font object reference representing the
current font.

public void setFont(Font f) Sets the current font to the font, style and size
specified by the Font object reference f.

Portability Tip 27.2
The number of fonts varies across systems. Java provides five font names—Serif, Mono-
spaced, SansSerif, Dialog and DialogInput—that can be used on all Java platforms.
The Java runtime environment (JRE) on each platform maps these logical font names to
actual fonts installed on the platform. The actual fonts used may vary by platform.

Software Engineering Observation 27.2
To change the font, you must create a new Font object. Font objects are immutable—class
Font has no set methods to change the characteristics of the current font.

1 // Fig. 13.11: FontJPanel.java
2 // Display strings in different fonts and colors.
3

Fig. 27.11 | Display strings in different fonts and colors. (Part 1 of 2.)

Method or constant Description

Fig. 27.10 | Font-related methods and constants. (Part 2 of 2.)

import java.awt.Font;

jhtp_27_GraphicsJava2D.FM Page 13 Monday, May 1, 2017 4:36 PM

27_14 Chapter 27 Graphics and Java 2D

Figure 27.12 contains the main method, which creates a JFrame to display a Font-
JPanel. We add a FontJPanel object to this JFrame (line 15), which displays the graphics
created in Fig. 27.11.

4 import java.awt.Color;
5 import java.awt.Graphics;
6 import javax.swing.JPanel;
7
8 public class FontJPanel extends JPanel
9 {

10 // display Strings in different fonts and colors
11 @Override
12 public void paintComponent(Graphics g)
13 {
14 super.paintComponent(g);
15
16 // set font to Serif (Times), bold, 12pt and draw a string
17
18 g.drawString("Serif 12 point bold.", 20, 30);
19
20 // set font to Monospaced (Courier), italic, 24pt and draw a string
21
22 g.drawString("Monospaced 24 point italic.", 20, 50);
23
24 // set font to SansSerif (Helvetica), plain, 14pt and draw a string
25
26 g.drawString("SansSerif 14 point plain.", 20, 70);
27
28 // set font to Serif (Times), bold/italic, 18pt and draw a string
29 g.setColor(Color.RED);
30
31 g.drawString(+ " " + +
32 " point bold italic.", 20, 90);
33 }
34 } // end class FontJPanel

1 // Fig. 13.12: Fonts.java
2 // Using fonts.
3 import javax.swing.JFrame;
4
5 public class Fonts
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for FontJPanel
11 JFrame frame = new JFrame("Using fonts");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13

Fig. 27.12 | Using fonts. (Part 1 of 2.)

Fig. 27.11 | Display strings in different fonts and colors. (Part 2 of 2.)

g.setFont(new Font("Serif", Font.BOLD, 12));

g.setFont(new Font("Monospaced", Font.ITALIC, 24));

g.setFont(new Font("SansSerif", Font.PLAIN, 14));

g.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 18));
g.getFont().getName() g.getFont().getSize()

jhtp_27_GraphicsJava2D.FM Page 14 Monday, May 1, 2017 4:36 PM

27.4 Manipulating Fonts 27_15

Font Metrics
Sometimes it’s necessary to get information about the current drawing font, such as its
name, style and size. Several Font methods used to get font information are summarized
in Fig. 27.10. Method getStyle returns an integer value representing the current style.
The integer value returned is either Font.PLAIN, Font.ITALIC, Font.BOLD or the combi-
nation of Font.ITALIC and Font.BOLD. Method getFamily returns the name of the font
family to which the current font belongs. The name of the font family is platform specific.
Font methods are also available to test the style of the current font, and these too are sum-
marized in Fig. 27.10. Methods isPlain, isBold and isItalic return true if the current
font style is plain, bold or italic, respectively.

Figure 27.13 illustrates some of the common font metrics, which provide precise
information about a font, such as height, descent (the amount a character dips below the
baseline), ascent (the amount a character rises above the baseline) and leading (the differ-
ence between the descent of one line of text and the ascent of the line of text below it—
that is, the interline spacing).

Class FontMetrics declares several methods for obtaining font metrics. These
methods and Graphics method getFontMetrics are summarized in Fig. 27.14. The
application of Figs. 27.15–27.16 uses the methods of Fig. 27.14 to obtain font metric
information for two fonts.

14 FontJPanel fontJPanel = new FontJPanel();
15 frame.add(fontJPanel);
16 frame.setSize(420, 150);
17 frame.setVisible(true);
18 }
19 } // end class Fonts

Fig. 27.13 | Font metrics.

Fig. 27.12 | Using fonts. (Part 2 of 2.)

ascentheight

leading

descent
baseline

jhtp_27_GraphicsJava2D.FM Page 15 Monday, May 1, 2017 4:36 PM

27_16 Chapter 27 Graphics and Java 2D

Method Description

FontMetrics methods

public int getAscent() Returns the ascent of a font in points.

public int getDescent() Returns the descent of a font in points.

public int getLeading() Returns the leading of a font in points.

public int getHeight() Returns the height of a font in points.

Graphics methods for getting a Font’s FontMetrics

public FontMetrics getFontMetrics()
 Returns the FontMetrics object for the current drawing Font.

public FontMetrics getFontMetrics(Font f)
 Returns the FontMetrics object for the specified Font argument.

Fig. 27.14 | FontMetrics and Graphics methods for obtaining font metrics.

1 // Fig. 13.15: MetricsJPanel.java
2 // FontMetrics and Graphics methods useful for obtaining font metrics.
3 import java.awt.Font;
4
5 import java.awt.Graphics;
6 import javax.swing.JPanel;
7
8 public class MetricsJPanel extends JPanel
9 {

10 // display font metrics
11 @Override
12 public void paintComponent(Graphics g)
13 {
14 super.paintComponent(g);
15
16 g.setFont(new Font("SansSerif", Font.BOLD, 12));
17
18 g.drawString("Current font: " + , 10, 30);
19 g.drawString("Ascent: " + , 10, 45);
20 g.drawString("Descent: " + , 10, 60);
21 g.drawString("Height: " + , 10, 75);
22 g.drawString("Leading: " + , 10, 90);
23
24 Font font = new Font("Serif", Font.ITALIC, 14);
25
26 g.setFont(font);
27 g.drawString("Current font: " + font, 10, 120);
28 g.drawString("Ascent: " + , 10, 135);
29 g.drawString("Descent: " + , 10, 150);
30 g.drawString("Height: " + , 10, 165);
31 g.drawString("Leading: " + , 10, 180);
32 }
33 } // end class MetricsJPanel

Fig. 27.15 | FontMetrics and Graphics methods useful for obtaining font metrics.

import java.awt.FontMetrics;

FontMetrics metrics = g.getFontMetrics();
g.getFont()

metrics.getAscent()
metrics.getDescent()

metrics.getHeight()
metrics.getLeading()

metrics = g.getFontMetrics(font);

metrics.getAscent()
metrics.getDescent()

metrics.getHeight()
metrics.getLeading()

jhtp_27_GraphicsJava2D.FM Page 16 Monday, May 1, 2017 4:36 PM

27.5 Drawing Lines, Rectangles and Ovals 27_17

Line 16 of Fig. 27.15 creates and sets the current drawing font to a SansSerif, bold,
12-point font. Line 17 uses Graphics method getFontMetrics to obtain the FontMetrics
object for the current font. Line 18 outputs the String representation of the Font returned
by g.getFont(). Lines 19–22 use FontMetric methods to obtain the ascent, descent,
height and leading for the font.

Line 24 creates a new Serif, italic, 14-point font. Line 25 uses a second version of
Graphics method getFontMetrics, which accepts a Font argument and returns a corre-
sponding FontMetrics object. Lines 28–31 obtain the ascent, descent, height and leading
for the font. The font metrics are slightly different for the two fonts.

27.5 Drawing Lines, Rectangles and Ovals
This section presents Graphics methods for drawing lines, rectangles and ovals. The
methods and their parameters are summarized in Fig. 27.17. For each drawing method
that requires a width and height parameter, the width and height must be nonnegative
values. Otherwise, the shape will not display.

