
28Networking

O b j e c t i v e s
In this chapter you’ll:

■ Implement Java networking
applications by using sockets
and datagrams.

■ Implement Java clients and
servers that communicate
with one another.

■ Implement network-based
collaborative applications.

jhtp_28_Networking.fm Page 1 Wednesday, June 21, 2017 3:15 PM

28_2 Chapter 28 Networking

28.1 Introduction1

Java provides a number of built-in networking capabilities that make it easy to develop In-
ternet-based and web-based applications. Java can enable programs to search the world for
information and to collaborate with programs running on other computers international-
ly, nationally or just within an organization (subject to security constraints).

Java’s fundamental networking capabilities are declared by the classes and interfaces of
package java.net, through which Java offers stream-based communications that enable
applications to view networking as streams of data. The classes and interfaces of package
java.net also offer packet-based communications for transmitting individual packets of
information—commonly used to transmit data images, audio and video over the Internet.
In this chapter, we show how to communicate with packets and streams of data.

We focus on both sides of the client/server relationship. The client requests that some
action be performed, and the server performs the action and responds to the client. A
common implementation of the request-response model is between web browsers and web
servers. When a user selects a website to browse through a browser (the client application),
a request is sent to the appropriate web server (the server application). The server normally
responds to the client by sending an appropriate web page to be rendered by the browser.

We introduce Java’s socket-based communications, which enable applications to view
networking as if it were file I/O—a program can read from a socket or write to a socket as
simply as reading from a file or writing to a file. The socket is simply a software construct
that represents one endpoint of a connection. We show how to create and manipulate stream
sockets and datagram sockets. With stream sockets, a process establishes a connection to
another process. While the connection is in place, data flows between the processes in con-
tinuous streams. Stream sockets are said to provide a connection-oriented service. The pro-
tocol used for transmission is the popular TCP (Transmission Control Protocol).

With datagram sockets, individual packets of information are transmitted. The pro-
tocol used—UDP, the User Datagram Protocol—is a connectionless service and does not
guarantee that packets arrive in any particular order. With UDP, packets can even be lost
or duplicated. Significant extra programming is required on your part to deal with these
problems (if you choose to do so). UDP is most appropriate for network applications that
do not require the error checking and reliability of TCP. Stream sockets and the TCP pro-
tocol will be more desirable for the vast majority of Java networking applications.

28.1 Introduction
28.2 Reading a File on a Web Server
28.3 Establishing a Simple Server Using

Stream Sockets
28.4 Establishing a Simple Client Using

Stream Sockets
28.5 Client/Server Interaction with Stream

Socket Connections

28.6 Datagrams: Connectionless Client/
Server Interaction

28.7 Client/Server Tic-Tac-Toe Using a
Multithreaded Server

28.8 Optional Online Case Study:
DeitelMessenger

28.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. This is a legacy chapter posted as is from the book’s 10th edition.

jhtp_28_Networking.fm Page 2 Wednesday, June 21, 2017 3:15 PM

28.2 Reading a File on a Web Server 28_3

For interested readers, we provide at

a case study from an older edition of this book. In the case study, we implement a client/
server chat application using multicasting, in which a server can publish information and
many clients can subscribe to it. When the server publishes information, all subscribers re-
ceive it.

28.2 Reading a File on a Web Server
The application in Fig. 28.1 uses Swing GUI component JEditorPane (from package ja-
vax.swing) to display the contents of a file on a web server. The user enters a URL in the
JTextField at the top of the window, and the application displays the corresponding doc-
ument (if it exists) in the JEditorPane. Class JEditorPane is able to render both plain text
and basic HTML-formatted text, as illustrated in the two screen captures (Fig. 28.2), so
this application acts as a simple web browser. The application also demonstrates how to
process HyperlinkEvents when the user clicks a hyperlink in the HTML document.

Performance Tip 28.1
Connectionless services generally offer greater performance but less reliability than connec-
tion-oriented services.

Portability Tip 28.1
TCP, UDP and related protocols enable heterogeneous computer systems (i.e., those with
different processors and different operating systems) to intercommunicate.

http://www.deitel.com/books/jhtp11

1 // Fig. 28.1: ReadServerFile.java
2 // Reading a file by opening a connection through a URL.
3 import java.awt.BorderLayout;
4 import java.awt.event.ActionEvent;
5 import java.awt.event.ActionListener;
6 import java.io.IOException;
7
8 import javax.swing.JFrame;
9 import javax.swing.JOptionPane;

10 import javax.swing.JScrollPane;
11 import javax.swing.JTextField;
12
13
14
15 public class ReadServerFile extends JFrame
16 {
17 private JTextField enterField; // JTextField to enter site name
18
19
20 // set up GUI
21 public ReadServerFile()
22 {

Fig. 28.1 | Reading a file by opening a connection through a URL. (Part 1 of 2.)

import javax.swing.JEditorPane;

import javax.swing.event.HyperlinkEvent;
import javax.swing.event.HyperlinkListener;

private JEditorPane contentsArea; // to display website

jhtp_28_Networking.fm Page 3 Wednesday, June 21, 2017 3:15 PM

28_4 Chapter 28 Networking

23 super("Simple Web Browser");
24
25 // create enterField and register its listener
26 enterField = new JTextField("Enter file URL here");
27 enterField.addActionListener(
28 new ActionListener()
29 {
30 // get document specified by user
31 public void actionPerformed(ActionEvent event)
32 {
33 getThePage(event.getActionCommand());
34 }
35 }
36);
37
38 add(enterField, BorderLayout.NORTH);
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 add(new JScrollPane(contentsArea), BorderLayout.CENTER);
56 setSize(400, 300); // set size of window
57 setVisible(true); // show window
58 }
59
60 // load document
61 private void getThePage(String location)
62 {
63 try // load document and display location
64 {
65
66 enterField.setText(location); // set the text
67 }
68 catch (IOException ioException)
69 {
70 JOptionPane.showMessageDialog(this,
71 "Error retrieving specified URL", "Bad URL",
72 JOptionPane.ERROR_MESSAGE);
73 }
74 }
75 }

Fig. 28.1 | Reading a file by opening a connection through a URL. (Part 2 of 2.)

contentsArea = new JEditorPane(); // create contentsArea
contentsArea.setEditable(false);
contentsArea.addHyperlinkListener(
 new HyperlinkListener()
 {
 // if user clicked hyperlink, go to specified page
 public void hyperlinkUpdate(HyperlinkEvent event)
 {
 if (event.getEventType() ==
 HyperlinkEvent.EventType.ACTIVATED)
 getThePage(event.getURL().toString());
 }
 }
);

contentsArea.setPage(location); // set the page

jhtp_28_Networking.fm Page 4 Wednesday, June 21, 2017 3:15 PM

28.2 Reading a File on a Web Server 28_5

The application class ReadServerFile contains JTextField enterField, in which
the user enters the URL of the file to read and JEditorPane contentsArea to display the
file’s contents. When the user presses the Enter key in enterField, the application calls
method actionPerformed (lines 31–34). Line 33 uses ActionEvent method getAction-
Command to get the String the user input in the JTextField and passes the String to
utility method getThePage (lines 61–74).

Line 65 invokes JEditorPane method setPage to download the document specified
by location and display it in the JEditorPane. If there’s an error downloading the docu-
ment, method setPage throws an IOException. Also, if an invalid URL is specified, a
MalformedURLException (a subclass of IOException) occurs. If the document loads suc-
cessfully, line 66 displays the current location in enterField.

Typically, an HTML document contains hyperlinks that, when clicked, provide
quick access to another document on the web. If a JEditorPane contains an HTML doc-
ument and the user clicks a hyperlink, the JEditorPane generates a HyperlinkEvent
(package javax.swing.event) and notifies all registered HyperlinkListeners (package
javax.swing.event) of that event. Lines 42–53 register a HyperlinkListener to handle
HyperlinkEvents. When a HyperlinkEvent occurs, the program calls method hyper-
linkUpdate (lines 46–51). Lines 48–49 use HyperlinkEvent method getEventType to
determine the type of the HyperlinkEvent. Class HyperlinkEvent contains a public
nested class called EventType that declares three static EventType objects, which repre-
sent the hyperlink event types. ACTIVATED indicates that the user clicked a hyperlink to
change web pages, ENTERED indicates that the user moved the mouse over a hyperlink and
EXITED indicates that the user moved the mouse away from a hyperlink. If a hyperlink was
ACTIVATED, line 50 uses HyperlinkEvent method getURL to obtain the URL represented by
the hyperlink. Method toString converts the returned URL to a String that can be passed
to utility method getThePage.

1 // Fig. 28.2: ReadServerFileTest.java
2 // Create and start a ReadServerFile.
3 import javax.swing.JFrame;
4
5 public class ReadServerFileTest
6 {
7 public static void main(String[] args)
8 {
9 ReadServerFile application = new ReadServerFile();

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 }
12 }

Fig. 28.2 | Test class for ReadServerFile.

jhtp_28_Networking.fm Page 5 Wednesday, June 21, 2017 3:15 PM

28_6 Chapter 28 Networking

28.3 Establishing a Simple Server Using Stream Sockets
The two examples discussed so far use high-level Java networking capabilities to commu-
nicate between applications. In the examples, it was not your responsibility to establish the
connection between a client and a server. The first program relied on the web browser to
communicate with a web server. The second program relied on a JEditorPane to perform
the connection. This section begins our discussion of creating your own applications that
can communicate with one another.

Step 1: Create a ServerSocket
Establishing a simple server in Java requires five steps. Step 1 is to create a ServerSocket
object. A call to the ServerSocket constructor, such as

registers an available TCP port number and specifies the maximum number of clients that
can wait to connect to the server (i.e., the queue length). The port number is used by cli-
ents to locate the server application on the server computer. This is often called the hand-
shake point. If the queue is full, the server refuses client connections. The constructor
establishes the port where the server waits for connections from clients—a process known
as binding the server to the port. Each client will ask to connect to the server on this port.
Only one application at a time can be bound to a specific port on the server.

Step 2: Wait for a Connection
Programs manage each client connection with a Socket object. In Step 2, the server listens
indefinitely (or blocks) for an attempt by a client to connect. To listen for a client connec-
tion, the program calls ServerSocket method accept, as in

which returns a Socket when a connection with a client is established. The Socket allows
the server to interact with the client. The interactions with the client actually occur at a
different server port from the handshake point. This allows the port specified in Step 1 to
be used again in a multithreaded server to accept another client connection. We demon-
strate this concept in Section 28.7.

Step 3: Get the Socket’s I/O Streams
Step 3 is to get the OutputStream and InputStream objects that enable the server to com-
municate with the client by sending and receiving bytes. The server sends information to

Look-and-Feel Observation 28.1
A JEditorPane generates HyperlinkEvents only if it’s uneditable.

ServerSocket server = new ServerSocket(portNumber, queueLength);

Software Engineering Observation 28.1
Port numbers can be between 0 and 65,535. Most operating systems reserve port numbers
below 1024 for system services (e.g., e-mail and World Wide Web servers). Generally,
these ports should not be specified as connection ports in user programs. In fact, some
operating systems require special access privileges to bind to port numbers below 1024.

Socket connection = server.accept();

jhtp_28_Networking.fm Page 6 Wednesday, June 21, 2017 3:15 PM

28.3 Establishing a Simple Server Using Stream Sockets 28_7

the client via an OutputStream and receives information from the client via an Input-
Stream. The server invokes method getOutputStream on the Socket to get a reference to
the Socket’s OutputStream and invokes method getInputStream on the Socket to get a
reference to the Socket’s InputStream.

