
30JavaServer™ Faces Web
Apps: Part 1

O b j e c t i v e s
In this chapter you’ll learn:

■ To create JavaServer Faces
web apps.

■ To create web apps
consisting of multiple pages.

■ To validate user input on a
web page.

■ To maintain user-specific
state information throughout
a web app with session
tracking.

jhtp_30_webapp1.fm Page 1 Tuesday, April 10, 2018 9:26 AM

30_2 Chapter 30 JavaServer™ Faces Web Apps: Part 1

30.1 Introduction
In this chapter, we introduce web app development in Java with JavaServer Faces (JSF).
Web-based apps create content for web browser clients. This content includes eXtensible
HyperText Markup Language (XHTML), JavaScript client-side scripting, Cascading
Style Sheets (CSS), images and binary data. XHTML is an XML (eXtensible Markup Lan-
guage) vocabulary that is based on HTML (HyperText Markup Language). We discuss
only the features of these technologies that are required to understand the examples in this
chapter. If you’d like more information on XHTML, XML, JavaScript and CSS, please
visit our Resource Centers on each of these topics at

where you’ll find links to introductions, tutorials and other valuable resources.
This chapter begins with an overview of how interactions between a web browser and

web server work. We then present several web apps implemented with JSF. We continue
this discussion in Chapter 31 with more advanced web applications.

Java multitier applications are typically implemented using Java Enterprise Edition
(Java EE). The technologies we use to develop web apps here and in Chapter 31 are part of
Java EE (http://www.oracle.com/technetwork/java/javaee/overview/index.html).
After you study this chapter and the next, you can learn more about JavaServer Faces in
Oracle’s extensive Java EE tutorial at http://docs.oracle.com/javaee/7/tutorial.

We focus on the JavaServer Faces 2.01 subset of Java EE. JavaServer Faces is a web-
application framework that enables you to build multitier web apps by extending the
framework with your application-specific capabilities. The framework handles the details
of receiving client requests and returning responses for you so that you can focus on your
application’s functionality.

Required Software for This Chapter
To work with and implement the examples in this chapter and Chapters 31–32, you must
install the NetBeans 8 IDE and the GlassFish open-source application server. Both are
available in a bundle from http://netbeans.org/downloads/index.html. You’re prob-

30.1 Introduction
30.2 HyperText Transfer Protocol (HTTP)

Transactions
30.3 Multitier Application Architecture
30.4 Your First JSF Web App

30.4.1 The Default index.xhtml
Document: Introducing Facelets

30.4.2 Examining the WebTimeBean Class
30.4.3 Building the WebTime JSF Web App

in NetBeans

30.5 Model-View-Controller Architecture
of JSF Apps

30.6 Common JSF Components
30.7 Validation Using JSF Standard

Validators
30.8 Session Tracking

30.8.1 Cookies
30.8.2 Session Tracking with

@SessionScoped Beans
30.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

www.deitel.com/ResourceCenters.html

1. The JavaServer Faces Specification: http://bit.ly/JSF20Spec.

jhtp_30_webapp1.fm Page 2 Tuesday, April 10, 2018 9:26 AM

30.2 HyperText Transfer Protocol (HTTP) Transactions 30_3

ably using a computer with the Windows, Linux or Max OS X operating system—install-
ers are provided for each of these platforms. Download and execute the installer for the
Java EE or All version—both include the required Java Web and EE and Glassfish Server
Open Source Edition options. We assume you use the default installation options for your
platform. Once you’ve installed NetBeans, run it. Then, use the Help menu’s Check for
Updates option to make sure you have the most up-to-date components.

30.2 HyperText Transfer Protocol (HTTP) Transactions
To learn how JSF web apps work, it’s important to understand the basics of what occurs
behind the scenes when a user requests a web page in a web browser. If you’re already fa-
miliar with this and with multitier application architecture, you can skip to Section 30.4.

XHTML Documents
In its simplest form, a web page is nothing more than an XHTML document (also called
an XHTML page) that describes content to display in a web browser. HTML documents
normally contain hyperlinks that link to different pages or to other parts of the same page.
When the user clicks a hyperlink, the requested web page loads into the user’s web brows-
er. Similarly, the user can type the address of a page into the browser’s address field.