1 // Fig. 13.16: Metrics.java
2 // Displaying font metrics.
3 import javax.swing.JFrame;
4
5 public class Metrics
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for MetricsJPanel
11 JFrame frame = new JFrame("Demonstrating FontMetrics");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 MetricsJPanel metricsJPanel = new MetricsJPanel();
15 frame.add(metricsJPanel);
16 frame.setSize(510, 240);
17 frame.setVisible(true);
18 }
19 } // end class Metrics

Fig. 27.16 | Displaying font metrics.

jhtp_27_GraphicsJava2D.FM Page 17 Monday, May 1, 2017 4:36 PM

27_18 Chapter 27 Graphics and Java 2D

Method Description

public void drawLine(int x1, int y1, int x2, int y2)

Draws a line between the point (x1, y1) and the point (x2, y2).

public void drawRect(int x, int y, int width, int height)

Draws a rectangle of the specified width and height. The rectangle’s top-left
corner is located at (x, y). Only the outline of the rectangle is drawn using the
Graphics object’s color—the body of the rectangle is not filled with this color.

public void fillRect(int x, int y, int width, int height)

Draws a filled rectangle in the current color with the specified width and
height. The rectangle’s top-left corner is located at (x, y).

public void clearRect(int x, int y, int width, int height)

Draws a filled rectangle with the specified width and height in the current
background color. The rectangle’s top-left corner is located at (x, y). This
method is useful if you want to remove a portion of an image.

public void drawRoundRect(int x, int y, int width, int height, int arcWidth,

 int arcHeight)

Draws a rectangle with rounded corners in the current color with the specified
width and height. The arcWidth and arcHeight determine the rounding of the
corners (see Fig. 27.20). Only the outline of the shape is drawn.

public void fillRoundRect(int x, int y, int width, int height, int arcWidth,
 int arcHeight)

Draws a filled rectangle in the current color with rounded corners with the spec-
ified width and height. The arcWidth and arcHeight determine the rounding
of the corners (see Fig. 27.20).

public void draw3DRect(int x, int y, int width, int height, boolean b)

Draws a three-dimensional rectangle in the current color with the specified
width and height. The rectangle’s top-left corner is located at (x, y). The rectan-
gle appears raised when b is true and lowered when b is false. Only the outline
of the shape is drawn.

public void fill3DRect(int x, int y, int width, int height, boolean b)

Draws a filled three-dimensional rectangle in the current color with the speci-
fied width and height. The rectangle’s top-left corner is located at (x, y). The
rectangle appears raised when b is true and lowered when b is false.

public void drawOval(int x, int y, int width, int height)

Draws an oval in the current color with the specified width and height. The
bounding rectangle’s top-left corner is located at (x, y). The oval touches all four
sides of the bounding rectangle at the center of each side (see Fig. 27.21). Only
the outline of the shape is drawn.

public void fillOval(int x, int y, int width, int height)

Draws a filled oval in the current color with the specified width and height.
The bounding rectangle’s top-left corner is located at (x, y). The oval touches the
center of all four sides of the bounding rectangle (see Fig. 27.21).

Fig. 27.17 | Graphics methods that draw lines, rectangles and ovals.

jhtp_27_GraphicsJava2D.FM Page 18 Monday, May 1, 2017 4:36 PM

27.5 Drawing Lines, Rectangles and Ovals 27_19

The application of Figs. 27.18–27.19 demonstrates drawing a variety of lines, rectan-
gles, three-dimensional rectangles, rounded rectangles and ovals. In Fig. 27.18, line 17
draws a red line, line 20 draws an empty blue rectangle and line 21 draws a filled blue rect-
angle. Methods fillRoundRect (line 24) and drawRoundRect (line 25) draw rectangles
with rounded corners. Their first two arguments specify the coordinates of the upper-left
corner of the bounding rectangle—the area in which the rounded rectangle will be drawn.
The upper-left corner coordinates are not the edge of the rounded rectangle, but the coor-
dinates where the edge would be if the rectangle had square corners. The third and fourth
arguments specify the width and height of the rectangle. The last two arguments deter-
mine the horizontal and vertical diameters of the arc (i.e., the arc width and arc height)
used to represent the corners.

1 // Fig. 13.18: LinesRectsOvalsJPanel.java
2 // Drawing lines, rectangles and ovals.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class LinesRectsOvalsJPanel extends JPanel
8 {
9 // display various lines, rectangles and ovals

10 @Override
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g);
14 this.setBackground(Color.WHITE);
15
16 g.setColor(Color.RED);
17
18
19 g.setColor(Color.BLUE);
20
21
22
23 g.setColor(Color.CYAN);
24
25
26
27 g.setColor(Color.GREEN);
28
29
30
31 g.setColor(Color.MAGENTA);
32
33
34 }
35 } // end class LinesRectsOvalsJPanel

Fig. 27.18 | Drawing lines, rectangles and ovals.

g.drawLine(5, 30, 380, 30);

g.drawRect(5, 40, 90, 55);
g.fillRect(100, 40, 90, 55);

g.fillRoundRect(195, 40, 90, 55, 50, 50);
g.drawRoundRect(290, 40, 90, 55, 20, 20);

g.draw3DRect(5, 100, 90, 55, true);
g.fill3DRect(100, 100, 90, 55, false);

g.drawOval(195, 100, 90, 55);
g.fillOval(290, 100, 90, 55);

jhtp_27_GraphicsJava2D.FM Page 19 Monday, May 1, 2017 4:36 PM

27_20 Chapter 27 Graphics and Java 2D

Figure 27.20 labels the arc width, arc height, width and height of a rounded rectangle.
Using the same value for the arc width and arc height produces a quarter-circle at each
corner. When the arc width, arc height, width and height have the same values, the result
is a circle. If the values for width and height are the same and the values of arcWidth and
arcHeight are 0, the result is a square.

Methods draw3DRect (Fig. 27.18, line 28) and fill3DRect (line 29) take the same
arguments. The first two specify the top-left corner of the rectangle. The next two argu-
ments specify the width and height of the rectangle, respectively. The last argument deter-
mines whether the rectangle is raised (true) or lowered (false). The three-dimensional
effect of draw3DRect appears as two edges of the rectangle in the original color and two
edges in a slightly darker color. The three-dimensional effect of fill3DRect appears as two
edges of the rectangle in the original drawing color and the fill and other two edges in a

1 // Fig. 13.19: LinesRectsOvals.java
2 // Testing LinesRectsOvalsJPanel.
3 import java.awt.Color;
4 import javax.swing.JFrame;
5
6 public class LinesRectsOvals
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // create frame for LinesRectsOvalsJPanel
12 JFrame frame =
13 new JFrame("Drawing lines, rectangles and ovals");
14 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15
16 LinesRectsOvalsJPanel linesRectsOvalsJPanel =
17 new LinesRectsOvalsJPanel();
18 linesRectsOvalsJPanel.setBackground(Color.WHITE);
19 frame.add(linesRectsOvalsJPanel);
20 frame.setSize(400, 210);
21 frame.setVisible(true);
22 }
23 } // end class LinesRectsOvals

Fig. 27.19 | Testing LinesRectsOvalsJPanel.

drawRect

drawLine

fillRect

draw3DRect

fill3DRect

fillRoundRect

drawRoundRect

drawOval

fillOval

jhtp_27_GraphicsJava2D.FM Page 20 Monday, May 1, 2017 4:36 PM

27.6 Drawing Arcs 27_21

slightly darker color. Raised rectangles have the original drawing color edges at the top and
left of the rectangle. Lowered rectangles have the original drawing color edges at the
bottom and right of the rectangle. The three-dimensional effect is difficult to see in some
colors.

Methods drawOval and fillOval (lines 32–33) take the same four arguments. The
first two specify the top-left coordinate of the bounding rectangle that contains the oval.
The last two specify the width and height of the bounding rectangle, respectively.
Figure 27.21 shows an oval bounded by a rectangle. The oval touches the center of all four
sides of the bounding rectangle. (The bounding rectangle is not displayed on the screen.)

27.6 Drawing Arcs
An arc is drawn as a portion of an oval. Arc angles are measured in degrees. Arcs sweep
(i.e., move along a curve) from a starting angle through the number of degrees specified
by their arc angle. The starting angle indicates in degrees where the arc begins. The arc
angle specifies the total number of degrees through which the arc sweeps. Figure 27.22 il-
lustrates two arcs. The left set of axes shows an arc sweeping from zero degrees to approx-
imately 110 degrees. Arcs that sweep in a counterclockwise direction are measured in
positive degrees. The set of axes on the right shows an arc sweeping from zero degrees to
approximately –110 degrees. Arcs that sweep in a clockwise direction are measured in neg-
ative degrees. Note the dashed boxes around the arcs in Fig. 27.22. When drawing an arc,

Fig. 27.20 | Arc width and arc height for rounded rectangles.