The stream objects can be used to send or receive individual bytes or sequences of
bytes with the OutputStream’s method write and the InputStream’s method read,
respectively. Often it’s useful to send or receive values of primitive types (e.g., int and
double) or Serializable objects (e.g., Strings or other serializable types) rather than
sending bytes. In this case, we can use the techniques discussed in Chapter 15 to wrap
other stream types (e.g., ObjectOutputStream and ObjectInputStream) around the Out-
putStream and InputStream associated with the Socket. For example,

The beauty of establishing these relationships is that whatever the server writes to the
ObjectOutputStream is sent via the OutputStream and is available at the client’s
InputStream, and whatever the client writes to its OutputStream (with a corresponding
ObjectOutputStream) is available via the server’s InputStream. The transmission of the
data over the network is seamless and is handled completely by Java.

Step 4: Perform the Processing
Step 4 is the processing phase, in which the server and the client communicate via the Out-
putStream and InputStream objects.

Step 5: Close the Connection
In Step 5, when the transmission is complete, the server closes the connection by invoking
the close method on the streams and on the Socket.

ObjectInputStream input =
 new ObjectInputStream(connection.getInputStream());

ObjectOutputStream output =
 new ObjectOutputStream(connection.getOutputStream());

Software Engineering Observation 28.2
With sockets, network I/O appears to Java programs to be similar to sequential file I/O.
Sockets hide much of the complexity of network programming.

Software Engineering Observation 28.3
A multithreaded server can take the Socket returned by each call to accept and create a
new thread that manages network I/O across that Socket. Alternatively, a multithreaded
server can maintain a pool of threads (a set of already existing threads) ready to manage
network I/O across the new Sockets as they’re created. These techniques enable
multithreaded servers to manage many simultaneous client connections.

Performance Tip 28.2
In high-performance systems in which memory is abundant, a multithreaded server can
create a pool of threads that can be assigned quickly to handle network I/O for new Sock-
ets as they’re created. Thus, when the server receives a connection, it need not incur
thread-creation overhead. When the connection is closed, the thread is returned to the
pool for reuse.

jhtp_28_Networking.fm Page 7 Wednesday, June 21, 2017 3:15 PM

28_8 Chapter 28 Networking

28.4 Establishing a Simple Client Using Stream Sockets
Establishing a simple client in Java requires four steps.

Step 1: Create a Socket to Connect to the sServer
In Step 1, we create a Socket to connect to the server. The Socket constructor establishes
the connection. For example, the statement

uses the Socket constructor with two arguments—the server’s address (serverAddress) and
the port number. If the connection attempt is successful, this statement returns a Socket.
A connection attempt that fails throws an instance of a subclass of IOException, so many
programs simply catch IOException. An UnknownHostException occurs specifically when
the system is unable to resolve the server name specified in the call to the Socket construc-
tor to a corresponding IP address.

Step 2: Get the Socket’s I/O Streams
In Step 2, the client uses Socket methods getInputStream and getOutputStream to ob-
tain references to the Socket’s InputStream and OutputStream. As we mentioned in the
preceding section, we can use the techniques of Chapter 15 to wrap other stream types
around the InputStream and OutputStream associated with the Socket. If the server is
sending information in the form of actual types, the client should receive the information
in the same format. Thus, if the server sends values with an ObjectOutputStream, the cli-
ent should read those values with an ObjectInputStream.

Step 3: Perform the Processing
Step 3 is the processing phase in which the client and the server communicate via the In-
putStream and OutputStream objects.

Step 4: Close the Connection
In Step 4, the client closes the connection when the transmission is complete by invoking
the close method on the streams and on the Socket. The client must determine when the
server is finished sending information so that it can call close to close the Socket connec-
tion. For example, the InputStream method read returns the value –1 when it detects
end-of-stream (also called EOF—end-of-file). If an ObjectInputStream reads informa-
tion from the server, an EOFException occurs when the client attempts to read a value
from a stream on which end-of-stream is detected.

28.5 Client/Server Interaction with Stream Socket
Connections
Figures 28.3 and 28.5 use stream sockets, ObjectInputStream and ObjectOutputStream
to demonstrate a simple client/server chat application. The server waits for a client con-
nection attempt. When a client connects to the server, the server application sends the cli-
ent a String object (recall that Strings are Serializable objects) indicating that the
connection was successful. Then the client displays the message. The client and server ap-
plications each provide text fields that allow the user to type a message and send it to the
other application. When the client or the server sends the String "TERMINATE", the con-

Socket connection = new Socket(serverAddress, port);

jhtp_28_Networking.fm Page 8 Wednesday, June 21, 2017 3:15 PM

28.5 Client/Server Interaction with Stream Socket Connections 28_9

nection terminates. Then the server waits for the next client to connect. The declaration
of class Server appears in Fig. 28.3. The declaration of class Client appears in Fig. 28.5.
The screen captures showing the execution between the client and the server are shown in
Fig. 28.6.

Server Class
Server’s constructor (Fig. 28.3, lines 30–55) creates the server’s GUI, which contains a
JTextField and a JTextArea. Server displays its output in the JTextArea. When the
main method (lines 6–11 of Fig. 28.4) executes, it creates a Server object, specifies the
window’s default close operation and calls method runServer (Fig. 28.3, lines 57–86).

1 // Fig. 28.3: Server.java
2 // Server portion of a client/server stream-socket connection.
3 import java.io.EOFException;
4 import java.io.IOException;
5 import java.io.ObjectInputStream;
6 import java.io.ObjectOutputStream;
7
8
9 import java.awt.BorderLayout;

10 import java.awt.event.ActionEvent;
11 import java.awt.event.ActionListener;
12 import javax.swing.JFrame;
13 import javax.swing.JScrollPane;
14 import javax.swing.JTextArea;
15 import javax.swing.JTextField;
16 import javax.swing.SwingUtilities;
17
18 public class Server extends JFrame
19 {
20 private JTextField enterField; // inputs message from user
21 private JTextArea displayArea; // display information to user
22 private ObjectOutputStream output; // output stream to client
23 private ObjectInputStream input; // input stream from client
24
25
26 private int counter = 1; // counter of number of connections
27
28 // set up GUI
29 public Server()
30 {
31 super("Server");
32
33 enterField = new JTextField(); // create enterField
34 enterField.setEditable(false);
35 enterField.addActionListener(
36 new ActionListener()
37 {
38 // send message to client
39 public void actionPerformed(ActionEvent event)
40 {

Fig. 28.3 | Server portion of a client/server stream-socket connection. (Part 1 of 4.)

import java.net.ServerSocket;
import java.net.Socket;

private ServerSocket server; // server socket
private Socket connection; // connection to client

jhtp_28_Networking.fm Page 9 Wednesday, June 21, 2017 3:15 PM

28_10 Chapter 28 Networking

41 sendData(event.getActionCommand());
42 enterField.setText("");
43 }
44 }
45);
46
47 add(enterField, BorderLayout.NORTH);
48
49 displayArea = new JTextArea(); // create displayArea
50 add(new JScrollPane(displayArea), BorderLayout.CENTER);
51
52 setSize(300, 150); // set size of window
53 setVisible(true); // show window
54 }
55
56 // set up and run server
57 public void runServer()
58 {
59 try // set up server to receive connections; process connections
60 {
61
62
63 while (true)
64 {
65 try
66 {
67 waitForConnection(); // wait for a connection
68 getStreams(); // get input & output streams
69 processConnection(); // process connection
70 }
71 catch (EOFException eofException)
72 {
73 displayMessage("\nServer terminated connection");
74 }
75 finally
76 {
77 closeConnection(); // close connection
78 ++counter;
79 }
80 }
81 }
82 catch (IOException ioException)
83 {
84 ioException.printStackTrace();
85 }
86 }
87
88 // wait for connection to arrive, then display connection info
89 private void waitForConnection() throws IOException
90 {
91 displayMessage("Waiting for connection\n");
92

Fig. 28.3 | Server portion of a client/server stream-socket connection. (Part 2 of 4.)

server = new ServerSocket(12345, 100); // create ServerSocket

connection = server.accept(); // allow server to accept connection

jhtp_28_Networking.fm Page 10 Wednesday, June 21, 2017 3:15 PM

28.5 Client/Server Interaction with Stream Socket Connections 28_11

93 displayMessage("Connection " + counter + " received from: " +
94);
95 }
96
97 // get streams to send and receive data
98 private void getStreams() throws IOException
99 {
100 // set up output stream for objects
101
102
103
104 // set up input stream for objects
105
106
107 displayMessage("\nGot I/O streams\n");
108 }
109
110 // process connection with client
111 private void processConnection() throws IOException
112 {
113 String message = "Connection successful";
114 sendData(message); // send connection successful message
115
116 // enable enterField so server user can send messages
117 setTextFieldEditable(true);
118
119 do // process messages sent from client
120 {
121 try // read message and display it
122 {
123
124 displayMessage("\n" + message); // display message
125 }
126 catch (ClassNotFoundException classNotFoundException)
127 {
128 displayMessage("\nUnknown object type received");
129 }
130
131 } while (!message.equals("CLIENT>>> TERMINATE"));
132 }
133
134 // close streams and socket
135 private void closeConnection()
136 {
137 displayMessage("\nTerminating connection\n");
138 setTextFieldEditable(false); // disable enterField
139
140 try
141 {
142
143
144
145 }

Fig. 28.3 | Server portion of a client/server stream-socket connection. (Part 3 of 4.)

connection.getInetAddress().getHostName()

output = new ObjectOutputStream(connection.getOutputStream());
output.flush(); // flush output buffer to send header information

input = new ObjectInputStream(connection.getInputStream());

message = (String) input.readObject(); // read new message

output.close(); // close output stream
input.close(); // close input stream
connection.close(); // close socket

jhtp_28_Networking.fm Page 11 Wednesday, June 21, 2017 3:15 PM

28_12 Chapter 28 Networking

146 catch (IOException ioException)
147 {
148 ioException.printStackTrace();
149 }
150 }
151
152 // send message to client
153 private void sendData(String message)
154 {
155 try // send object to client
156 {
157
158
159 displayMessage("\nSERVER>>> " + message);
160 }
161 catch (IOException ioException)
162 {
163 displayArea.append("\nError writing object");
164 }
165 }
166
167 // manipulates displayArea in the event-dispatch thread
168 private void displayMessage(final String messageToDisplay)
169 {
170 SwingUtilities.invokeLater(
171 new Runnable()
172 {
173 public void run() // updates displayArea
174 {
175 displayArea.append(messageToDisplay); // append message
176 }
177 }
178);
179 }
180
181 // manipulates enterField in the event-dispatch thread
182 private void setTextFieldEditable(final boolean editable)
183 {
184 SwingUtilities.invokeLater(
185 new Runnable()
186 {
187 public void run() // sets enterField's editability
188 {
189 enterField.setEditable(editable);
190 }
191 }
192);
193 }
194 }

Fig. 28.3 | Server portion of a client/server stream-socket connection. (Part 4 of 4.)

output.writeObject("SERVER>>> " + message);
output.flush(); // flush output to client

jhtp_28_Networking.fm Page 12 Wednesday, June 21, 2017 3:15 PM

28.5 Client/Server Interaction with Stream Socket Connections 28_13

Method runServer
Method runServer (Fig. 28.3, lines 57–86) sets up the server to receive a connection and
processes one connection at a time. Line 61 creates a ServerSocket called server to wait
for connections. The ServerSocket listens for a connection from a client at port 12345.
The second argument to the constructor is the number of connections that can wait in a
queue to connect to the server (100 in this example). If the queue is full when a client at-
tempts to connect, the server refuses the connection.