URLs
Computers that run web-server software make resources available, such as web pages, im-
ages, PDF documents and even objects that perform complex tasks such as database look-
ups and web searches. The HyperText Transfer Protocol (HTTP) is used by web browsers
to communicate with web servers, so they can exchange information in a uniform and re-
liable manner. URLs (Uniform Resource Locators) identify the locations on the Internet
of resources, such as those mentioned above. If you know the URL of a publicly available
web resource, you can access it through HTTP.

Parts of a URL
When you enter a URL into a web browser, the browser uses the information in the URL
to locate the web server that contains the resource and to request that resource from the
server. Let’s examine the components of the URL

The http:// indicates that the resource is to be obtained using the HTTP protocol. The
next portion, www.deitel.com, is the server’s fully qualified hostname—the name of the
server on which the resource resides. The computer that houses and maintains resources is
usually is referred to as the host. The hostname www.deitel.com is translated into an IP
(Internet Protocol) address—a unique numerical value that identifies the server, much as
a telephone number uniquely defines a particular phone line. This translation is performed
by a domain-name system (DNS) server—a computer that maintains a database of host-
names and their corresponding IP addresses—and the process is called a DNS lookup. To
test web apps, you’ll often use your computer as the host. This host is referred to using the
reserved domain name localhost, which translates to the IP address 127.0.0.1. The fully
qualified hostname can be followed by a colon (:) and a port number. Web servers typi-
cally await requests on port 80 by default; however, many development web servers use a
different port number, such as 8080—as you’ll see in Section 30.4.3.

http://www.deitel.com/books/downloads.html

jhtp_30_webapp1.fm Page 3 Tuesday, April 10, 2018 9:26 AM

30_4 Chapter 30 JavaServer™ Faces Web Apps: Part 1

The remainder of the URL (i.e., /books/downloads.html) specifies both the name of
the requested resource (the HTML document downloads.html) and its path, or location
(/books), on the web server. The path could specify the location of an actual directory on
the web server’s file system. For security reasons, however, the path normally specifies the
location of a virtual directory. The server translates the virtual directory into a real location
on the server (or on another computer on the server’s network), thus hiding the resource’s
true location. Some resources are created dynamically using other information, such as
data from a database.

Making a Request and Receiving a Response
When given a URL, a web browser performs an HTTP transaction to retrieve and display
the web page at that address. Figure 30.1 illustrates the transaction, showing the interac-
tion between the web browser (the client) and the web server (the server).

In Fig. 30.1, the web browser sends an HTTP request to the server. Underneath the
hood, the request (in its simplest form) is

The word GET is an HTTP method indicating that the client wishes to obtain a resource
from the server. The remainder of the request provides the pathname of the resource (e.g.,
an HTML document) and the protocol’s name and version number (HTTP/1.1). As part
of the client request, the browser also sends other required and optional information, such
as the Host (which identifies the server computer) or the User-Agent (which identifies the
web browser type and version number).

Any server that understands HTTP (version 1.1) can translate this request and
respond appropriately. Figure 30.2 depicts the server responding to a request.

The server first responds by sending a line of text that indicates the HTTP version, fol-
lowed by a numeric code and a phrase describing the status of the transaction. For example,

indicates success, whereas

Fig. 30.1 | Client interacting with the web server. Step 1: The GET request.

GET /books/downloads.html HTTP/1.1

HTTP/1.1 200 OK

HTTP/1.1 404 Not found

After it receives
the request, the
web server
searches through
its system for the
resource

(b)

The GET request is
sent from the
client to the web
server

(a)

Web Server

Internet

Client

jhtp_30_webapp1.fm Page 4 Tuesday, April 10, 2018 9:26 AM

30.2 HyperText Transfer Protocol (HTTP) Transactions 30_5

informs the client that the web server could not locate the requested resource. On a suc-
cessful request, the server appends the requested resource to the HTTP response. A com-
plete list of numeric codes indicating the status of an HTTP transaction can be found at
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

HTTP Headers
The server then sends one or more HTTP headers, which provide additional information
about the data that will be sent. If the server is sending an HTML text document, one
HTTP header would read:

The information provided in this header specifies the Multipurpose Internet Mail Exten-
sions (MIME) type of the content that the server is transmitting to the browser. MIME is
an Internet standard that specifies data formats so that programs can interpret data correct-
ly. For example, the MIME type text/plain indicates that the sent information is text
that can be displayed directly, without any interpretation of the content as HTML mark-
up. Similarly, the MIME type image/jpeg indicates that the content is a JPEG image.
When the browser receives this MIME type, it attempts to display the image. For a list of
available MIME types, visit www.w3schools.com/media/media_mimeref.asp.

The header or set of headers is followed by a blank line, which indicates to the client
browser that the server is finished sending HTTP headers. The server then sends the con-
tents of the requested resource (such as, downloads.html). In the case of an HTML doc-
ument, the web browser parses the HTML markup it receives and renders (or displays)
the results.

HTTP GET and POST Requests
The two most common HTTP request types (also known as request methods) are GET
and POST. A GET request typically asks for a resource on a server. Common uses of GET re-
quests are to retrieve an HTML document or an image or to fetch search results from a
search engine based on a user-submitted search term. A POST request typically sends data
to a server. Common uses of POST requests are to send form data or documents to a server.

When a web page contains an HTML form in which the user can enter data, an
HTTP request typically posts that data to a server-side form handler for processing. For
example, when a user performs a search or participates in a web-based survey, the web
server receives the information specified in the form as part of the request.

Fig. 30.2 | Client interacting with the web server. Step 2: The HTTP response.

Content-type: text/html

The server
responds to the
request with an
appropriate
message and
the resource's
contents

Web Server

Internet

Client

jhtp_30_webapp1.fm Page 5 Tuesday, April 10, 2018 9:26 AM

30_6 Chapter 30 JavaServer™ Faces Web Apps: Part 1

GET requests and POST requests can both send form data to a web server, yet each
request type sends the information differently. A GET request sends information to the
server in the URL, as in www.google.com/search?q=deitel. Here, search is the name of
Google’s server-side form handler, q is the name of a variable in Google’s search form and
deitel is the search term. A ? separates the query string from the rest of the URL in a
request. A name/value pair is passed to the server with the name and the value separated by
an equals sign (=). If more than one name/value pair is submitted, each is separated from
the next by an ampersand (&). The server uses data passed in a query string to retrieve an
appropriate resource. The server then sends a response to the client. A GET request may be
initiated by submitting an HTML form whose method attribute is set to "get", by typing
the URL (possibly containing a query string) directly into the browser’s address bar or
through a hyperlink when the user clicks the link.

A POST request sends form data as part of the HTTP message, not as part of the URL.
The specification for GET requests does not limit the query string’s number of characters,
but some web browsers do—for example, Internet Explorer restricts the length to 2083
characters), so it’s often necessary to send large pieces of information using POST. Some-
times POST is preferred because it hides the submitted data from the user by embedding it
in an HTTP message.

Client-Side Caching
Browsers often cache (save on disk) web pages for quick reloading. If there are no changes
between the version stored in the cache and the current version on the web, the browser
uses the cached copy to speed up your browsing experience. An HTTP response can indi-
cate the length of time for which the content remains “fresh.” If this amount of time has
not been reached, the browser can avoid another request to the server. Otherwise, the
browser requests the document from the server. Thus, the browser minimizes the amount
of data that must be downloaded for you to view a web page. Browsers typically do not
cache the server’s response to a POST request, because the next POST might not return the
same result. For example, in a survey, many users could visit the same web page and answer
a question. The survey results could then be displayed for the user. Each new answer
changes the survey results.

When you use a web-based search engine, the browser normally supplies the informa-
tion you specify in an HTML form to the search engine with a GET request. The search
engine performs the search, then returns the results to you as a web page. Such pages are
sometimes cached by the browser in case you perform the same search again.

30.3 Multitier Application Architecture
Web apps are multitier applications (sometimes referred to as n-tier applications). Multitier
applications divide functionality into separate tiers (i.e., logical groupings of functionality).
Although tiers can be located on the same computer, the tiers of web apps often reside on
separate computers. Figure 30.3 presents the basic structure of a three-tier web app.