Fig. 27.21 | Oval bounded by a rectangle.

width

(x, y)

arc height

arc width
height

(x,y)

width

height

jhtp_27_GraphicsJava2D.FM Page 21 Monday, May 1, 2017 4:36 PM

27_22 Chapter 27 Graphics and Java 2D

we specify a bounding rectangle for an oval. The arc will sweep along part of the oval.
Graphics methods drawArc and fillArc for drawing arcs are summarized in Fig. 27.23.

Figures 27.24–27.25 demonstrate the arc methods of Fig. 27.23. The application
draws six arcs (three unfilled and three filled). To illustrate the bounding rectangle that
helps determine where the arc appears, the first three arcs are displayed inside a red rect-
angle that has the same x, y, width and height arguments as the arcs.

Fig. 27.22 | Positive and negative arc angles.

Method Description

public void drawArc(int x, int y, int width, int height, int startAngle,

 int arcAngle)

Draws an arc relative to the bounding rectangle’s top-left x- and y-coordi-
nates with the specified width and height. The arc segment is drawn starting
at startAngle and sweeps arcAngle degrees.

public void fillArc(int x, int y, int width, int height, int startAngle,

 int arcAngle)

Draws a filled arc (i.e., a sector) relative to the bounding rectangle’s top-left
x- and y-coordinates with the specified width and height. The arc segment
is drawn starting at startAngle and sweeps arcAngle degrees.

Fig. 27.23 | Graphics methods for drawing arcs.

1 // Fig. 13.24: ArcsJPanel.java
2 // Arcs displayed with drawArc and fillArc.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class ArcsJPanel extends JPanel
8 {

Fig. 27.24 | Arcs displayed with drawArc and fillArc. (Part 1 of 2.)

90º

270º

Positive angles

180º 0º

90º

270º

Negative angles

180º 0º

jhtp_27_GraphicsJava2D.FM Page 22 Monday, May 1, 2017 4:36 PM

27.6 Drawing Arcs 27_23

9 // draw rectangles and arcs
10 @Override
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g);
14
15 // start at 0 and sweep 360 degrees
16 g.setColor(Color.RED);
17 g.drawRect(15, 35, 80, 80);
18 g.setColor(Color.BLACK);
19
20
21 // start at 0 and sweep 110 degrees
22 g.setColor(Color.RED);
23 g.drawRect(100, 35, 80, 80);
24 g.setColor(Color.BLACK);
25
26
27 // start at 0 and sweep -270 degrees
28 g.setColor(Color.RED);
29 g.drawRect(185, 35, 80, 80);
30 g.setColor(Color.BLACK);
31
32
33 // start at 0 and sweep 360 degrees
34
35
36 // start at 270 and sweep -90 degrees
37
38
39 // start at 0 and sweep -270 degrees
40
41 }
42 } // end class ArcsJPanel

1 // Fig. 13.25: DrawArcs.java
2 // Drawing arcs.
3 import javax.swing.JFrame;
4
5 public class DrawArcs
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ArcsJPanel
11 JFrame frame = new JFrame("Drawing Arcs");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13

Fig. 27.25 | Drawing arcs. (Part 1 of 2.)

Fig. 27.24 | Arcs displayed with drawArc and fillArc. (Part 2 of 2.)

g.drawArc(15, 35, 80, 80, 0, 360);

g.drawArc(100, 35, 80, 80, 0, 110);

g.drawArc(185, 35, 80, 80, 0, -270);

g.fillArc(15, 120, 80, 40, 0, 360);

g.fillArc(100, 120, 80, 40, 270, -90);

g.fillArc(185, 120, 80, 40, 0, -270);

jhtp_27_GraphicsJava2D.FM Page 23 Monday, May 1, 2017 4:36 PM

27_24 Chapter 27 Graphics and Java 2D

27.7 Drawing Polygons and Polylines
Polygons are closed multisided shapes composed of straight-line segments. Polylines are se-
quences of connected points. Figure 27.26 discusses methods for drawing polygons and
polylines. Some methods require a Polygon object (package java.awt). Class Polygon’s
constructors are also described in Fig. 27.26. The application of Figs. 27.27–27.28 draws
polygons and polylines.

14 ArcsJPanel arcsJPanel = new ArcsJPanel();
15 frame.add(arcsJPanel);
16 frame.setSize(300, 210);
17 frame.setVisible(true);
18 }
19 } // end class DrawArcs

Method Description

Graphics methods for drawing polygons

public void drawPolygon(int[] xPoints, int[] yPoints, int points)

Draws a polygon. The x-coordinate of each point is specified in the xPoints
array and the y-coordinate of each point in the yPoints array. The last argu-
ment specifies the number of points. This method draws a closed polygon. If
the last point is different from the first, the polygon is closed by a line that
connects the last point to the first.

public void drawPolyline(int[] xPoints, int[] yPoints, int points)

Draws a sequence of connected lines. The x-coordinate of each point is spec-
ified in the xPoints array and the y-coordinate of each point in the yPoints
array. The last argument specifies the number of points. If the last point is
different from the first, the polyline is not closed.

public void drawPolygon(Polygon p)

Draws the specified polygon.

Fig. 27.26 | Graphics methods for polygons and class Polygon methods. (Part 1 of 2.)

Fig. 27.25 | Drawing arcs. (Part 2 of 2.)

jhtp_27_GraphicsJava2D.FM Page 24 Monday, May 1, 2017 4:36 PM

27.7 Drawing Polygons and Polylines 27_25

public void fillPolygon(int[] xPoints, int[] yPoints, int points)

Draws a filled polygon. The x-coordinate of each point is specified in the
xPoints array and the y-coordinate of each point in the yPoints array. The
last argument specifies the number of points. This method draws a closed
polygon. If the last point is different from the first, the polygon is closed by a
line that connects the last point to the first.

public void fillPolygon(Polygon p)

Draws the specified filled polygon. The polygon is closed.

Polygon constructors and methods

public Polygon()

Constructs a new polygon object. The polygon does not contain any points.

public Polygon(int[] xValues, int[] yValues, int numberOfPoints)

Constructs a new polygon object. The polygon has numberOfPoints sides,
with each point consisting of an x-coordinate from xValues and a y-coordi-
nate from yValues.

public void addPoint(int x, int y)

Adds pairs of x- and y-coordinates to the Polygon.

1 // Fig. 13.27: PolygonsJPanel.java
2 // Drawing polygons.
3 import java.awt.Graphics;
4
5 import javax.swing.JPanel;
6
7 public class PolygonsJPanel extends JPanel
8 {
9 // draw polygons and polylines

10 @Override
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g);
14
15
16
17
18
19
20
21
22
23
24

Fig. 27.27 | Polygons displayed with drawPolygon and fillPolygon. (Part 1 of 2.)

Method Description

Fig. 27.26 | Graphics methods for polygons and class Polygon methods. (Part 2 of 2.)

import java.awt.Polygon;

// draw polygon with Polygon object
int[] xValues = {20, 40, 50, 30, 20, 15};
int[] yValues = {50, 50, 60, 80, 80, 60};
Polygon polygon1 = new Polygon(xValues, yValues, 6);
g.drawPolygon(polygon1);

// draw polylines with two arrays
int[] xValues2 = {70, 90, 100, 80, 70, 65, 60};
int[] yValues2 = {100, 100, 110, 110, 130, 110, 90};
g.drawPolyline(xValues2, yValues2, 7);

jhtp_27_GraphicsJava2D.FM Page 25 Monday, May 1, 2017 4:36 PM

27_26 Chapter 27 Graphics and Java 2D

Lines 16–17 of Fig. 27.27 create two int arrays and use them to specify the points for
Polygon polygon1. The Polygon constructor call in line 18 receives array xValues, which
contains the x-coordinate of each point; array yValues, which contains the y-coordinate
of each point; and 6 (the number of points in the polygon). Line 19 displays polygon1 by
passing it as an argument to Graphics method drawPolygon.