Line 67 calls method waitForConnection (declared at lines 89–95) to wait for a client
connection. After the connection is established, line 68 calls method getStreams (declared
at lines 98–108) to obtain references to the connection’s streams. Line 69 calls method
processConnection (declared at lines 111–132) to send the initial connection message to
the client and to process all messages received from the client. The finally block (lines
75–79) terminates the client connection by calling method closeConnection (lines 135–
150), even if an exception occurs. These methods call displayMessage (lines 168–179),
which uses the event-dispatch thread to display messages in the application’s JTextArea.
SwingUtilities method invokeLater receives a Runnable object as its argument and
places it into the event-dispatch thread for execution. This ensures that we don’t modify
a GUI component from a thread other than the event-dispatch thread, which is important
since Swing GUI components are not thread safe. We use a similar technique in method set-
TextFieldEditable (lines 182–193), to set the editability of enterField. For more infor-
mation on interface Runnable, see Chapter 23.

Method waitForConnection
Method waitForConnection (lines 89–95) uses ServerSocket method accept (line 92)
to wait for a connection from a client. When a connection occurs, the resulting Socket is
assigned to connection. Method accept blocks until a connection is received (i.e., the
thread in which accept is called stops executing until a client connects). Lines 93–94 out-
put the host name of the computer that made the connection. Socket method getInet-

1 // Fig. 28.4: ServerTest.java
2 // Test the Server application.
3 import javax.swing.JFrame;
4
5 public class ServerTest
6 {
7 public static void main(String[] args)
8 {
9 Server application = new Server(); // create server

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 application.runServer(); // run server application
12 }
13 }

Fig. 28.4 | Test class for Server.

Common Programming Error 28.1
Specifying a port that’s already in use or specifying an invalid port number when creating
a ServerSocket results in a BindException.

jhtp_28_Networking.fm Page 13 Wednesday, June 21, 2017 3:15 PM

28_14 Chapter 28 Networking

Address returns an InetAddress (package java.net) containing information about the
client computer. InetAddress method getHostName returns the host name of the client
computer. For example, a special IP address (127.0.0.1) and host name (localhost) are
useful for testing networking applications on your local computer (this is also known as
the loopback address). If getHostName is called on an InetAddress containing
127.0.0.1, the corresponding host name returned by the method will be localhost.

Method getStreams
Method getStreams (lines 98–108) obtains the Socket’s streams and uses them to initial-
ize an ObjectOutputStream (line 101) and an ObjectInputStream (line 105), respective-
ly. Note the call to ObjectOutputStream method flush at line 102. This statement causes
the ObjectOutputStream on the server to send a stream header to the corresponding cli-
ent’s ObjectInputStream. The stream header contains such information as the version of
object serialization being used to send objects. This information is required by the Object-
InputStream so that it can prepare to receive those objects correctly.

Method processConnection
Line 114 of method processConnection (lines 111–132) calls method sendData to send
"SERVER>>> Connection successful" as a String to the client. The loop at lines 119–
131 executes until the server receives the message "CLIENT>>> TERMINATE". Line 123 uses
ObjectInputStream method readObject to read a String from the client. Line 124 in-
vokes method displayMessage to append the message to the JTextArea.

Method closeConnection
When the transmission is complete, method processConnection returns, and the pro-
gram calls method closeConnection (lines 135–150) to close the streams associated with
the Socket and close the Socket. Then the server waits for the next connection attempt
from a client by continuing with line 67 at the beginning of the while loop.

Server receives a connection, processes it, closes it and waits for the next connection.
A more likely scenario would be a Server that receives a connection, sets it up to be pro-
cessed as a separate thread of execution, then immediately waits for new connections. The
separate threads that process existing connections can continue to execute while the
Server concentrates on new connection requests. This makes the server more efficient,
because multiple client requests can be processed concurrently. We demonstrate a multi-
threaded server in Section 28.7.

Software Engineering Observation 28.4
When using ObjectOutputStream and ObjectInputStream to send and receive data over
a network connection, always create the ObjectOutputStream first and flush the stream
so that the client’s ObjectInputStream can prepare to receive the data. This is required
for networking applications that communicate using ObjectOutputStream and
ObjectInputStream.

Performance Tip 28.3
A computer’s I/O components are typically much slower than its memory. Output buffers are
used to increase the efficiency of an application by sending larger amounts of data fewer
times, reducing the number of times an application accesses the computer’s I/O components.

jhtp_28_Networking.fm Page 14 Wednesday, June 21, 2017 3:15 PM

28.5 Client/Server Interaction with Stream Socket Connections 28_15

Processing User Interactions
When the user of the server application enters a String in the text field and presses the
Enter key, the program calls method actionPerformed (lines 39–43), which reads the
String from the text field and calls utility method sendData (lines 153–165) to send the
String to the client. Method sendData writes the object, flushes the output buffer and
appends the same String to the text area in the server window. It’s not necessary to invoke
displayMessage to modify the text area here, because method sendData is called from an
event handler—thus, sendData executes as part of the event-dispatch thread.

Client Class
Like class Server, class Client’s constructor (Fig. 28.5, lines 29–56) creates the GUI of
the application (a JTextField and a JTextArea). Client displays its output in the text ar-
ea. When method main (lines 7–19 of Fig. 28.6) executes, it creates an instance of class
Client, specifies the window’s default close operation and calls method runClient
(Fig. 28.5, lines 59–79). In this example, you can execute the client from any computer
on the Internet and specify the IP address or host name of the server computer as a com-
mand-line argument to the program. For example, the command

attempts to connect to the Server on the computer with IP address 192.168.1.15.

java Client 192.168.1.15

1 // Fig. 28.5: Client.java
2 // Client portion of a stream-socket connection between client and server.
3 import java.io.EOFException;
4 import java.io.IOException;
5 import java.io.ObjectInputStream;
6 import java.io.ObjectOutputStream;
7
8
9 import java.awt.BorderLayout;

10 import java.awt.event.ActionEvent;
11 import java.awt.event.ActionListener;
12 import javax.swing.JFrame;
13 import javax.swing.JScrollPane;
14 import javax.swing.JTextArea;
15 import javax.swing.JTextField;
16 import javax.swing.SwingUtilities;
17
18 public class Client extends JFrame
19 {
20 private JTextField enterField; // enters information from user
21 private JTextArea displayArea; // display information to user
22 private ObjectOutputStream output; // output stream to server
23 private ObjectInputStream input; // input stream from server
24 private String message = ""; // message from server
25 private String chatServer; // host server for this application
26
27

Fig. 28.5 | Client portion of a stream-socket connection between client and server. (Part 1 of 5.)

import java.net.InetAddress;
import java.net.Socket;

private Socket client; // socket to communicate with server

jhtp_28_Networking.fm Page 15 Wednesday, June 21, 2017 3:15 PM

28_16 Chapter 28 Networking

28 // initialize chatServer and set up GUI
29 public Client(String host)
30 {
31 super("Client");
32
33 chatServer = host; // set server to which this client connects
34
35 enterField = new JTextField(); // create enterField
36 enterField.setEditable(false);
37 enterField.addActionListener(
38 new ActionListener()
39 {
40 // send message to server
41 public void actionPerformed(ActionEvent event)
42 {
43 sendData(event.getActionCommand());
44 enterField.setText("");
45 }
46 }
47);
48
49 add(enterField, BorderLayout.NORTH);
50
51 displayArea = new JTextArea(); // create displayArea
52 add(new JScrollPane(displayArea), BorderLayout.CENTER);
53
54 setSize(300, 150); // set size of window
55 setVisible(true); // show window
56 }
57
58 // connect to server and process messages from server
59 public void runClient()
60 {
61 try // connect to server, get streams, process connection
62 {
63 connectToServer(); // create a Socket to make connection
64 getStreams(); // get the input and output streams
65 processConnection(); // process connection
66 }
67 catch (EOFException eofException)
68 {
69 displayMessage("\nClient terminated connection");
70 }
71 catch (IOException ioException)
72 {
73 ioException.printStackTrace();
74 }
75 finally
76 {
77 closeConnection(); // close connection
78 }
79 }

Fig. 28.5 | Client portion of a stream-socket connection between client and server. (Part 2 of 5.)

jhtp_28_Networking.fm Page 16 Wednesday, June 21, 2017 3:15 PM

28.5 Client/Server Interaction with Stream Socket Connections 28_17

80
81 // connect to server
82 private void connectToServer() throws IOException
83 {
84 displayMessage("Attempting connection\n");
85
86 // create Socket to make connection to server
87
88
89 // display connection information
90 displayMessage("Connected to: " +
91
92 }
93
94 // get streams to send and receive data
95 private void getStreams() throws IOException
96 {
97 // set up output stream for objects
98
99
100
101 // set up input stream for objects
102 input = new ObjectInputStream(client.getInputStream());
103
104 displayMessage("\nGot I/O streams\n");
105 }
106
107 // process connection with server
108 private void processConnection() throws IOException
109 {
110 // enable enterField so client user can send messages
111 setTextFieldEditable(true);
112
113 do // process messages sent from server
114 {
115 try // read message and display it
116 {
117
118 displayMessage("\n" + message); // display message
119 }
120 catch (ClassNotFoundException classNotFoundException)
121 {
122 displayMessage("\nUnknown object type received");
123 }
124
125 } while (!message.equals("SERVER>>> TERMINATE"));
126 }
127
128 // close streams and socket
129 private void closeConnection()
130 {
131 displayMessage("\nClosing connection");
132 setTextFieldEditable(false); // disable enterField

Fig. 28.5 | Client portion of a stream-socket connection between client and server. (Part 3 of 5.)

client = new Socket(InetAddress.getByName(chatServer), 12345);

client.getInetAddress().getHostName());

output = new ObjectOutputStream(client.getOutputStream());
output.flush(); // flush output buffer to send header information

message = (String) input.readObject(); // read new message

jhtp_28_Networking.fm Page 17 Wednesday, June 21, 2017 3:15 PM

28_18 Chapter 28 Networking

133
134 try
135 {
136
137 1
138
139 }
140 catch (IOException ioException)
141 {
142 ioException.printStackTrace();
143 }
144 }
145
146 // send message to server
147 private void sendData(String message)
148 {
149 try // send object to server
150 {
151
152
153 displayMessage("\nCLIENT>>> " + message);
154 }
155 catch (IOException ioException)
156 {
157 displayArea.append("\nError writing object");
158 }
159 }
160
161 // manipulates displayArea in the event-dispatch thread
162 private void displayMessage(final String messageToDisplay)
163 {
164 SwingUtilities.invokeLater(
165 new Runnable()
166 {
167 public void run() // updates displayArea
168 {
169 displayArea.append(messageToDisplay);
170 }
171 }
172);
173 }
174
175 // manipulates enterField in the event-dispatch thread
176 private void setTextFieldEditable(final boolean editable)
177 {
178 SwingUtilities.invokeLater(
179 new Runnable()
180 {
181 public void run() // sets enterField's editability
182 {
183 enterField.setEditable(editable);
184 }
185 }

Fig. 28.5 | Client portion of a stream-socket connection between client and server. (Part 4 of 5.)

output.close(); // close output stream
input.close(); // close input stream
client.close(); // close socket

output.writeObject("CLIENT>>> " + message);
output.flush(); // flush data to output

jhtp_28_Networking.fm Page 18 Wednesday, June 21, 2017 3:15 PM

28.5 Client/Server Interaction with Stream Socket Connections 28_19

Method runClient
Client method runClient (Fig. 28.5, lines 59–79) sets up the connection to the server,
processes messages received from the server and closes the connection when communica-
tion is complete. Line 63 calls method connectToServer (declared at lines 82–92) to per-
form the connection. After connecting, line 64 calls method getStreams (declared at lines
95–105) to obtain references to the Socket’s stream objects. Then line 65 calls method
processConnection (declared at lines 108–126) to receive and display messages sent from
the server. The finally block (lines 75–78) calls closeConnection (lines 129–144) to
close the streams and the Socket even if an exception occurred. Method displayMessage
(lines 162–173) is called from these methods to use the event-dispatch thread to display
messages in the application’s text area.