Software Engineering Observation 30.1
The data sent in a POST request is not part of the URL, and the user can’t see the data by
default. However, tools are available that expose this data, so you should not assume that
the data is secure just because a POST request is used.

jhtp_30_webapp1.fm Page 6 Tuesday, April 10, 2018 9:26 AM

30.4 Your First JSF Web App 30_7

The information tier (also called the data tier or the bottom tier) maintains data per-
taining to the application. This tier typically stores data in a relational database manage-
ment system (RDBMS). We discussed RDBMSs in Chapter 24. For example, a retail store
might have a database for storing product information, such as descriptions, prices and
quantities in stock. The same database also might contain customer information, such as
user names, billing addresses and credit card numbers. This tier can contain multiple data-
bases, which together comprise the data needed for our application.

The middle tier implements business logic, controller logic and presentation logic
to control interactions between the application’s clients and the application’s data. The
middle tier acts as an intermediary between data in the information tier and the applica-
tion’s clients. The middle-tier controller logic processes client requests (such as requests to
view a product catalog) and retrieves data from the database. The middle-tier presentation
logic then processes data from the information tier and presents the content to the client.
Web apps typically present data to clients as HTML documents.

Business logic in the middle tier enforces business rules and ensures that data is reli-
able before the server application updates the database or presents the data to users. Busi-
ness rules dictate how clients can and cannot access application data, and how applications
process data. For example, a business rule in the middle tier of a retail store’s web app
might ensure that all product quantities remain positive. A client request to set a negative
quantity in the bottom tier’s product-information database would be rejected by the
middle tier’s business logic.

The client tier, or top tier, is the application’s user interface, which gathers input and
displays output. Users interact directly with the application through the user interface
(typically viewed in a web browser), keyboard and mouse. In response to user actions (e.g.,
clicking a hyperlink), the client tier interacts with the middle tier to make requests and to
retrieve data from the information tier. The client tier then displays the data retrieved from
the middle tier to the user. The client tier never directly interacts with the information tier.

30.4 Your First JSF Web App
Let’s begin with a simple example. Figure 30.4 shows the output of our WebTime app.
When you invoke this app from a web browser, the browser requests the app’s default JSF
page. The web server receives this request and passes it to the JSF web-application frame-
work for processing. This framework is available in any Java EE-compliant application
server (such as the GlassFish application server used in this chapter) or any JavaServer

Fig. 30.3 | Three-tier architecture.

Web server Database

The middle tier
contains the application’s

business logic

The bottom tier
contains the application’s

data (typically in a database)

The top tier
is the user interface

on the client computer

Browser XHTML JDBC

jhtp_30_webapp1.fm Page 7 Tuesday, April 10, 2018 9:26 AM

30_8 Chapter 30 JavaServer™ Faces Web Apps: Part 1

Faces-compliant container (such as Apache Tomcat). The framework includes the Faces
servlet—a software component running on the server that processes each requested JSF
page so that the server can eventually return a response to the client. In this example, the
Faces servlet processes the JSF document in Fig. 30.5 and forms a response containing the
text "Current time on the web server:" followed by the web server’s local time. We
demonstrate this chapter’s examples on the GlassFish server that you installed with Net-
Beans locally on your computer.

Executing the WebTime App
To run this example on your own computer, perform the following steps:

1. Open the NetBeans IDE.

2. Select File > Open Project… to display the Open Project dialog.

3. Navigate to the ch30 folder in the book’s examples and select WebTime.

4. Click the Open Project button.

5. Right click the project’s name in the Projects tab (in the upper-left corner of the
IDE, below the toolbar) and select Run from the pop-up menu.

This launches the GlassFish application server (if it isn’t already running), installs the web
app onto the server, then opens your computer’s default web browser which requests the
WebTime app’s default JSF page. The browser should display a web page similar to that in
Fig. 30.4.