Lines 22–23 create two int arrays and use them to specify the points for a series of
connected lines. Array xValues2 contains the x-coordinate of each point and array yVal-
ues2 the y-coordinate of each point. Line 24 uses Graphics method drawPolyline to dis-
play the series of connected lines specified with the arguments xValues2, yValues2 and 7
(the number of points).

Lines 27–28 create two int arrays and use them to specify the points of a polygon.
Array xValues3 contains the x-coordinate of each point and array yValues3 the y-coordi-
nate of each point. Line 29 displays a polygon by passing to Graphics method fill-
Polygon the two arrays (xValues3 and yValues3) and the number of points to draw (4).

Line 32 creates Polygon polygon2 with no points. Lines 33–37 use Polygon method
addPoint to add pairs of x- and y-coordinates to the Polygon. Line 38 displays Polygon
polygon2 by passing it to Graphics method fillPolygon.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 }
40 } // end class PolygonsJPanel

Common Programming Error 27.1
An ArrayIndexOutOfBoundsException is thrown if the number of points specified in the
third argument to method drawPolygon or method fillPolygon is greater than the num-
ber of elements in the arrays of coordinates that specify the polygon to display.

1 // Fig. 13.28: DrawPolygons.java
2 // Drawing polygons.
3 import javax.swing.JFrame;
4

Fig. 27.28 | Drawing polygons. (Part 1 of 2.)

Fig. 27.27 | Polygons displayed with drawPolygon and fillPolygon. (Part 2 of 2.)

// fill polygon with two arrays
int[] xValues3 = {120, 140, 150, 190};
int[] yValues3 = {40, 70, 80, 60};
g.fillPolygon(xValues3, yValues3, 4);

// draw filled polygon with Polygon object
Polygon polygon2 = new Polygon();
polygon2.addPoint(165, 135);
polygon2.addPoint(175, 150);
polygon2.addPoint(270, 200);
polygon2.addPoint(200, 220);
polygon2.addPoint(130, 180);
g.fillPolygon(polygon2);

jhtp_27_GraphicsJava2D.FM Page 26 Monday, May 1, 2017 4:36 PM

27.8 Java 2D API 27_27

27.8 Java 2D API
The Java 2D API provides advanced two-dimensional graphics capabilities for program-
mers who require detailed and complex graphical manipulations. The API includes fea-
tures for processing line art, text and images in packages java.awt, java.awt.image,
java.awt.color, java.awt.font, java.awt.geom, java.awt.print and java.awt.im-
age.renderable. The capabilities of the API are far too broad to cover in this textbook.
For an overview, visit http://docs.oracle.com/javase/8/docs/technotes/guides/
2d/. In this section, we overview several Java 2D capabilities.

Drawing with the Java 2D API is accomplished with a Graphics2D reference (package
java.awt). Graphics2D is an abstract subclass of class Graphics, so it has all the graphics
capabilities demonstrated earlier in this chapter. In fact, the actual object used to draw in
every paintComponent method is an instance of a subclass of Graphics2D that is passed to
method paintComponent and accessed via the superclass Graphics. To access Graphics2D
capabilities, we must cast the Graphics reference (g) passed to paintComponent into a
Graphics2D reference with a statement such as

The next two examples use this technique.

5 public class DrawPolygons
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for PolygonsJPanel
11 JFrame frame = new JFrame("Drawing Polygons");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 PolygonsJPanel polygonsJPanel = new PolygonsJPanel();
15 frame.add(polygonsJPanel);
16 frame.setSize(280, 270);
17 frame.setVisible(true);
18 }
19 } // end class DrawPolygons

Graphics2D g2d = (Graphics2D) g;

Fig. 27.28 | Drawing polygons. (Part 2 of 2.)

Result of line 18

Result of line 23

Result of line 28

Result of line 37

jhtp_27_GraphicsJava2D.FM Page 27 Monday, May 1, 2017 4:36 PM

27_28 Chapter 27 Graphics and Java 2D

Lines, Rectangles, Round Rectangles, Arcs and Ellipses
This example demonstrates several Java 2D shapes from package java.awt.geom, includ-
ing Line2D.Double, Rectangle2D.Double, RoundRectangle2D.Double, Arc2D.Double
and Ellipse2D.Double. Note the syntax of each class name. Each class represents a shape
with dimensions specified as double values. There’s a separate version of each represented
with float values (e.g., Ellipse2D.Float). In each case, Double is a public static nested
class of the class specified to the left of the dot (e.g., Ellipse2D). To use the static nested
class, we simply qualify its name with the outer-class name.

In Figs. 27.29–27.30, we draw Java 2D shapes and modify their drawing characteris-
tics, such as changing line thickness, filling shapes with patterns and drawing dashed lines.
These are just a few of the many capabilities provided by Java 2D. Line 25 of Fig. 27.29
casts the Graphics reference received by paintComponent to a Graphics2D reference and
assigns it to g2d to allow access to the Java 2D features.

1 // Fig. 13.29: ShapesJPanel.java
2 // Demonstrating some Java 2D shapes.
3 import java.awt.Color;
4 import java.awt.Graphics;
5
6
7
8 import java.awt.Rectangle;
9

10
11
12
13
14
15
16 import javax.swing.JPanel;
17
18 public class ShapesJPanel extends JPanel
19 {
20 // draw shapes with Java 2D API
21 @Override
22 public void paintComponent(Graphics g)
23 {
24 super.paintComponent(g);
25
26
27
28
29
30
31
32
33
34
35
36

Fig. 27.29 | Demonstrating some Java 2D shapes. (Part 1 of 2.)

import java.awt.BasicStroke;
import java.awt.GradientPaint;
import java.awt.TexturePaint;

import java.awt.Graphics2D;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.RoundRectangle2D;
import java.awt.geom.Arc2D;
import java.awt.geom.Line2D;
import java.awt.image.BufferedImage;

Graphics2D g2d = (Graphics2D) g; // cast g to Graphics2D

// draw 2D ellipse filled with a blue-yellow gradient
g2d.setPaint(new GradientPaint(5, 30, Color.BLUE, 35, 100,
 Color.YELLOW, true));
g2d.fill(new Ellipse2D.Double(5, 30, 65, 100));

// draw 2D rectangle in red
g2d.setPaint(Color.RED);
g2d.setStroke(new BasicStroke(10.0f));
g2d.draw(new Rectangle2D.Double(80, 30, 65, 100));

jhtp_27_GraphicsJava2D.FM Page 28 Monday, May 1, 2017 4:36 PM

27.8 Java 2D API 27_29

37
38
39
40
41 // obtain Graphics2D from buffImage and draw on it
42
43 gg.setColor(Color.YELLOW);
44 gg.fillRect(0, 0, 10, 10);
45 gg.setColor(Color.BLACK);
46 gg.drawRect(1, 1, 6, 6);
47 gg.setColor(Color.BLUE);
48 gg.fillRect(1, 1, 3, 3);
49 gg.setColor(Color.RED);
50 gg.fillRect(4, 4, 3, 3); // draw a filled rectangle
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68 // draw 2D line using stroke
69 float[] dashes = {10}; // specify dash pattern
70 g2d.setPaint(Color.YELLOW);
71 g2d.setStroke(new BasicStroke(4, BasicStroke.CAP_ROUND,
72 BasicStroke.JOIN_ROUND, 10, dashes, 0));
73 g2d.draw(new Line2D.Double(320, 30, 395, 150));
74 }
75 } // end class ShapesJPanel

1 // Fig. 13.30: Shapes.java
2 // Testing ShapesJPanel.
3 import javax.swing.JFrame;
4
5 public class Shapes
6 {
7 // execute application
8 public static void main(String[] args)
9 {

Fig. 27.30 | Testing ShapesJPanel. (Part 1 of 2.)

Fig. 27.29 | Demonstrating some Java 2D shapes. (Part 2 of 2.)