186);
187 }
188 }

1 // Fig. 28.6: ClientTest.java
2 // Class that tests the Client.
3 import javax.swing.JFrame;
4
5 public class ClientTest
6 {
7 public static void main(String[] args)
8 {
9 Client application; // declare client application

10
11 // if no command line args
12 if (args.length == 0)
13
14 else
15
16
17 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 application.runClient(); // run client application
19 }
20 }

Fig. 28.6 | Class that tests the Client.

Fig. 28.5 | Client portion of a stream-socket connection between client and server. (Part 5 of 5.)

application = new Client("127.0.0.1"); // connect to localhost

application = new Client(args[0]); // use args to connect

jhtp_28_Networking.fm Page 19 Wednesday, June 21, 2017 3:15 PM

28_20 Chapter 28 Networking

Method connectToServer
Method connectToServer (lines 82–92) creates a Socket called client (line 87) to estab-
lish a connection. The arguments to the Socket constructor are the IP address of the server
computer and the port number (12345) where the server application is awaiting client
connections. In the first argument, InetAddress static method getByName returns an
InetAddress object containing the IP address specified as a command-line argument to
the application (or 127.0.0.1 if none was specified). Method getByName can receive a
String containing either the actual IP address or the host name of the server. The first ar-
gument also could have been written other ways. For the localhost address 127.0.0.1,
the first argument could be specified with either of the following expressions:

Other versions of the Socket constructor receive the IP address or host name as a String.
The first argument could have been specified as the IP address "127.0.0.1" or the host
name "localhost". We chose to demonstrate the client/server relationship by connecting
between applications on the same computer (localhost). Normally, this first argument
would be the IP address of another computer. The InetAddress object for another com-
puter can be obtained by specifying the computer’s IP address or host name as the argu-
ment to InetAddress method getByName. The Socket constructor’s second argument is
the server port number. This must match the port number at which the server is waiting
for connections (called the handshake point). Once the connection is made, lines 90–91
display a message in the text area indicating the name of the server computer to which the
client has connected.

The Client uses an ObjectOutputStream to send data to the server and an Object-
InputStream to receive data from the server. Method getStreams (lines 95–105) creates
the ObjectOutputStream and ObjectInputStream objects that use the streams associated
with the client socket.

Methods processConnection and closeConnection
Method processConnection (lines 108–126) contains a loop that executes until the client
receives the message "SERVER>>> TERMINATE". Line 117 reads a String object from the
server. Line 118 invokes displayMessage to append the message to the text area. When
the transmission is complete, method closeConnection (lines 129–144) closes the
streams and the Socket.

Processing User Interactions
When the client application user enters a String in the text field and presses Enter, the
program calls method actionPerformed (lines 41–45) to read the String, then invokes
utility method sendData (147–159) to send the String to the server. Method sendData
writes the object, flushes the output buffer and appends the same String to the client win-
dow’s JTextArea. Once again, it’s not necessary to invoke utility method displayMessage
to modify the text area here, because method sendData is called from an event handler.

28.6 Datagrams: Connectionless Client/Server Interaction
We’ve been discussing connection-oriented, streams-based transmission. Now we consid-
er connectionless transmission with datagrams.

InetAddress.getByName("localhost")
InetAddress.getLocalHost()

jhtp_28_Networking.fm Page 20 Wednesday, June 21, 2017 3:15 PM

28.6 Datagrams: Connectionless Client/Server Interaction 28_21

Connection-oriented transmission is like the telephone system in which you dial and
are given a connection to the telephone of the person with whom you wish to communi-
cate. The connection is maintained for your phone call, even when you’re not talking.

Connectionless transmission with datagrams is more like the way mail is carried via
the postal service. If a large message will not fit in one envelope, you break it into separate
pieces that you place in sequentially numbered envelopes. All of the letters are then mailed
at once. The letters could arrive in order, out of order or not at all (the last case is rare). The
person at the receiving end reassembles the pieces into sequential order before attempting
to make sense of the message.

If your message is small enough to fit in one envelope, you need not worry about the
“out-of-sequence” problem, but it’s still possible that your message might not arrive. One
advantage of datagrams over postal mail is that duplicates of datagrams can arrive at the
receiving computer.

Figures 28.7–28.10 use datagrams to send packets of information via the User Data-
gram Protocol (UDP) between a client application and a server application. In the Client
application (Fig. 28.9), the user types a message into a text field and presses Enter. The
program converts the message into a byte array and places it in a datagram packet that’s
sent to the server. The Server (Figs. 28.7–28.8) receives the packet and displays the infor-
mation in it, then echoes the packet back to the client. Upon receiving the packet, the
client displays the information it contains.

Server Class
Class Server (Fig. 28.7) declares two DatagramPackets that the server uses to send and
receive information and one DatagramSocket that sends and receives the packets. The
constructor (lines 19–37), which is called from main (Fig. 28.8, lines 7–12), creates the
GUI in which the packets of information will be displayed. Line 30 creates the Data-
gramSocket in a try block. Line 30 in Fig. 28.7 uses the DatagramSocket constructor that
takes an integer port-number argument (5000 in this example) to bind the server to a port
where it can receive packets from clients. Clients sending packets to this Server specify
the same port number in the packets they send. A SocketException is thrown if the Da-
tagramSocket constructor fails to bind the DatagramSocket to the specified port.

Common Programming Error 28.2
Specifying a port that’s already in use or specifying an invalid port number when creating
a DatagramSocket results in a SocketException.

1 // Fig. 28.7: Server.java
2 // Server side of connectionless client/server computing with datagrams.
3 import java.io.IOException;
4 import java.net.DatagramPacket;
5 import java.net.DatagramSocket;
6 import java.net.SocketException;
7 import java.awt.BorderLayout;
8 import javax.swing.JFrame;
9 import javax.swing.JScrollPane;

10 import javax.swing.JTextArea;

Fig. 28.7 | Server side of connectionless client/server computing with datagrams. (Part 1 of 3.)

jhtp_28_Networking.fm Page 21 Wednesday, June 21, 2017 3:15 PM

28_22 Chapter 28 Networking

11 import javax.swing.SwingUtilities;
12
13 public class Server extends JFrame
14 {
15 private JTextArea displayArea; // displays packets received
16
17
18 // set up GUI and DatagramSocket
19 public Server()
20 {
21 super("Server");
22
23 displayArea = new JTextArea(); // create displayArea
24 add(new JScrollPane(displayArea), BorderLayout.CENTER);
25 setSize(400, 300); // set size of window
26 setVisible(true); // show window
27
28 try // create DatagramSocket for sending and receiving packets
29 {
30
31 }
32 catch (SocketException socketException)
33 {
34 socketException.printStackTrace();
35 System.exit(1);
36 }
37 }
38
39 // wait for packets to arrive, display data and echo packet to client
40 public void waitForPackets()
41 {
42 while (true)
43 {
44 try // receive packet, display contents, return copy to client
45 {
46
47
48
49
50
51
52 // display information from received packet
53 displayMessage("\nPacket received:" +
54 "\nFrom host: " + +
55 "\nHost port: " + +
56 "\nLength: " + +
57 "\nContaining:\n\t" + new String(,
58 0,));
59
60 sendPacketToClient(receivePacket); // send packet to client
61 }
62 catch (IOException ioException)
63 {

Fig. 28.7 | Server side of connectionless client/server computing with datagrams. (Part 2 of 3.)

private DatagramSocket socket; // socket to connect to client

socket = new DatagramSocket(5000);

byte[] data = new byte[100]; // set up packet
DatagramPacket receivePacket =
 new DatagramPacket(data, data.length);

socket.receive(receivePacket); // wait to receive packet

receivePacket.getAddress()
receivePacket.getPort()

receivePacket.getLength()
receivePacket.getData()

receivePacket.getLength()

jhtp_28_Networking.fm Page 22 Wednesday, June 21, 2017 3:15 PM

28.6 Datagrams: Connectionless Client/Server Interaction 28_23

64 displayMessage(ioException + "\n");
65 ioException.printStackTrace();
66 }
67 }
68 }
69
70 // echo packet to client
71 private void sendPacketToClient(DatagramPacket receivePacket)
72 throws IOException
73 {
74 displayMessage("\n\nEcho data to client...");
75
76 // create packet to send
77
78
79
80
81
82 displayMessage("Packet sent\n");
83 }
84
85 // manipulates displayArea in the event-dispatch thread
86 private void displayMessage(final String messageToDisplay)
87 {
88 SwingUtilities.invokeLater(
89 new Runnable()
90 {
91 public void run() // updates displayArea
92 {
93 displayArea.append(messageToDisplay); // display message
94 }
95 }
96);
97 }
98 }

1 // Fig. 28.8: ServerTest.java
2 // Class that tests the Server.
3 import javax.swing.JFrame;
4
5 public class ServerTest
6 {
7 public static void main(String[] args)
8 {
9 Server application = new Server(); // create server

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 application.waitForPackets(); // run server application
12 }
13 }

Fig. 28.8 | Class that tests the Server. (Part 1 of 2.)

Fig. 28.7 | Server side of connectionless client/server computing with datagrams. (Part 3 of 3.)

DatagramPacket sendPacket = new DatagramPacket(
 receivePacket.getData(), receivePacket.getLength(),
 receivePacket.getAddress(), receivePacket.getPort());

socket.send(sendPacket); // send packet to client

jhtp_28_Networking.fm Page 23 Wednesday, June 21, 2017 3:15 PM

28_24 Chapter 28 Networking

Method waitForPackets
Server method waitForPackets (Fig. 28.7, lines 40–68) uses an infinite loop to wait for
packets to arrive at the Server. Lines 47–48 create a DatagramPacket in which a received
packet of information can be stored. The DatagramPacket constructor for this purpose re-
ceives two arguments—a byte array in which the data will be stored and the length of the
array. Line 50 uses DatagramSocket method receive to wait for a packet to arrive at the
Server. Method receive blocks until a packet arrives, then stores the packet in its Data-
gramPacket argument. The method throws an IOException if an error occurs while re-
ceiving a packet.

Method displayMessage
When a packet arrives, lines 53–58 call method displayMessage (declared at lines 86–97)
to append the packet’s contents to the text area. DatagramPacket method getAddress
(line 54) returns an InetAddress object containing the IP address of the computer from
which the packet was sent. Method getPort (line 55) returns an integer specifying the port
number through which the client computer sent the packet. Method getLength (line 56)
returns an integer representing the number of bytes of data received. Method getData
(line 57) returns a byte array containing the data. Lines 57–58 initialize a String object
using a three-argument constructor that takes a byte array, the offset and the length. This
String is then appended to the text to display.

Method sendPacketToClient
After displaying a packet, line 60 calls method sendPacketToClient (declared at lines 71–
83) to create a new packet and send it to the client. Lines 77–79 create a DatagramPacket
and pass four arguments to its constructor. The first argument specifies the byte array to
send. The second argument specifies the number of bytes to send. The third argument
specifies the client computer’s IP address, to which the packet will be sent. The fourth ar-
gument specifies the port where the client is waiting to receive packets. Line 81 sends the
packet over the network. Method send of DatagramSocket throws an IOException if an
error occurs while sending a packet.