30.4.1 The Default index.xhtml Document: Introducing Facelets
This app contains a single web page and consists of two related files—a JSF document
named index.xhtml (Fig. 30.5) and a supporting Java source-code file (Fig. 30.6), which
we discuss in Section 30.4.2. First we discuss the markup in index.xhtml and the support-
ing source code, then we provide step-by-step instructions for creating this web app in
Section 30.4.3. Most of the markup in Fig. 30.5 was generated by NetBeans. We’ve refor-
matted the generated code to match our coding conventions used throughout the book.

Fig. 30.4 | Sample output of the WebTime app.

1 <?xml version='1.0' encoding='UTF-8' ?>
2
3 <!-- index.xhtml -->
4 <!-- JSF page that displays the current time on the web server -->

Fig. 30.5 | JSF page that displays the current time on the web server. (Part 1 of 2.)

jhtp_30_webapp1.fm Page 8 Tuesday, April 10, 2018 9:26 AM

30.4 Your First JSF Web App 30_9

Facelets: XHTML and JSF Markup
You present your web app’s content in JSF using Facelets—a combination of XHTML
markup and JSF markup. XHTML—the Extensible HyperText Markup Language—
specifies the content of a web page that is displayed in a web browser. XHTML separates
the presentation of a document (that is, the document’s appearance when rendered by a
browser) from the structure of the document’s data. A document’s presentation might
specify where the browser should place an element in a web page or what fonts and colors
should be used to display an element. The XHTML 1.0 Strict Recommendation allows
only a document’s structure to appear in a valid XHTML document, and not its presen-
tation. Presentation is specified with Cascading Style Sheets (CSS). JSF uses the XHTML
1.0 Transitional Recommendation by default. Transitional markup may include some
non-CSS formatting, but this is not recommended.

XML Declaration, Comments and the DOCTYPE Declaration
With the exception of lines 3–4, 10–11 and 14, the code shown in Fig. 30.5 was generated
by NetBeans. Line 1 is an XML declaration, indicating that the JSF document is expressed
in XML 1.0 syntax. Lines 3–4 are comments that we added to the document to indicate
its filename and purpose. Lines 5–6 are a DOCTYPE declaration indicating the version of
XHTML used in the markup. This can be used by a web browser to validate the syntax of
the document.

Specifying the XML Namespaces Used in the Document
Line 7 begins the document’s root html element, which spans lines 7–16. Each element
typically consists of a starting and ending tag. The starting <html> tag (lines 7–8) may con-
tain one or more xmlns attributes. Each xmlns attribute has a name and a value separated
by an equal sign (=), and specifies an XML namespace of elements that are used in the doc-
ument. Just as Java packages can be used to differentiate class names, XML namespaces
can be used to differentiate sets of elements. When there’s a naming conflict, fully quali-
fied tag names can be used to resolve the conflict.

Line 7 specifies a required xmlns attribute and its value (http://www.w3.org/1999/
xhtml) for the html element. This indicates that the html element and any other unqual-
ified element names are part of the default XML namespace that’s used in this document.

5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
7 <html xmlns="http://www.w3.org/1999/xhtml"
8 >
9

10 <title>WebTime: A Simple Example</title>
11 <meta http-equiv="refresh" content="60"/>
12
13
14 <h1>Current time on the web server: </h1>
15
16 </html>

Fig. 30.5 | JSF page that displays the current time on the web server. (Part 2 of 2.)

xmlns:h="http://java.sun.com/jsf/html"
<h:head>

</h:head>
<h:body>

#{webTimeBean.time}
</h:body>

jhtp_30_webapp1.fm Page 9 Tuesday, April 10, 2018 9:26 AM

30_10 Chapter 30 JavaServer™ Faces Web Apps: Part 1

The xmlns:h attribute (line 8) specifies a prefix and a URL for JSF’s HTML Tag
Library, allowing the document to use JSF’s elements from that library. A tag library
defines a set of elements that can be inserted into the XHTML markup. The elements in
the HTML Tag Library generate XHTML elements. Based on line 7, each element we
use from the HTML Tag Library must be preceded by the h: prefix. This tag library is one
of several suppoorted by JSF that can be used to create Facelets pages. We’ll discuss others
as we use them. For a complete list of JSF tag libraries and their elements and attributes,
visit

The h:head and h:body Elements
The h:head element (lines 9–12) defines the XHTML page’s head element. In this exam-
ple the head contains an HTML title element and a meta element. The document’s
title (line 10) typically appears in the browser window’s title bar, or a browser tab if you
have multiple web pages open in the browser at once. The title is also used when search
engines index your web pages. The meta element (line 11) tells the browser to refresh the
page every 60 seconds. This forces the browser to re-request the page once per minute.