// draw 2D rounded rectangle with a buffered background
BufferedImage buffImage = new BufferedImage(10, 10,
 BufferedImage.TYPE_INT_RGB);

Graphics2D gg = buffImage.createGraphics();

// paint buffImage onto the JFrame
g2d.setPaint(new TexturePaint(buffImage,
 new Rectangle(10, 10)));
g2d.fill(
 new RoundRectangle2D.Double(155, 30, 75, 100, 50, 50));

// draw 2D pie-shaped arc in white
g2d.setPaint(Color.WHITE);
g2d.setStroke(new BasicStroke(6.0f));
g2d.draw(
 new Arc2D.Double(240, 30, 75, 100, 0, 270, Arc2D.PIE));

// draw 2D lines in green and yellow
g2d.setPaint(Color.GREEN);
g2d.draw(new Line2D.Double(395, 30, 320, 150));

jhtp_27_GraphicsJava2D.FM Page 29 Monday, May 1, 2017 4:36 PM

27_30 Chapter 27 Graphics and Java 2D

Ovals, Gradient Fills and Paint Objects
The first shape we draw is an oval filled with gradually changing colors. Lines 28–29 invoke
Graphics2D method setPaint to set the Paint object that determines the color for the
shape to display. A Paint object implements interface java.awt.Paint. It can be some-
thing as simple as one of the predeclared Color objects introduced in Section 27.3 (class
Color implements Paint), or it can be an instance of the Java 2D API’s GradientPaint,
SystemColor, TexturePaint, LinearGradientPaint or RadialGradientPaint classes. In
this case, we use a GradientPaint object.

Class GradientPaint helps draw a shape in gradually changing colors—called a gra-
dient. The GradientPaint constructor used here requires seven arguments. The first two
specify the starting coordinates for the gradient. The third specifies the starting Color for
the gradient. The fourth and fifth specify the ending coordinates for the gradient. The
sixth specifies the ending Color for the gradient. The last argument specifies whether the
gradient is cyclic (true) or acyclic (false). The two sets of coordinates determine the
direction of the gradient. Because the second coordinate (35, 100) is down and to the right
of the first coordinate (5, 30), the gradient goes down and to the right at an angle. Because
this gradient is cyclic (true), the color starts with blue, gradually becomes yellow, then
gradually returns to blue. If the gradient is acyclic, the color transitions from the first color
specified (e.g., blue) to the second color (e.g., yellow).

Line 30 uses Graphics2D method fill to draw a filled Shape object—an object that
implements interface Shape (package java.awt). In this case, we display an
Ellipse2D.Double object. The Ellipse2D.Double constructor receives four arguments
specifying the bounding rectangle for the ellipse to display.

10 // create frame for ShapesJPanel
11 JFrame frame = new JFrame("Drawing 2D shapes");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 // create ShapesJPanel
15 ShapesJPanel shapesJPanel = new ShapesJPanel();
16
17 frame.add(shapesJPanel);
18 frame.setSize(425, 200);
19 frame.setVisible(true);
20 }
21 } // end class Shapes

Fig. 27.30 | Testing ShapesJPanel. (Part 2 of 2.)

jhtp_27_GraphicsJava2D.FM Page 30 Monday, May 1, 2017 4:36 PM

27.8 Java 2D API 27_31

Rectangles, Strokes
Next we draw a red rectangle with a thick border. Line 33 invokes setPaint to set the
Paint object to Color.RED. Line 34 uses Graphics2D method setStroke to set the char-
acteristics of the rectangle’s border (or the lines for any other shape). Method setStroke
requires as its argument an object that implements interface Stroke (package java.awt).
In this case, we use an instance of class BasicStroke. Class BasicStroke provides several
constructors to specify the width of the line, how the line ends (called the end caps), how
lines join together (called line joins) and the dash attributes of the line (if it’s a dashed
line). The constructor here specifies that the line should be 10 pixels wide.

Line 35 uses Graphics2D method draw to draw a Shape object—in this case, a Rect-
angle2D.Double. The Rectangle2D.Double constructor receives arguments specifying the
rectangle’s upper-left x-coordinate, upper-left y-coordinate, width and height.

Rounded Rectangles, BufferedImages and TexturePaint Objects
Next we draw a rounded rectangle filled with a pattern created in a BufferedImage (pack-
age java.awt.image) object. Lines 38–39 create the BufferedImage object. Class Buffe-
redImage can be used to produce images in color and grayscale. This particular
BufferedImage is 10 pixels wide and 10 pixels tall (as specified by the first two arguments
of the constructor). The third argument BufferedImage.TYPE_INT_RGB indicates that the
image is stored in color using the RGB color scheme.

To create the rounded rectangle’s fill pattern, we must first draw into the Buffered-
Image. Line 42 creates a Graphics2D object (by calling BufferedImage method create-
Graphics) that can be used to draw into the BufferedImage. Lines 43–50 use methods
setColor, fillRect and drawRect to create the pattern.

Lines 53–54 set the Paint object to a new TexturePaint (package java.awt) object.
A TexturePaint object uses the image stored in its associated BufferedImage (the first
constructor argument) as the fill texture for a filled-in shape. The second argument spec-
ifies the Rectangle area from the BufferedImage that will be replicated through the tex-
ture. In this case, the Rectangle is the same size as the BufferedImage. However, a smaller
portion of the BufferedImage can be used.

Lines 55–56 use Graphics2D method fill to draw a filled Shape object—in this case,
a RoundRectangle2D.Double. The constructor for class RoundRectangle2D.Double
receives six arguments specifying the rectangle dimensions and the arc width and arc
height used to determine the rounding of the corners.

Arcs
Next we draw a pie-shaped arc with a thick white line. Line 59 sets the Paint object to
Color.WHITE. Line 60 sets the Stroke object to a new BasicStroke for a line 6 pixels wide.
Lines 61–62 use Graphics2D method draw to draw a Shape object—in this case, an
Arc2D.Double. The Arc2D.Double constructor’s first four arguments specify the upper-
left x-coordinate, upper-left y-coordinate, width and height of the bounding rectangle for
the arc. The fifth argument specifies the start angle. The sixth argument specifies the arc
angle. The last argument specifies how the arc is closed. Constant Arc2D.PIE indicates that
the arc is closed by drawing two lines—one line from the arc’s starting point to the center
of the bounding rectangle and one line from the center of the bounding rectangle to the
ending point. Class Arc2D provides two other static constants for specifying how the arc is

jhtp_27_GraphicsJava2D.FM Page 31 Monday, May 1, 2017 4:36 PM

27_32 Chapter 27 Graphics and Java 2D

closed. Constant Arc2D.CHORD draws a line from the starting point to the ending point.
Constant Arc2D.OPEN specifies that the arc should not be closed.

Lines
Finally, we draw two lines using Line2D objects—one solid and one dashed. Line 65 sets
the Paint object to Color.GREEN. Line 66 uses Graphics2D method draw to draw a Shape
object—in this case, an instance of class Line2D.Double. The Line2D.Double construc-
tor’s arguments specify the starting coordinates and ending coordinates of the line.

Line 69 declares a one-element float array containing the value 10. This array
describes the dashes in the dashed line. In this case, each dash will be 10 pixels long. To
create dashes of different lengths in a pattern, simply provide the length of each dash as an
element in the array. Line 70 sets the Paint object to Color.YELLOW. Lines 71–72 set the
Stroke object to a new BasicStroke. The line will be 4 pixels wide and will have rounded
ends (BasicStroke.CAP_ROUND). If lines join together (as in a rectangle at the corners),
their joining will be rounded (BasicStroke.JOIN_ROUND). The dashes argument specifies
the dash lengths for the line. The last argument indicates the starting index in the dashes
array for the first dash in the pattern. Line 73 then draws a line with the current Stroke.

Creating Your Own Shapes with General Paths
Next we present a general path—a shape constructed from straight lines and complex
curves. A general path is represented with an object of class GeneralPath (package ja-
va.awt.geom). The application of Figs. 27.31 and 27.32 demonstrates drawing a general
path in the shape of a five-pointed star.

1 // Fig. 13.31: Shapes2JPanel.java
2 // Demonstrating a general path.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import java.awt.Graphics2D;
6 import java.awt.geom.GeneralPath;
7 import java.security.SecureRandom;
8 import javax.swing.JPanel;
9

10 public class Shapes2JPanel extends JPanel
11 {
12 // draw general paths
13 @Override
14 public void paintComponent(Graphics g)
15 {
16 super.paintComponent(g);
17 SecureRandom random = new SecureRandom();
18
19 int[] xPoints = {55, 67, 109, 73, 83, 55, 27, 37, 1, 43};
20 int[] yPoints = {0, 36, 36, 54, 96, 72, 96, 54, 36, 36};
21
22 Graphics2D g2d = (Graphics2D) g;
23
24

Fig. 27.31 | Java 2D general paths. (Part 1 of 2.)