Client Class
The Client (Figs. 28.9–28.10) works similarly to class Server, except that the Client
sends packets only when the user types a message in a text field and presses the Enter key.

Fig. 28.8 | Class that tests the Server. (Part 2 of 2.)

Server window after packet
of data is received from Client

jhtp_28_Networking.fm Page 24 Wednesday, June 21, 2017 3:15 PM

28.6 Datagrams: Connectionless Client/Server Interaction 28_25

When this occurs, the program calls method actionPerformed (Fig. 28.9, lines 32–57),
which converts the String the user entered into a byte array (line 41). Lines 44–45 create
a DatagramPacket and initialize it with the byte array, the length of the String that was
entered by the user, the IP address to which the packet is to be sent (InetAddress.getLo-
calHost() in this example) and the port number at which the Server is waiting for pack-
ets (5000 in this example). Line 47 sends the packet. The client in this example must know
that the server is receiving packets at port 5000—otherwise, the server will not receive the
packets.

The DatagramSocket constructor call (Fig. 28.9, line 71) in this application does not
specify any arguments. This no-argument constructor allows the computer to select the
next available port number for the DatagramSocket. The client does not need a specific
port number, because the server receives the client’s port number as part of each Data-
gramPacket sent by the client. Thus, the server can send packets back to the same com-
puter and port number from which it receives a packet of information.

1 // Fig. 28.9: Client.java
2 // Client side of connectionless client/server computing with datagrams.
3 import java.io.IOException;
4 import java.net.DatagramPacket;
5 import java.net.DatagramSocket;
6 import java.net.InetAddress;
7 import java.net.SocketException;
8 import java.awt.BorderLayout;
9 import java.awt.event.ActionEvent;

10 import java.awt.event.ActionListener;
11 import javax.swing.JFrame;
12 import javax.swing.JScrollPane;
13 import javax.swing.JTextArea;
14 import javax.swing.JTextField;
15 import javax.swing.SwingUtilities;
16
17 public class Client extends JFrame
18 {
19 private JTextField enterField; // for entering messages
20 private JTextArea displayArea; // for displaying messages
21
22
23 // set up GUI and DatagramSocket
24 public Client()
25 {
26 super("Client");
27
28 enterField = new JTextField("Type message here");
29 enterField.addActionListener(
30 new ActionListener()
31 {
32 public void actionPerformed(ActionEvent event)
33 {
34 try // create and send packet
35 {

Fig. 28.9 | Client side of connectionless client/server computing with datagrams. (Part 1 of 3.)

private DatagramSocket socket; // socket to connect to server

jhtp_28_Networking.fm Page 25 Wednesday, June 21, 2017 3:15 PM

28_26 Chapter 28 Networking

36 // get message from textfield
37 String message = event.getActionCommand();
38 displayArea.append("\nSending packet containing: " +
39 message + "\n");
40
41
42
43 // create sendPacket
44
45
46
47
48 displayArea.append("Packet sent\n");
49 displayArea.setCaretPosition(
50 displayArea.getText().length());
51 }
52 catch (IOException ioException)
53 {
54 displayMessage(ioException + "\n");
55 ioException.printStackTrace();
56 }
57 }
58 }
59);
60
61 add(enterField, BorderLayout.NORTH);
62
63 displayArea = new JTextArea();
64 add(new JScrollPane(displayArea), BorderLayout.CENTER);
65
66 setSize(400, 300); // set window size
67 setVisible(true); // show window
68
69 try // create DatagramSocket for sending and receiving packets
70 {
71 socket = new DatagramSocket();
72 }
73 catch (SocketException socketException)
74 {
75 socketException.printStackTrace();
76 System.exit(1);
77 }
78 }
79
80 // wait for packets to arrive from Server, display packet contents
81 public void waitForPackets()
82 {
83 while (true)
84 {
85 try // receive packet and display contents
86 {
87

Fig. 28.9 | Client side of connectionless client/server computing with datagrams. (Part 2 of 3.)

byte[] data = message.getBytes(); // convert to bytes

DatagramPacket sendPacket = new DatagramPacket(data,
 data.length, InetAddress.getLocalHost(), 5000);

socket.send(sendPacket); // send packet

byte[] data = new byte[100]; // set up packet

jhtp_28_Networking.fm Page 26 Wednesday, June 21, 2017 3:15 PM

28.6 Datagrams: Connectionless Client/Server Interaction 28_27

88
89
90
91 socket.receive(receivePacket); // wait for packet
92
93 // display packet contents
94 displayMessage("\nPacket received:" +
95 "\nFrom host: " + +
96 "\nHost port: " + +
97 "\nLength: " + +
98 "\nContaining:\n\t" + new String(,
99 0,));
100 }
101 catch (IOException exception)
102 {
103 displayMessage(exception + "\n");
104 exception.printStackTrace();
105 }
106 }
107 }
108
109 // manipulates displayArea in the event-dispatch thread
110 private void displayMessage(final String messageToDisplay)
111 {
112 SwingUtilities.invokeLater(
113 new Runnable()
114 {
115 public void run() // updates displayArea
116 {
117 displayArea.append(messageToDisplay);
118 }
119 }
120);
121 }
122 }

1 // Fig. 28.10: ClientTest.java
2 // Tests the Client class.
3 import javax.swing.JFrame;
4
5 public class ClientTest
6 {
7 public static void main(String[] args)
8 {
9 Client application = new Client(); // create client

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 application.waitForPackets(); // run client application
12 }
13 }

Fig. 28.10 | Class that tests the Client. (Part 1 of 2.)

Fig. 28.9 | Client side of connectionless client/server computing with datagrams. (Part 3 of 3.)

DatagramPacket receivePacket = new DatagramPacket(
 data, data.length);

receivePacket.getAddress()
receivePacket.getPort()

receivePacket.getLength()
receivePacket.getData()

receivePacket.getLength()

jhtp_28_Networking.fm Page 27 Wednesday, June 21, 2017 3:15 PM

28_28 Chapter 28 Networking

Method waitForPackets
Client method waitForPackets (lines 81–107) uses an infinite loop to wait for packets
from the server. Line 91 blocks until a packet arrives. This does not prevent the user from
sending a packet, because the GUI events are handled in the event-dispatch thread. It only
prevents the while loop from continuing until a packet arrives at the Client. When a
packet arrives, line 91 stores it in receivePacket, and lines 94–99 call method display-
Message (declared at lines 110–121) to display the packet’s contents in the text area.

28.7 Client/Server Tic-Tac-Toe Using a Multithreaded
Server
This section presents the popular game Tic-Tac-Toe implemented by using client/server
techniques with stream sockets. The program consists of a TicTacToeServer application
(Figs. 28.11–28.12) that allows two TicTacToeClient applications (Figs. 28.13–28.14)
to connect to the server and play Tic-Tac-Toe. Sample outputs are shown in Fig. 28.15.

TicTacToeServer Class
As the TicTacToeServer receives each client connection, it creates an instance of inner-
class Player (Fig. 28.11, lines 182–304) to process the client in a separate thread. These
threads enable the clients to play the game independently. The first client to connect to
the server is player X and the second is player O. Player X makes the first move. The server
maintains the information about the board so it can determine if a player’s move is valid.

1 // Fig. 28.11: TicTacToeServer.java
2 // Server side of client/server Tic-Tac-Toe program.
3 import java.awt.BorderLayout;
4 import java.net.ServerSocket;
5 import java.net.Socket;
6 import java.io.IOException;
7 import java.util.Formatter;
8 import java.util.Scanner;
9 import java.util.concurrent.ExecutorService;

10 import java.util.concurrent.Executors;

Fig. 28.11 | Server side of client/server Tic-Tac-Toe program. (Part 1 of 7.)

Fig. 28.10 | Class that tests the Client. (Part 2 of 2.)

Client window after sending
packet to Server and receiving packet back
from Server

jhtp_28_Networking.fm Page 28 Wednesday, June 21, 2017 3:15 PM

28.7 Client/Server Tic-Tac-Toe Using a Multithreaded Server 28_29

11 import java.util.concurrent.locks.Lock;
12 import java.util.concurrent.locks.ReentrantLock;
13 import java.util.concurrent.locks.Condition;
14 import javax.swing.JFrame;
15 import javax.swing.JTextArea;
16 import javax.swing.SwingUtilities;
17
18 public class TicTacToeServer extends JFrame
19 {
20 private String[] board = new String[9]; // tic-tac-toe board
21 private JTextArea outputArea; // for outputting moves
22 private Player[] players; // array of Players
23 private ServerSocket server; // server socket to connect with clients
24 private int currentPlayer; // keeps track of player with current move
25 private final static int PLAYER_X = 0; // constant for first player
26 private final static int PLAYER_O = 1; // constant for second player
27 private final static String[] MARKS = { "X", "O" }; // array of marks
28 private ExecutorService runGame; // will run players
29 private Lock gameLock; // to lock game for synchronization
30 private Condition otherPlayerConnected; // to wait for other player
31 private Condition otherPlayerTurn; // to wait for other player's turn
32
33 // set up tic-tac-toe server and GUI that displays messages
34 public TicTacToeServer()
35 {
36 super("Tic-Tac-Toe Server"); // set title of window
37
38 // create ExecutorService with a thread for each player
39 runGame = Executors.newFixedThreadPool(2);
40 gameLock = new ReentrantLock(); // create lock for game
41
42 // condition variable for both players being connected
43 otherPlayerConnected = gameLock.newCondition();
44
45 // condition variable for the other player's turn
46 otherPlayerTurn = gameLock.newCondition();
47
48 for (int i = 0; i < 9; i++)
49 board[i] = new String(""); // create tic-tac-toe board
50
51 currentPlayer = PLAYER_X; // set current player to first player
52
53 try
54 {
55
56 }
57 catch (IOException ioException)
58 {
59 ioException.printStackTrace();
60 System.exit(1);
61 }
62
63 outputArea = new JTextArea(); // create JTextArea for output

Fig. 28.11 | Server side of client/server Tic-Tac-Toe program. (Part 2 of 7.)

players = new Player[2]; // create array of players

server = new ServerSocket(12345, 2); // set up ServerSocket

jhtp_28_Networking.fm Page 29 Wednesday, June 21, 2017 3:15 PM

28_30 Chapter 28 Networking

64 add(outputArea, BorderLayout.CENTER);
65 outputArea.setText("Server awaiting connections\n");
66
67 setSize(300, 300); // set size of window
68 setVisible(true); // show window
69 }
70
71 // wait for two connections so game can be played
72 public void execute()
73 {
74 // wait for each client to connect
75 for (int i = 0; i < players.length; i++)
76 {
77 try // wait for connection, create Player, start runnable
78 {
79
80
81 }
82 catch (IOException ioException)
83 {
84 ioException.printStackTrace();
85 System.exit(1);
86 }
87 }
88
89 gameLock.lock(); // lock game to signal player X's thread
90
91 try
92 {
93 players[PLAYER_X].setSuspended(false); // resume player X
94 otherPlayerConnected.signal(); // wake up player X's thread
95 }
96 finally
97 {
98 gameLock.unlock(); // unlock game after signalling player X
99 }
100 }
101
102 // display message in outputArea
103 private void displayMessage(final String messageToDisplay)
104 {
105 // display message from event-dispatch thread of execution
106 SwingUtilities.invokeLater(
107 new Runnable()
108 {
109 public void run() // updates outputArea
110 {
111 outputArea.append(messageToDisplay); // add message
112 }
113 }
114);
115 }

Fig. 28.11 | Server side of client/server Tic-Tac-Toe program. (Part 3 of 7.)

players[i] = new Player(server.accept(), i);
runGame.execute(players[i]); // execute player runnable

jhtp_28_Networking.fm Page 30 Wednesday, June 21, 2017 3:15 PM

28.7 Client/Server Tic-Tac-Toe Using a Multithreaded Server 28_31

116
117 // determine if move is valid
118 public boolean validateAndMove(int location, int player)
119 {
120 // while not current player, must wait for turn
121 while (player != currentPlayer)
122 {
123 gameLock.lock(); // lock game to wait for other player to go
124
125 try
126 {
127 otherPlayerTurn.await(); // wait for player's turn
128 }
129 catch (InterruptedException exception)
130 {
131 exception.printStackTrace();
132 }
133 finally
134 {
135 gameLock.unlock(); // unlock game after waiting
136 }
137 }
138
139 // if location not occupied, make move
140 if (!isOccupied(location))
141 {
142 board[location] = MARKS[currentPlayer]; // set move on board
143 currentPlayer = (currentPlayer + 1) % 2; // change player
144
145 // let new current player know that move occurred
146 players[currentPlayer].otherPlayerMoved(location);
147
148 gameLock.lock(); // lock game to signal other player to go
149
150 try
151 {
152 otherPlayerTurn.signal(); // signal other player to continue
153 }
154 finally
155 {
156 gameLock.unlock(); // unlock game after signaling
157 }
158
159 return true; // notify player that move was valid
160 }
161 else // move was not valid
162 return false; // notify player that move was invalid
163 }
164
165 // determine whether location is occupied
166 public boolean isOccupied(int location)
167 {

Fig. 28.11 | Server side of client/server Tic-Tac-Toe program. (Part 4 of 7.)

jhtp_28_Networking.fm Page 31 Wednesday, June 21, 2017 3:15 PM

28_32 Chapter 28 Networking

168 if (board[location].equals(MARKS[PLAYER_X]) ||
169 board [location].equals(MARKS[PLAYER_O]))
170 return true; // location is occupied
171 else
172 return false; // location is not occupied
173 }
174
175 // place code in this method to determine whether game over
176 public boolean isGameOver()
177 {
178 return false; // this is left as an exercise
179 }
180
181 // private inner class Player manages each Player as a runnable
182 private class Player implements Runnable
183 {
184 private Socket connection; // connection to client
185 private Scanner input; // input from client
186 private Formatter output; // output to client
187 private int playerNumber; // tracks which player this is
188 private String mark; // mark for this player
189 private boolean suspended = true; // whether thread is suspended
190
191 // set up Player thread
192 public Player(Socket socket, int number)
193 {
194 playerNumber = number; // store this player's number
195 mark = MARKS[playerNumber]; // specify player's mark
196 connection = socket; // store socket for client
197
198 try // obtain streams from Socket
199 {
200
201
202 }
203 catch (IOException ioException)
204 {
205 ioException.printStackTrace();
206 System.exit(1);
207 }
208 }
209
210 // send message that other player moved
211 public void otherPlayerMoved(int location)
212 {
213
214
215
216 }
217

Fig. 28.11 | Server side of client/server Tic-Tac-Toe program. (Part 5 of 7.)

input = new Scanner(connection.getInputStream());
output = new Formatter(connection.getOutputStream());

output.format("Opponent moved\n");
output.format("%d\n", location); // send location of move
output.flush(); // flush output

jhtp_28_Networking.fm Page 32 Wednesday, June 21, 2017 3:15 PM

28.7 Client/Server Tic-Tac-Toe Using a Multithreaded Server 28_33

218 // control thread's execution
219 public void run()
220 {
221 // send client its mark (X or O), process messages from client
222 try
223 {
224 displayMessage("Player " + mark + " connected\n");
225
226
227
228 // if player X, wait for another player to arrive
229 if (playerNumber == PLAYER_X)
230 {
231
232
233
234
235 gameLock.lock(); // lock game to wait for second player
236
237 try
238 {
239 while(suspended)
240 {
241 otherPlayerConnected.await(); // wait for player O
242 }
243 }
244 catch (InterruptedException exception)
245 {
246 exception.printStackTrace();
247 }
248 finally
249 {
250 gameLock.unlock(); // unlock game after second player
251 }
252
253 // send message that other player connected
254
255
256 }
257 else
258 {
259
260
261 }
262
263 // while game not over
264 while (!isGameOver())
265 {
266 int location = 0; // initialize move location
267
268 if (input.hasNext())
269
270

Fig. 28.11 | Server side of client/server Tic-Tac-Toe program. (Part 6 of 7.)

output.format("%s\n", mark); // send player's mark
output.flush(); // flush output

output.format("%s\n%s", "Player X connected",
 "Waiting for another player\n");
output.flush(); // flush output

output.format("Other player connected. Your move.\n");
output.flush(); // flush output

output.format("Player O connected, please wait\n");
output.flush(); // flush output

location = input.nextInt(); // get move location

jhtp_28_Networking.fm Page 33 Wednesday, June 21, 2017 3:15 PM

28_34 Chapter 28 Networking

271 // check for valid move
272 if (validateAndMove(location, playerNumber))
273 {
274 displayMessage("\nlocation: " + location);
275
276
277 }
278 else // move was invalid
279 {
280
281
282 }
283 }
284 }
285 finally
286 {
287 try
288 {
289 connection.close(); // close connection to client
290 }
291 catch (IOException ioException)
292 {
293 ioException.printStackTrace();
294 System.exit(1);
295 }
296 }
297 }
298
299 // set whether or not thread is suspended
300 public void setSuspended(boolean status)
301 {
302 suspended = status; // set value of suspended
303 }
304 }
305 }

1 // Fig. 28.12: TicTacToeServerTest.java
2 // Class that tests Tic-Tac-Toe server.
3 import javax.swing.JFrame;
4
5 public class TicTacToeServerTest
6 {
7 public static void main(String[] args)
8 {
9 TicTacToeServer application = new TicTacToeServer();

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 application.execute();
12 }
13 }

Fig. 28.12 | Class that tests Tic-Tac-Toe server. (Part 1 of 2.)

Fig. 28.11 | Server side of client/server Tic-Tac-Toe program. (Part 7 of 7.)

output.format("Valid move.\n"); // notify client
output.flush(); // flush output

output.format("Invalid move, try again\n");
output.flush(); // flush output

jhtp_28_Networking.fm Page 34 Wednesday, June 21, 2017 3:15 PM

28.7 Client/Server Tic-Tac-Toe Using a Multithreaded Server 28_35

We begin with a discussion of the server side of the Tic-Tac-Toe game. When the
TicTacToeServer application executes, the main method (lines 7–12 of Fig. 28.12) creates
a TicTacToeServer object called application. The constructor (Fig. 28.11, lines 34–69)
attempts to set up a ServerSocket. If successful, the program displays the server window,
then main invokes the TicTacToeServer method execute (lines 72–100). Method exe-
cute loops twice, blocking at line 79 each time while waiting for a client connection.
When a client connects, line 79 creates a new Player object to manage the connection as
a separate thread, and line 80 executes the Player in the runGame thread pool.

When the TicTacToeServer creates a Player, the Player constructor (lines 192–
208) receives the Socket object representing the connection to the client and gets the asso-
ciated input and output streams. Line 201 creates a Formatter (see Chapter 15) by wrap-
ping it around the output stream of the socket. The Player’s run method (lines 219–297)
controls the information that’s sent to and received from the client. First, it passes to the
client the character that the client will place on the board when a move is made (line 225).
Line 226 calls Formatter method flush to force this output to the client. Line 241 sus-
pends player X’s thread as it starts executing, because player X can move only after player
O connects.

When player O connects, the game can be played, and the run method begins exe-
cuting its while statement (lines 264–283). Each iteration of this loop reads an integer
(line 269) representing the location where the client wants to place a mark (blocking to
wait for input, if necessary), and line 272 invokes the TicTacToeServer method
validateAndMove (declared at lines 118–163) to check the move. If the move is valid, line
275 sends a message to the client to this effect. If not, line 280 sends a message indicating
that the move was invalid. The program maintains board locations as numbers from 0 to
8 (0 through 2 for the first row, 3 through 5 for the second row and 6 through 8 for the
third row).

Method validateAndMove (lines 118–163 in class TicTacToeServer) allows only one
player at a time to move, thereby preventing them from modifying the state information
of the game simultaneously. If the Player attempting to validate a move is not the current
player (i.e., the one allowed to make a move), it’s placed in a wait state until its turn to
move. If the position for the move being validated is already occupied on the board,

Fig. 28.12 | Class that tests Tic-Tac-Toe server. (Part 2 of 2.)

jhtp_28_Networking.fm Page 35 Wednesday, June 21, 2017 3:15 PM

28_36 Chapter 28 Networking

validMove returns false. Otherwise, the server places a mark for the player in its local rep-
resentation of the board (line 142), notifies the other Player object (line 146) that a move
has been made (so that the client can be sent a message), invokes method signal (line 152)
so that the waiting Player (if there is one) can validate a move and returns true (line 159)
to indicate that the move is valid.

TicTacToeClient Class
Each TicTacToeClient application (Figs. 28.13–28.14; sample outputs in Fig. 28.15)
maintains its own GUI version of the Tic-Tac-Toe board on which it displays the state of
the game. The clients can place a mark only in an empty square. Inner class Square
(Fig. 28.13, lines 205–261) implements each of the nine squares on the board. When a
TicTacToeClient begins execution, it creates a JTextArea in which messages from the
server and a representation of the board using nine Square objects are displayed. The
startClient method (lines 80–100) opens a connection to the server and gets the associ-
ated input and output streams from the Socket object. Lines 85–86 make a connection to
the server. Class TicTacToeClient implements interface Runnable so that a separate
thread can read messages from the server. This approach enables the user to interact with
the board (in the event-dispatch thread) while waiting for messages from the server. After
establishing the connection to the server, line 99 executes the client with the worker Ex-
ecutorService. The run method (lines 103–126) controls the separate thread of execu-
tion. The method first reads the mark character (X or O) from the server (line 105), then
loops continuously (lines 121–125) and reads messages from the server (line 124). Each
message is passed to the processMessage method (lines 129–156) for processing.