GeneralPath star = new GeneralPath();

jhtp_27_GraphicsJava2D.FM Page 32 Monday, May 1, 2017 4:36 PM

27.8 Java 2D API 27_33

25
26
27
28 // create the star--this does not draw the star
29 for (int count = 1; count < xPoints.length; count++)
30
31
32
33
34
35
36 // rotate around origin and draw stars in random colors
37 for (int count = 1; count <= 20; count++)
38 {
39
40
41 // set random drawing color
42 g2d.setColor(new Color(random.nextInt(256),
43 random.nextInt(256), random.nextInt(256)));
44
45
46 }
47 }
48 } // end class Shapes2JPanel

1 // Fig. 13.32: Shapes2.java
2 // Demonstrating a general path.
3 import java.awt.Color;
4 import javax.swing.JFrame;
5
6 public class Shapes2
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // create frame for Shapes2JPanel
12 JFrame frame = new JFrame("Drawing 2D Shapes");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14
15 Shapes2JPanel shapes2JPanel = new Shapes2JPanel();
16 frame.add(shapes2JPanel);
17 frame.setBackground(Color.WHITE);
18 frame.setSize(315, 330);
19 frame.setVisible(true);
20 }
21 } // end class Shapes2

Fig. 27.32 | Demonstrating a general path. (Part 1 of 2.)

Fig. 27.31 | Java 2D general paths. (Part 2 of 2.)

// set the initial coordinate of the General Path
star.moveTo(xPoints[0], yPoints[0]);

star.lineTo(xPoints[count], yPoints[count]);

star.closePath(); // close the shape

g2d.translate(150, 150); // translate the origin to (150, 150)

g2d.rotate(Math.PI / 10.0); // rotate coordinate system

g2d.fill(star); // draw filled star

jhtp_27_GraphicsJava2D.FM Page 33 Monday, May 1, 2017 4:36 PM

27_34 Chapter 27 Graphics and Java 2D

Lines 19–20 (Fig. 27.31) declare two int arrays representing the x- and y-coordinates
of the points in the star. Line 23 creates GeneralPath object star. Line 26 uses General-
Path method moveTo to specify the first point in the star. The for statement in lines 29–
30 uses GeneralPath method lineTo to draw a line to the next point in the star. Each
new call to lineTo draws a line from the previous point to the current point. Line 32 uses
GeneralPath method closePath to draw a line from the last point to the point specified
in the last call to moveTo. This completes the general path.

Line 34 uses Graphics2D method translate to move the drawing origin to location
(150, 150). All drawing operations now use location (150, 150) as (0, 0).

The for statement in lines 37–46 draws the star 20 times by rotating it around the
new origin point. Line 39 uses Graphics2D method rotate to rotate the next displayed
shape. The argument specifies the rotation angle in radians (with 360° = 2π radians). Line
45 uses Graphics2D method fill to draw a filled version of the star.

27.9 Wrap-Up
In this chapter, you learned how to use Java’s graphics capabilities to produce colorful
drawings. You learned how to specify the location of an object using Java’s coordinate sys-
tem, and how to draw on a window using the paintComponent method. You were intro-
duced to class Color, and you learned how to use this class to specify different colors using
their RGB components. You used the JColorChooser dialog to allow users to select colors
in a program. You then learned how to work with fonts when drawing text on a window.
You learned how to create a Font object from a font name, style and size, as well as how
to access the metrics of a font. From there, you learned how to draw various shapes on a
window, such as rectangles (regular, rounded and 3D), ovals and polygons, as well as lines
and arcs. You then used the Java 2D API to create more complex shapes and to fill them
with gradients or patterns. The chapter concluded with a discussion of general paths, used
to construct shapes from straight lines and complex curves.

Fig. 27.32 | Demonstrating a general path. (Part 2 of 2.)

jhtp_27_GraphicsJava2D.FM Page 34 Monday, May 1, 2017 4:36 PM

Summary 27_35

Summary

Section 27.1 Introduction
• Java’s coordinate system (p. 2) is a scheme for identifying every point (p. 13) on the screen.

• A coordinate pair (p. 2) has an x-coordinate (horizontal) and a y-coordinate (vertical).

• Coordinates are used to indicate where graphics should be displayed on a screen.

• Coordinate units are measured in pixels (p. 2). A pixel is a display monitor’s smallest unit of res-
olution.

Section 27.2 Graphics Contexts and Graphics Objects
• A Java graphics context (p. 4) enables drawing on the screen.

• Class Graphics (p. 4) contains methods for drawing strings, lines, rectangles and other shapes.
Methods are also included for font manipulation and color manipulation.

• A Graphics object manages a graphics context and draws pixels on the screen that represent text
and other graphical objects, e.g., lines, ellipses, rectangles and other polygons (p. 4).

• Class Graphics is an abstract class. Each Java implementation has a Graphics subclass that pro-
vides drawing capabilities. This implementation is hidden from us by class Graphics, which sup-
plies the interface that enables us to use graphics in a platform-independent manner.

• Method paintComponent can be used to draw graphics in any JComponent component.

• Method paintComponent receives a Graphics object that is passed to the method by the system
when a lightweight Swing component needs to be repainted.

• When an application executes, the application container calls method paintComponent. For
paintComponent to be called again, an event must occur.

• When a JComponent is displayed, its paintComponent method is called.

• Calling method repaint (p. 5) on a component updates the graphics drawn on that component.

Section 27.3 Color Control
• Class Color (p. 5) declares methods and constants for manipulating colors in a Java program.

• Every color is created from a red, a green and a blue component. Together these components are
called RGB values (p. 6). The RGB components specify the amount of red, green and blue in a
color, respectively. The larger the value, the greater the amount of that particular color.

• Color methods getRed, getGreen and getBlue (p. 6) return int values from 0 to 255 represent-
ing the amount of red, green and blue, respectively.

• Graphics method getColor (p. 6) returns a Color object with the current drawing color.

• Graphics method setColor (p. 6) sets the current drawing color.

• Graphics method fillRect (p. 6) draws a rectangle filled by the Graphics object’s current color.

• Graphics method drawString (p. 6) draws a String in the current color.

• The JColorChooser GUI component (p. 8) enables application users to select colors.

• JColorChooser static method showDialog (p. 10) displays a modal JColorChooser dialog.

Section 27.4 Manipulating Fonts
• Class Font (p. 12) contains methods and constants for manipulating fonts.

• Class Font’s constructor takes three arguments—the font name (p. 13), font style and font size.

• A Font’s font style can be Font.PLAIN, Font.ITALIC or Font.BOLD (each is a static field of class
Font). Font styles can be used in combination (e.g., Font.ITALIC + Font.BOLD).

jhtp_27_GraphicsJava2D.FM Page 35 Monday, May 1, 2017 4:36 PM

27_36 Chapter 27 Graphics and Java 2D

• The font size is measured in points. A point is 1/72 of an inch.

• Graphics method setFont (p. 13) sets the drawing font in which text will be displayed.

• Font method getSize (p. 13) returns the font size in points.

• Font method getName (p. 13) returns the current font name as a string.

• Font method getStyle (p. 15) returns an integer value representing the current Font’s style.

• Font method getFamily (p. 15) returns the name of the font family to which the current font
belongs. The name of the font family is platform specific.

• Class FontMetrics (p. 2) contains methods for obtaining font information.

• Font metrics (p. 15) include height, descent and leading.

Section 27.5 Drawing Lines, Rectangles and Ovals
• Graphics methods fillRoundRect (p. 19) and drawRoundRect (p. 19) draw rectangles with

rounded corners.

• Graphics methods draw3DRect (p. 20) and fill3DRect (p. 20) draw three-dimensional rectangles.

• Graphics methods drawOval (p. 21) and fillOval (p. 21) draw ovals.

Section 27.6 Drawing Arcs
• An arc (p. 21) is drawn as a portion of an oval.

• Arcs sweep from a starting angle by the number of degrees specified by their arc angle (p. 21).

• Graphics methods drawArc (p. 22) and fillArc (p. 22) are used for drawing arcs.

Section 27.7 Drawing Polygons and Polylines
• Class Polygon contains methods for creating polygons.

• Polygons are closed multisided shapes composed of straight-line segments.

• Polylines (p. 24) are sequences of connected points.

• Graphics method drawPolyline (p. 26) displays a series of connected lines.

• Graphics methods drawPolygon (p. 26) and fillPolygon (p. 26) are used to draw polygons.

• Polygon method addPoint (p. 26) adds pairs of x- and y-coordinates to the Polygon.

Section 27.8 Java 2D API
• The Java 2D API (p. 27) provides advanced two-dimensional graphics capabilities.

• Class Graphics2D (p. 27)—a subclass of Graphics—is used for drawing with the Java 2D API.

• The Java 2D API’s classes for drawing shapes include Line2D.Double, Rectangle2D.Double,
RoundRectangle2D.Double, Arc2D.Double and Ellipse2D.Double (p. 28).

• Class GradientPaint (p. 30) helps draw a shape in gradually changing colors—called a gradient
(p. 30).

• Graphics2D method fill (p. 30) draws a filled object of any type that implements interface
Shape (p. 30).

• Class BasicStroke (p. 30) helps specify the drawing characteristics of lines.

• Graphics2D method draw (p. 31) is used to draw a Shape object.

• Classes GradientPaint (p. 31) and TexturePaint (p. 31) help specify the characteristics for fill-
ing shapes with colors or patterns.

• A general path (p. 32) is a shape constructed from straight lines and complex curves and is rep-
resented with an object of class GeneralPath (p. 32).

jhtp_27_GraphicsJava2D.FM Page 36 Monday, May 1, 2017 4:36 PM

Self-Review Exercises 27_37

• GeneralPath method moveTo (p. 34) specifies the first point in a general path.

• GeneralPath method lineTo (p. 34) draws a line to the next point in the path. Each new call to
lineTo draws a line from the previous point to the current point.

• GeneralPath method closePath (p. 34) draws a line from the last point to the point specified in
the last call to moveTo. This completes the general path.

• Graphics2D method translate (p. 34) is used to move the drawing origin to a new location.

• Graphics2D method rotate (p. 34) is used to rotate the next displayed shape.

Self-Review Exercises
27.1 Fill in the blanks in each of the following statements:

a) In Java 2D, method of class sets the characteristics of a stroke used
to draw a shape.

b) Class helps specify the fill for a shape such that the fill gradually changes from
one color to another.

c) The method of class Graphics draws a line between two points.
d) RGB is short for , and .
e) Font sizes are measured in units called .
f) Class helps specify the fill for a shape using a pattern drawn in a Buffered-

Image.

27.2 State whether each of the following is true or false. If false, explain why.
a) The first two arguments of Graphics method drawOval specify the center coordinate of

the oval.
b) In the Java coordinate system, x-coordinates increase from left to right and y-coordi-

nates from top to bottom.
c) Graphics method fillPolygon draws a filled polygon in the current color.
d) Graphics method drawArc allows negative angles.
e) Graphics method getSize returns the size of the current font in centimeters.
f) Pixel coordinate (0, 0) is located at the exact center of the monitor.

27.3 Find the error(s) in each of the following and explain how to correct them. Assume that g
is a Graphics object.

a) g.setFont("SansSerif");
b) g.erase(x, y, w, h); // clear rectangle at (x, y)
c) Font f = new Font("Serif", Font.BOLDITALIC, 12);
d) g.setColor(255, 255, 0); // change color to yellow

Answers to Self-Review Exercises
27.1 a) setStroke, Graphics2D. b) GradientPaint. c) drawLine. d) red, green, blue. e) points.
f) TexturePaint.

27.2 Answers for a) through f):
a) False. The first two arguments specify the upper-left corner of the bounding rectangle.
b) True.
c) True.
d) True.
e) False. Font sizes are measured in points.
f) False. The coordinate (0,0) corresponds to the upper-left corner of a GUI component

on which drawing occurs.

jhtp_27_GraphicsJava2D.FM Page 37 Monday, May 1, 2017 4:36 PM

27_38 Chapter 27 Graphics and Java 2D

27.3 Answers for a) through d):
a) The setFont method takes a Font object as an argument—not a String.
b) The Graphics class does not have an erase method. The clearRect method should be

used.
c) Font.BOLDITALIC is not a valid font style. To get a bold italic font, use Font.BOLD +

Font.ITALIC.
d) Method setColor takes a Color object as an argument, not three integers.

Exercises
27.4 Fill in the blanks in each of the following statements:

a) Class of the Java 2D API is used to draw ovals.
b) Methods draw and fill of class Graphics2D require an object of type as their

argument.
c) The three constants that specify font style are , and .
d) Graphics2D method sets the painting color for Java 2D shapes.

27.5 State whether each of the following is true or false. If false, explain why.
a) Graphics method drawPolygon automatically connects the endpoints of the polygon.
b) Graphics method drawLine draws a line between two points.
c) Graphics method fillArc uses degrees to specify the angle.
d) In the Java coordinate system, values on the y-axis increase from left to right.
e) Graphics inherits directly from class Object.
f) Graphics is an abstract class.
g) The Font class inherits directly from class Graphics.

27.6 (Concentric Circles Using Method drawArc) Write an application that draws a series of eight
concentric circles. The circles should be separated by 10 pixels. Use Graphics method drawArc.

27.7 (Concentric Circles Using Class Ellipse2D.Double) Modify your solution to Exercise 27.6
to draw the ovals by using class Ellipse2D.Double and method draw of class Graphics2D.

27.8 (Random Lines Using Class Line2D.Double) Modify your solution to Exercise 27.7 to
draw random lines in random colors and random thicknesses. Use class Line2D.Double and method
draw of class Graphics2D to draw the lines.

27.9 (Random Triangles) Write an application that displays randomly generated triangles in dif-
ferent colors. Each triangle should be filled with a different color. Use class GeneralPath and meth-
od fill of class Graphics2D to draw the triangles.

27.10 (Random Characters) Write an application that randomly draws characters in different
fonts, sizes and colors.

27.11 (Grid Using Method drawLine) Write an application that draws an 8-by-8 grid. Use
Graphics method drawLine.

27.12 (Grid Using Class Line2D.Double) Modify your solution to Exercise 27.11 to draw the
grid using instances of class Line2D.Double and method draw of class Graphics2D.

27.13 (Grid Using Method drawRect) Write an application that draws a 10-by-10 grid. Use the
Graphics method drawRect.

27.14 (Grid Using Class Rectangle2D.Double) Modify your solution to Exercise 27.13 to draw
the grid by using class Rectangle2D.Double and method draw of class Graphics2D.

27.15 (Drawing Tetrahedrons) Write an application that draws a tetrahedron (a three-dimension-
al shape with four triangular faces). Use class GeneralPath and method draw of class Graphics2D.

jhtp_27_GraphicsJava2D.FM Page 38 Monday, May 1, 2017 4:36 PM

Exercises 27_39

27.16 (Drawing Cubes) Write an application that draws a cube. Use class GeneralPath and meth-
od draw of class Graphics2D.

27.17 (Circles Using Class Ellipse2D.Double) Write an application that asks the user to input
the radius of a circle as a floating-point number and draws the circle, as well as the values of the
circle’s diameter, circumference and area. Use the value 3.14159 for π. [Note: You may also use the
predefined constant Math.PI for the value of π. This constant is more precise than the value
3.14159. Class Math is declared in the java.lang package, so you need not import it.] Use the fol-
lowing formulas (r is the radius):

diameter = 2r
circumference = 2πr
area = πr2

The user should also be prompted for a set of coordinates in addition to the radius. Then draw the
circle and display its diameter, circumference and area, using an Ellipse2D.Double object to repre-
sent the circle and method draw of class Graphics2D to display it.

27.18 (Screen Saver) Write an application that simulates a screen saver. The application should
randomly draw lines using method drawLine of class Graphics. After drawing 100 lines, the appli-
cation should clear itself and start drawing lines again. To allow the program to draw continuously,
place a call to repaint as the last line in method paintComponent. Do you notice any problems with
this on your system?

27.19 (Screen Saver Using Timer) Package javax.swing contains a class called Timer that is capa-
ble of calling method actionPerformed of interface ActionListener at a fixed time interval (speci-
fied in milliseconds). Modify your solution to Exercise 27.18 to remove the call to repaint from
method paintComponent. Declare your class to implement ActionListener. (The actionPerformed
method should simply call repaint.) Declare an instance variable of type Timer called timer in your
class. In the constructor for your class, write the following statements:

timer = new Timer(1000, this);
timer.start();

This creates an instance of class Timer that will call this object’s actionPerformed method every
1000 milliseconds (i.e., every second).