1 // Fig. 28.13: TicTacToeClient.java
2 // Client side of client/server Tic-Tac-Toe program.
3 import java.awt.BorderLayout;
4 import java.awt.Dimension;
5 import java.awt.Graphics;
6 import java.awt.GridLayout;
7 import java.awt.event.MouseAdapter;
8 import java.awt.event.MouseEvent;
9 import java.net.Socket;

10 import java.net.InetAddress;
11 import java.io.IOException;
12 import javax.swing.JFrame;
13 import javax.swing.JPanel;
14 import javax.swing.JScrollPane;
15 import javax.swing.JTextArea;
16 import javax.swing.JTextField;
17 import javax.swing.SwingUtilities;
18 import java.util.Formatter;
19 import java.util.Scanner;
20 import java.util.concurrent.Executors;
21 import java.util.concurrent.ExecutorService;
22
23 public class TicTacToeClient extends JFrame implements Runnable
24 {

Fig. 28.13 | Client side of client/server Tic-Tac-Toe program. (Part 1 of 6.)

jhtp_28_Networking.fm Page 36 Wednesday, June 21, 2017 3:15 PM

28.7 Client/Server Tic-Tac-Toe Using a Multithreaded Server 28_37

25 private JTextField idField; // textfield to display player's mark
26 private JTextArea displayArea; // JTextArea to display output
27 private JPanel boardPanel; // panel for tic-tac-toe board
28 private JPanel panel2; // panel to hold board
29 private Square[][] board; // tic-tac-toe board
30 private Square currentSquare; // current square
31 private Socket connection; // connection to server
32 private Scanner input; // input from server
33 private Formatter output; // output to server
34 private String ticTacToeHost; // host name for server
35 private String myMark; // this client's mark
36 private boolean myTurn; // determines which client's turn it is
37 private final String X_MARK = "X"; // mark for first client
38 private final String O_MARK = "O"; // mark for second client
39
40 // set up user-interface and board
41 public TicTacToeClient(String host)
42 {
43 ticTacToeHost = host; // set name of server
44 displayArea = new JTextArea(4, 30); // set up JTextArea
45 displayArea.setEditable(false);
46 add(new JScrollPane(displayArea), BorderLayout.SOUTH);
47
48 boardPanel = new JPanel(); // set up panel for squares in board
49 boardPanel.setLayout(new GridLayout(3, 3, 0, 0));
50
51 board = new Square[3][3]; // create board
52
53 // loop over the rows in the board
54 for (int row = 0; row < board.length; row++)
55 {
56 // loop over the columns in the board
57 for (int column = 0; column < board[row].length; column++)
58 {
59 // create square
60 board[row][column] = new Square(' ', row * 3 + column);
61 boardPanel.add(board[row][column]); // add square
62 }
63 }
64
65 idField = new JTextField(); // set up textfield
66 idField.setEditable(false);
67 add(idField, BorderLayout.NORTH);
68
69 panel2 = new JPanel(); // set up panel to contain boardPanel
70 panel2.add(boardPanel, BorderLayout.CENTER); // add board panel
71 add(panel2, BorderLayout.CENTER); // add container panel
72
73 setSize(300, 225); // set size of window
74 setVisible(true); // show window
75
76 startClient();
77 }

Fig. 28.13 | Client side of client/server Tic-Tac-Toe program. (Part 2 of 6.)

jhtp_28_Networking.fm Page 37 Wednesday, June 21, 2017 3:15 PM

28_38 Chapter 28 Networking

78
79 // start the client thread
80 public void startClient()
81 {
82 try // connect to server and get streams
83 {
84 // make connection to server
85
86
87
88 // get streams for input and output
89
90
91 }
92 catch (IOException ioException)
93 {
94 ioException.printStackTrace();
95 }
96
97 // create and start worker thread for this client
98 ExecutorService worker = Executors.newFixedThreadPool(1);
99 worker.execute(this); // execute client
100 }
101
102 // control thread that allows continuous update of displayArea
103 public void run()
104 {
105
106
107 SwingUtilities.invokeLater(
108 new Runnable()
109 {
110 public void run()
111 {
112 // display player's mark
113 idField.setText("You are player \"" + myMark + "\"");
114 }
115 }
116);
117
118 myTurn = (myMark.equals(X_MARK)); // determine if client's turn
119
120 // receive messages sent to client and output them
121 while (true)
122 {
123 if (input.hasNextLine())
124 processMessage();
125 }
126 }
127
128 // process messages received by client
129 private void processMessage(String message)
130 {

Fig. 28.13 | Client side of client/server Tic-Tac-Toe program. (Part 3 of 6.)

connection = new Socket(
 InetAddress.getByName(ticTacToeHost), 12345);

input = new Scanner(connection.getInputStream());
output = new Formatter(connection.getOutputStream());

myMark = input.nextLine(); // get player's mark (X or O)

input.nextLine()

jhtp_28_Networking.fm Page 38 Wednesday, June 21, 2017 3:15 PM

28.7 Client/Server Tic-Tac-Toe Using a Multithreaded Server 28_39

131 // valid move occurred
132 if (message.equals("Valid move."))
133 {
134 displayMessage("Valid move, please wait.\n");
135 setMark(currentSquare, myMark); // set mark in square
136 }
137 else if (message.equals("Invalid move, try again"))
138 {
139 displayMessage(message + "\n"); // display invalid move
140 myTurn = true; // still this client's turn
141 }
142 else if (message.equals("Opponent moved"))
143 {
144 int location = input.nextInt(); // get move location
145 input.nextLine(); // skip newline after int location
146 int row = location / 3; // calculate row
147 int column = location % 3; // calculate column
148
149 setMark(board[row][column],
150 (myMark.equals(X_MARK) ? O_MARK : X_MARK)); // mark move
151 displayMessage("Opponent moved. Your turn.\n");
152 myTurn = true; // now this client's turn
153 }
154 else
155 displayMessage(message + "\n"); // display the message
156 }
157
158 // manipulate displayArea in event-dispatch thread
159 private void displayMessage(final String messageToDisplay)
160 {
161 SwingUtilities.invokeLater(
162 new Runnable()
163 {
164 public void run()
165 {
166 displayArea.append(messageToDisplay); // updates output
167 }
168 }
169);
170 }
171
172 // utility method to set mark on board in event-dispatch thread
173 private void setMark(final Square squareToMark, final String mark)
174 {
175 SwingUtilities.invokeLater(
176 new Runnable()
177 {
178 public void run()
179 {
180 squareToMark.setMark(mark); // set mark in square
181 }

Fig. 28.13 | Client side of client/server Tic-Tac-Toe program. (Part 4 of 6.)

jhtp_28_Networking.fm Page 39 Wednesday, June 21, 2017 3:15 PM

28_40 Chapter 28 Networking

182 }
183);
184 }
185
186 // send message to server indicating clicked square
187 public void sendClickedSquare(int location)
188 {
189 // if it is my turn
190 if (myTurn)
191 {
192
193
194 myTurn = false; // not my turn any more
195 }
196 }
197
198 // set current Square
199 public void setCurrentSquare(Square square)
200 {
201 currentSquare = square; // set current square to argument
202 }
203
204 // private inner class for the squares on the board
205 private class Square extends JPanel
206 {
207 private String mark; // mark to be drawn in this square
208 private int location; // location of square
209
210 public Square(String squareMark, int squareLocation)
211 {
212 mark = squareMark; // set mark for this square
213 location = squareLocation; // set location of this square
214
215 addMouseListener(
216 new MouseAdapter()
217 {
218 public void mouseReleased(MouseEvent e)
219 {
220 setCurrentSquare(Square.this); // set current square
221
222 // send location of this square
223 sendClickedSquare(getSquareLocation());
224 }
225 }
226);
227 }
228
229 // return preferred size of Square
230 public Dimension getPreferredSize()
231 {
232 return new Dimension(30, 30); // return preferred size
233 }

Fig. 28.13 | Client side of client/server Tic-Tac-Toe program. (Part 5 of 6.)

output.format("%d\n", location); // send location to server
output.flush();

jhtp_28_Networking.fm Page 40 Wednesday, June 21, 2017 3:15 PM

28.7 Client/Server Tic-Tac-Toe Using a Multithreaded Server 28_41

234
235 // return minimum size of Square
236 public Dimension getMinimumSize()
237 {
238 return getPreferredSize(); // return preferred size
239 }
240
241 // set mark for Square
242 public void setMark(String newMark)
243 {
244 mark = newMark; // set mark of square
245 repaint(); // repaint square
246 }
247
248 // return Square location
249 public int getSquareLocation()
250 {
251 return location; // return location of square
252 }
253
254 // draw Square
255 public void paintComponent(Graphics g)
256 {
257 super.paintComponent(g);
258
259 g.drawRect(0, 0, 29, 29); // draw square
260 g.drawString(mark, 11, 20); // draw mark
261 }
262 }
263 }

1 // Fig. 28.14: TicTacToeClientTest.java
2 // Test class for Tic-Tac-Toe client.
3 import javax.swing.JFrame;
4
5 public class TicTacToeClientTest
6 {
7 public static void main(String[] args)
8 {
9 TicTacToeClient application; // declare client application

10
11 // if no command line args
12 if (args.length == 0)
13 application = new TicTacToeClient("127.0.0.1"); // localhost
14 else
15 application = new TicTacToeClient(args[0]); // use args
16
17 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 }
19 }

Fig. 28.14 | Test class for Tic-Tac-Toe client.

Fig. 28.13 | Client side of client/server Tic-Tac-Toe program. (Part 6 of 6.)

jhtp_28_Networking.fm Page 41 Wednesday, June 21, 2017 3:15 PM

28_42 Chapter 28 Networking

If the message received is "Valid move.", lines 134–135 display the message "Valid
move, please wait." and call method setMark (lines 173–184) to set the client’s mark in
the current square (the one in which the user clicked), using SwingUtilities method
invokeLater to ensure that the GUI updates occur in the event-dispatch thread. If the
message received is "Invalid move, try again.", line 139 displays the message so that the
user can click a different square. If the message received is "Opponent moved.", line 144
reads an integer from the server indicating where the opponent moved, and lines 149–150
place a mark in that square of the board (again using SwingUtilities method invoke-
Later to ensure that the GUI updates occur in the event-dispatch thread). If any other
message is received, line 155 simply displays the message.

Fig. 28.15 | Sample outputs from the client/server Tic-Tac-Toe program. (Part 1 of 2.)

a) Player X connected to server. b) Player O connected to server.

c) Player X moved. d) Player O sees Player X’s move.

e) Player O moved. f) Player X sees Player O’s move.

jhtp_28_Networking.fm Page 42 Wednesday, June 21, 2017 3:15 PM

28.8 Optional Online Case Study: DeitelMessenger 28_43

28.8 Optional Online Case Study: DeitelMessenger2

This case study is available at http://www.deitel.com/books/jhtp11. Chat rooms pro-
vide a central location where users can chat with each other via short text messages. Each
participant can see all the messages that the other users post, and each user can post mes-
sages. This case study integrates many of the Java networking, multithreading and Swing
GUI features you’ve learned thus far to build an online chat system. We also introduce
multicasting, which enables an application to send DatagramPackets to groups of clients.

The DeitelMessenger case study is a significant application that uses many interme-
diate Java features, such as networking with Sockets, DatagramPackets and Multicast-
Sockets, multithreading and Swing GUI. The case study also demonstrates good software
engineering practices by separating interface from implementation and enabling devel-
opers to support different network protocols and provide different user interfaces. After
reading this case study, you’ll be able to build more significant networking applications.

28.9 Wrap-Up
In this chapter, you learned the basics of network programming in Java. You learned two
different methods of sending data over a network—streams-based networking using TCP/
IP and datagrams-based networking using UDP. We showed how to build simple client/
server chat programs using both streams-based and datagram-based networking. You then
saw a client/server Tic-Tac-Toe game that enables two clients to play by interacting with
a multithreaded server that maintains the game’s state and logic. In the next chapter, you’ll
learn basic database concepts, how to interact with data in a database using SQL and how
to use JDBC to allow Java applications to manipulate database data.

2. This case study is from the Seventh Edition of this book and is provided as is. We no longer provide
support for it.

Fig. 28.15 | Sample outputs from the client/server Tic-Tac-Toe program. (Part 2 of 2.)

g) Player X moved. h) Player O sees Player X’s last move.

jhtp_28_Networking.fm Page 43 Wednesday, June 21, 2017 3:15 PM

28_44 Chapter 28 Networking

Summary

Section 28.1 Introduction
• Java provides stream sockets and datagram sockets (p. 2). With stream sockets (p. 2), a process

establishes a connection (p. 2) to another process. While the connection is in place, data flows
between the processes in streams. Stream sockets are said to provide a connection-oriented service
(p. 2). The protocol used for transmission is the popular TCP (Transmission Control Protocol;
p. 2).