27.20 (Screen Saver for a Random Number of Lines) Modify your solution to Exercise 27.19 to
enable the user to enter the number of random lines that should be drawn before the application
clears itself and starts drawing lines again. Use a JTextField to obtain the value. The user should be
able to type a new number into the JTextField at any time during the program’s execution. Use an
inner class to perform event handling for the JTextField.

27.21 (Screen Saver with Shapes) Modify your solution to Exercise 27.20 such that it uses ran-
dom-number generation to choose different shapes to display. Use methods of class Graphics.

27.22 (Screen Saver Using the Java 2D API) Modify your solution to Exercise 27.21 to use classes
and drawing capabilities of the Java 2D API. Draw shapes like rectangles and ellipses, with randomly
generated gradients. Use class GradientPaint to generate the gradient.

27.23 (Turtle Graphics) Modify your solution to Exercise 7.21—Turtle Graphics—to add a
graphical user interface using JTextFields and JButtons. Draw lines rather than asterisks (*). When
the turtle graphics program specifies a move, translate the number of positions into a number of
pixels on the screen by multiplying the number of positions by 10 (or any value you choose). Im-
plement the drawing with Java 2D API features.

27.24 (Knight’s Tour) Produce a graphical version of the Knight’s Tour problem (Exercise 7.22,
Exercise 7.23 and Exercise 7.26). As each move is made, the appropriate cell of the chessboard

jhtp_27_GraphicsJava2D.FM Page 39 Monday, May 1, 2017 4:36 PM

27_40 Chapter 27 Graphics and Java 2D

should be updated with the proper move number. If the result of the program is a full tour or a closed
tour, the program should display an appropriate message. If you like, use class Timer (see
Exercise 27.19) to help animate the Knight’s Tour.

27.25 (Tortoise and Hare) Produce a graphical version of the Tortoise and Hare simulation
(Exercise 7.28). Simulate the mountain by drawing an arc that extends from the bottom-left corner
of the window to the top-right corner. The tortoise and the hare should race up the mountain. Im-
plement the graphical output to actually print the tortoise and the hare on the arc for every move.
[Hint: Extend the length of the race from 70 to 300 to allow yourself a larger graphics area.]

27.26 (Drawing Spirals) Write an application that uses Graphics method drawPolyline to draw
a spiral similar to the one shown in Fig. 27.33.

27.27 (Pie Chart) Write a program that inputs four numbers and graphs them as a pie chart. Use
class Arc2D.Double and method fill of class Graphics2D to perform the drawing. Draw each piece
of the pie in a separate color.

27.28 (Selecting Shapes) Write an application that allows the user to select a shape from a JCombo-
Box and draws it 20 times with random locations and dimensions in method paintComponent. The
first item in the JComboBox should be the default shape that is displayed the first time paintCompo-
nent is called.

27.29 (Random Colors) Modify Exercise 27.28 to draw each of the 20 randomly sized shapes in a
randomly selected color. Use all 13 predefined Color objects in an array of Colors.

27.30 (JColorChooser Dialog) Modify Exercise 27.28 to allow the user to select the color in
which shapes should be drawn from a JColorChooser dialog.

(Optional) GUI and Graphics Case Study Exercise: Adding Java 2D
27.31 Java 2D introduces many new capabilities for creating unique and impressive graphics.
We’ll add a small subset of these features to the drawing application you created in Exercise 26.17.
In this version, you’ll enable the user to specify gradients for filling shapes and to change stroke char-
acteristics for drawing lines and outlines of shapes. The user will be able to choose which colors com-
pose the gradient and set the width and dash length of the stroke.

First, you must update the MyShape hierarchy to support Java 2D functionality. Make the fol-
lowing changes in class MyShape:

a) Change abstract method draw’s parameter type from Graphics to Graphics2D.
b) Change all variables of type Color to type Paint to enable support for gradients. [Note:

Recall that class Color implements interface Paint.]

Fig. 27.33 | Spiral drawn using method drawPolyline.

jhtp_27_GraphicsJava2D.FM Page 40 Monday, May 1, 2017 4:36 PM

Exercises 27_41

c) Add an instance variable of type Stroke in class MyShape and a Stroke parameter in the
constructor to initialize the new instance variable. The default stroke should be an in-
stance of class BasicStroke.

Classes MyLine, MyBoundedShape, MyOval and MyRectangle should each add a Stroke parame-
ter to their constructors. In the draw methods, each shape should set the Paint and the Stroke
before drawing or filling a shape. Since Graphics2D is a subclass of Graphics, we can continue to
use Graphics methods drawLine, drawOval, fillOval, and so on to draw the shapes. When these
methods are called, they’ll draw the appropriate shape using the specified Paint and Stroke set-
tings.

Next, you’ll update the DrawPanel to handle the Java 2D features. Change all Color variables
to Paint variables. Declare an instance variable currentStroke of type Stroke and provide a set
method for it. Update the calls to the individual shape constructors to include the Paint and
Stroke arguments. In method paintComponent, cast the Graphics reference to type Graphics2D and
use the Graphics2D reference in each call to MyShape method draw.

Next, make the Java 2D features accessible from the GUI. Create a JPanel of GUI compo-
nents for setting the Java 2D options. Add these components at the top of the DrawFrame below the
panel that currently contains the standard shape controls (see Fig. 27.34). These GUI components
should include:

a) A checkbox to specify whether to paint using a gradient.
b) Two JButtons that each show a JColorChooser dialog to allow the user to choose the

first and second color in the gradient. (These will replace the JComboBox used for choos-
ing the color in Exercise 26.17.)

c) A text field for entering the Stroke width.
d) A text field for entering the Stroke dash length.
e) A checkbox for selecting whether to draw a dashed or solid line.

If the user selects to draw with a gradient, set the Paint on the DrawPanel to be a gradient of
the two colors chosen by the user. The expression

new GradientPaint(0, 0, color1, 50, 50, color2, true))

creates a GradientPaint that cycles diagonally from the upper-left to the bottom-right every 50
pixels. Variables color1 and color2 represent the colors chosen by the user. If the user does not
select to use a gradient, then simply set the Paint on the DrawPanel to be the first Color chosen by
the user.

Fig. 27.34 | Drawing with Java 2D.

jhtp_27_GraphicsJava2D.FM Page 41 Monday, May 1, 2017 4:36 PM

27_42 Chapter 27 Graphics and Java 2D

For strokes, if the user chooses a solid line, then create the Stroke with the expression

new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND)

where variable width is the width specified by the user in the line-width text field. If the user
chooses a dashed line, then create the Stroke with the expression

new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,
 10, dashes, 0)

where width again is the width in the line-width field, and dashes is an array with one element
whose value is the length specified in the dash-length field. The Panel and Stroke objects should
be passed to the shape object’s constructor when the shape is created in DrawPanel.

Making a Difference
27.32 (Large-Type Displays for People with Low Vision) The accessibility of computers and the
Internet to all people, regardless of disabilities, is becoming more important as these tools play in-
creasing roles in our personal and business lives. According to a recent estimate by the World Health
Organization (http://www.who.int/mediacentre/factsheets/fs282/en/), 246 million people
worldwide have low vision. To learn more about low vision, check out the GUI-based low-vision
simulation at http://webaim.org/simulations/lowvision. People with low vision might prefer to
choose a font and/or a larger font size when reading electronic documents and web pages. Java has
five built-in “logical” fonts that are guaranteed to be available in any Java implementation, including
Serif, Sans-serif and Monospaced. Write a GUI application that provides a JTextArea in which
the user can type text. Allow the user to select Serif, Sans-serif or Monospaced from a JComboBox.
Provide a Bold JCheckBox, which, if checked, makes the text bold. Include Increase Font Size and
Decrease Font Size JButtons that allow the user to scale the size of the font up or down, respectively,
by one point at a time. Start with a font size of 18 points. For the purposes of this exercise, set the
font size on the JComboBox, JButtons and JCheckBox to 20 points so that a person with low vision
will be able to read the text on them.

jhtp_27_GraphicsJava2D.FM Page 42 Monday, May 1, 2017 4:36 PM