• With datagram sockets (datagram socket), individual packets of information are transmitted.
UDP (User Datagram Protocol; p. 2) is a connectionless service that does not guarantee that
packets will not be lost, duplicated or arrive out of sequence.

Section 28.2 Reading a File on a Web Server
• JEditorPane (p. 3) method setPage (p. 5) downloads the document specified by its argument

and displays it.

• Typically, an HTML document contains hyperlinks that link to other documents on the web. If
an HTML document is displayed in an uneditable JEditorPane and the user clicks a hyperlink
(p. 5), a HyperlinkEvent (p. 5) occurs and the HyperlinkListeners are notified.

• HyperlinkEvent method getEventType (p. 5) determines the event type. HyperlinkEvent con-
tains nested class EventType (p. 5), which declares event types ACTIVATED, ENTERED and EXITED.
HyperlinkEvent method getURL (p. 5) obtains the URL represented by the hyperlink.

Section 28.3 Establishing a Simple Server Using Stream Sockets
• Stream-based connections (p. 2) are managed with Socket objects (p. 6).

• A ServerSocket object (p. 6) establishes the port (p. 6) where a server (p. 2) waits for connections
from clients (p. 2). ServerSocket method accept (p. 6) waits indefinitely for a connection from
a client and returns a Socket object when a connection is established.

• Socket methods getOutputStream and getInputStream (p. 7) get references to a Socket’s Out-
putStream and InputStream, respectively. Method close (p. 7) terminates a connection.

Section 28.4 Establishing a Simple Client Using Stream Sockets
• A server name and port number (p. 6) are specified when creating a Socket object to enable it to

connect a client to the server. A failed connection attempt throws an IOException.

• InetAddress method getByName (p. 20) returns an InetAddress object (p. 14) containing the IP
address of the specified computer. InetAddress method getLocalHost (p. 20) returns an InetAd-
dress object containing the IP address of the local computer executing the program.

Section 28.6 Datagrams: Connectionless Client/Server Interaction
• Connection-oriented transmission is like the telephone system—you dial and are given a con-

nection to the telephone of the person with whom you wish to communicate. The connection is
maintained for the duration of your phone call, even when you aren’t talking.

• Connectionless transmission (p. 20) with datagrams is similar to mail carried via the postal ser-
vice. A large message that will not fit in one envelope can be broken into separate message pieces
that are placed in separate, sequentially numbered envelopes. All the letters are then mailed at
once. They could arrive in order, out of order or not at all.

• DatagramPacket objects store packets of data that are to be sent or that are received by an appli-
cation. DatagramSockets send and receive DatagramPackets.

jhtp_28_Networking.fm Page 44 Wednesday, June 21, 2017 3:15 PM

 Self-Review Exercises 28_45

• The DatagramSocket constructor that takes no arguments binds the DatagramSocket to a port
chosen by the computer executing the program. The one that takes an integer port-number ar-
gument binds the DatagramSocket to the specified port. If a DatagramSocket constructor fails to
bind the DatagramSocket to a port, a SocketException occurs (p. 21). DatagramSocket method
receive (p. 24) blocks (waits) until a packet arrives, then stores the packet in its argument.

• DatagramPacket method getAddress (p. 24) returns an InetAddress object containing informa-
tion about the computer from or to which the packet was sent. Method getPort (p. 24) returns
an integer specifying the port number (p. 6) through which the DatagramPacket was sent or re-
ceived. Method getLength (getLength) returns the number of bytes of data in a DatagramPacket.
Method getData (p. 24) returns a byte array containing the data.

• The DatagramPacket constructor for a packet to be sent takes four arguments—the byte array to
be sent, the number of bytes to be sent, the client address to which the packet will be sent and
the port number where the client is waiting to receive packets.

• DatagramSocket method send (p. 24) sends a DatagramPacket out over the network.

• If an error occurs when receiving or sending a DatagramPacket, an IOException occurs.

Self-Review Exercises
28.1 Fill in the blanks in each of the following statements:

a) Exception occurs when an input/output error occurs when closing a socket.
b) Exception occurs when a hostname indicated by a client cannot be resolved

to an address.
c) If a DatagramSocket constructor fails to set up a DatagramSocket properly, an exception

of type occurs.
d) Many of Java’s networking classes are contained in package .
e) Class binds the application to a port for datagram transmission.
f) An object of class contains an IP address.
g) The two types of sockets we discussed in this chapter are and .
h) Method getLocalHost returns a(n) object containing the local IP address of the

computer on which the program is executing.
i) The URL constructor determines whether its String argument is a valid URL. If so, the

URL object is initialized with that location. If not, a(n) exception occurs.

28.2 State whether each of the following is true or false. If false, explain why.
a) UDP is a connection-oriented protocol.
b) With stream sockets a process establishes a connection to another process.
c) A server waits at a port for connections from a client.
d) Datagram packet transmission over a network is reliable—packets are guaranteed to ar-

rive in sequence.

Answers to Self-Review Exercises
28.1 a) IOException. b) UnknownHostException. c) SocketException. d) java.net. e) Data-
gramSocket. f) InetAddress. g) stream sockets, datagram sockets. h) InetAddress. i) Malformed-
URLException.

28.2 a) False; UDP is a connectionless protocol and TCP is a connection-oriented protocol.
b) True. c) True. d) False; packets can be lost, arrive out of order or be duplicated.

jhtp_28_Networking.fm Page 45 Wednesday, June 21, 2017 3:15 PM

28_46 Chapter 28 Networking

Exercises
28.3 Distinguish between connection-oriented and connectionless network services.

28.4 How does a client determine the hostname of the client computer?

28.5 Under what circumstances would a SocketException be thrown?

28.6 How can a client get a line of text from a server?

28.7 Describe how a client connects to a server.

28.8 Describe how a server sends data to a client.

28.9 Describe how to prepare a server to receive a stream-based connection from a single client.

28.10 How does a server listen for streams-based socket connections at a port?

28.11 What determines how many connect requests from clients can wait in a queue to connect
to a server?

28.12 As described in the text, what reasons might cause a server to refuse a connection request
from a client?

28.13 Use a socket connection to allow a client to specify a filename of a text file and have the
server send the contents of the file or indicate that the file does not exist.

28.14 Modify Exercise 28.13 to allow the client to modify the contents of the file and send the
file back to the server for storage. The user can edit the file in a JTextArea, then click a save changes
button to send the file back to the server.

28.15 (Multithreaded Server) Multithreaded servers are quite popular today, especially because of
the increasing use of multi-core servers. Modify the simple server application presented in
Section 28.5 to be a multithreaded server. Then use several client applications and have each of
them connect to the server simultaneously. Use an ArrayList to store the client threads. ArrayList
provides several methods to use in this exercise. Method size determines the number of elements
in an ArrayList. Method get returns the element in the location specified by its argument. Method
add places its argument at the end of the ArrayList. Method remove deletes its argument from the
ArrayList.

28.16 (Checkers Game) In the text, we presented a Tic-Tac-Toe program controlled by a multi-
threaded server. Develop a checkers program modeled after the Tic-Tac-Toe program. The two us-
ers should alternate making moves. Your program should mediate the players’ moves, determining
whose turn it is and allowing only valid moves. The players themselves will determine when the
game is over.

28.17 (Chess Game) Develop a chess-playing program modeled after Exercise 28.16.

28.18 (Blackjack Game) Develop a blackjack card game program in which the server application
deals cards to each of the clients. The server should deal additional cards (per the rules of the game)
to each player as requested.

28.19 (Poker Game) Develop a poker game in which the server application deals cards to each cli-
ent. The server should deal additional cards (per the rules of the game) to each player as requested.

28.20 (Modifications to the Multithreaded Tic-Tac-Toe Program) The programs in Figs. 28.11
and 28.13 implemented a multithreaded, client/server version of the game of Tic-Tac-Toe. Our
goal in developing this game was to demonstrate a multithreaded server that could process multiple
connections from clients at the same time. The server in the example is really a mediator between
the two clients—it makes sure that each move is valid and that each client moves in the proper order.
The server does not determine who won or lost or whether there was a draw. Also, there’s no capa-
bility to allow a new game to be played or to terminate an existing game.

The following is a list of suggested modifications to Figs. 28.11 and 28.13:

jhtp_28_Networking.fm Page 46 Wednesday, June 21, 2017 3:15 PM

 Exercises 28_47

a) Modify the TicTacToeServer class to test for a win, loss or draw after each move. Send
a message to each client that indicates the result of the game when the game is over.

b) Modify the TicTacToeClient class to display a button that when clicked allows the cli-
ent to play another game. The button should be enabled only when a game completes.
Both class TicTacToeClient and class TicTacToeServer must be modified to reset the
board and all state information. Also, the other TicTacToeClient should be notified
that a new game is about to begin so that its board and state can be reset.

c) Modify the TicTacToeClient class to provide a button that allows a client to terminate
the program at any time. When the user clicks the button, the server and the other client
should be notified. The server should then wait for a connection from another client so
that a new game can begin.

d) Modify the TicTacToeClient class and the TicTacToeServer class so that the winner of
a game can choose game piece X or O for the next game. Remember: X always goes first.

e) If you’d like to be ambitious, allow a client to play against the server while the server
waits for a connection from another client.

28.21 (3-D Multithreaded Tic-Tac-Toe) Modify the multithreaded, client/server Tic-Tac-Toe
program to implement a three-dimensional 4-by-4-by-4 version of the game. Implement the server
application to mediate between the two clients. Display the three-dimensional board as four boards
containing four rows and four columns each. If you’re ambitious, try the following modifications:

a) Draw the board in a three-dimensional manner.
b) Allow the server to test for a win, loss or draw. Beware! There are many possible ways

to win on a 4-by-4-by-4 board!

28.22 (Networked Morse Code) Perhaps the most famous of all coding schemes is the Morse code,
developed by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a
series of dots and dashes to each letter of the alphabet, each digit, and a few special characters (e.g.,
period, comma, colon and semicolon). In sound-oriented systems, the dot represents a short sound
and the dash a long sound. Other representations of dots and dashes are used with light-oriented
systems and signal-flag systems. Separation between words is indicated by a space or, simply, the
absence of a dot or dash. In a sound-oriented system, a space is indicated by a short time during
which no sound is transmitted. The international version of the Morse code appears in Fig. 28.16.

Write a client/server application in which two clients can send Morse-code messages to each
other through a multithreaded server application. The client application should allow the user to
type English-language phrases in a JTextArea. When the user sends the message, the client applica-
tion encodes the text into Morse code and sends the coded message through the server to the other

Character Code Character Code Character Code Character Code

A .- J .--- S ... 1 .----
B -... K -.- T - 2 ..---
C -.-. L .-.. U ..- 3 ...--
D -.. M -- V ...- 4-
E . N -. W .-- 5
F ..-. O --- X -..- 6 -....
G --. P .--. Y -.-- 7 --...
H Q --.- Z --.. 8 ---..
I .. R .-. 9 ----.

0 -----

Fig. 28.16 | Letters and digits in international Morse code.

jhtp_28_Networking.fm Page 47 Wednesday, June 21, 2017 3:15 PM

28_48 Chapter 28 Networking

client. Use one blank between each Morse-coded letter and three blanks between each Morse-
coded word. When messages are received, they should be decoded and displayed as normal charac-
ters and as Morse code. The client should have one JTextField for typing and one JTextArea for
displaying the other client’s messages.

jhtp_28_Networking.fm Page 48 Wednesday, June 21, 2017 3:15 PM