The h:body element (lines 13–15) represent’s the page’s content. In this example, it
contains a XHTML h1 header element (line 14) that represents the text to display when
this document is rendered in the web browser. The h1 element contains some literal text
(Current time on the web server:) that’s simply placed into the response to the client and
a JSF Expression Language (EL) expression that obtains a value dynamically and inserts
it into the response. The expression

indicates that the web app has an object named webTimeBean which contains a property
named time. The property’s value replaces the expression in the response that’s sent to the
client. We’ll discuss this EL expression in more detail shortly.

30.4.2 Examining the WebTimeBean Class
JSF documents typically interact with one or more Java objects to perform the app’s tasks.
As you saw, this example obtains the time on the server and sends it as part of the response.

JavaBeans
JavaBeans objects are instances of classes that follow certain conventions for class design.
Each JavaBean class typically contains data and methods. A JavaBean exposes its data to a
JSF document as properties. Depending on their use, these properties can be read/write,
read-only or write-only. To define a read/write property, a JavaBean class provides set and
get methods for that property. For example, to create a String property firstName, the
class would provide methods with the following first lines:

The fact that both method names contain “FirstName” with an uppercase “F” indicates
that the class exposes a firstName property with a lowercase “F.” This naming convention
is part of the JavaBeans Specification (available at bit.ly/JavaBeansSpecification). A

javaserverfaces.java.net/nonav/docs/2.0/pdldocs/facelets/

#{webTimeBean.time}

public String getFirstName()
public void setFirstName(String name)

jhtp_30_webapp1.fm Page 10 Tuesday, April 10, 2018 9:26 AM

30.4 Your First JSF Web App 30_11

read-only property would have only a get method and a write-only property only a set
method. The JavaBeans used in JSF are also POJOs (plain old Java objects), meaning
that—unlike prior versions of JSF—you do not need to extend a special class to create the
beans used in JSF applications. Instead various annotations are used to “inject” function-
ality into your beans so they can be used easily in JSF applications. The JSF framework is
responsible for creating and managing objects of your JavaBean classes for you—you’ll see
how to enable this momentarily.

Class WebTimeBean
Figure 30.6 presents the WebTimeBean class that allows the JSF document to obtain the
web server’s time. You can name your bean classes like any other class. We chose to end
the class name with “Bean” to indicate that the class represents a JavaBean. The class con-
tains just a getTime method (lines 13–17), which defines the read-only time property of
the class. Recall that we access this property at line 14 of Fig. 30.5. Lines 15–16 create a
Date object, then format and return the time as a String.

The @ManagedBean Annotation
Line 9 uses the @ManagedBean annotation (from the package javax.faces.bean) to indi-
cate that the JSF framework should create and manage the WebTimeBean object(s) used in
the application. The parentheses following the annotation contain the optional name at-
tribute—in this case, indicating that the bean object created by the JSF framework should
be called webTimeBean. If you specify the annotation without the parentheses and the name
attribute, the JSF framework will use the class name with a lowercase first letter (that is,
webTimeBean) as the default bean name.

Processing the EL Expression
When the Faces servlet encounters an EL expression that accesses a bean property, it au-
tomatically invokes the property’s set or get method based on the context in which the

1 // WebTimeBean.java
2 // Bean that enables the JSF page to retrieve the time from the server
3 package webtime;
4
5 import java.text.DateFormat;
6 import java.util.Date;
7 import javax.faces.bean.ManagedBean;
8
9

10 public class WebTimeBean
11 {
12 // return the time on the server at which the request was received
13 public String getTime()
14 {
15 return DateFormat.getTimeInstance(DateFormat.LONG).format(
16 new Date());
17 }
18 }

Fig. 30.6 | Bean that enables the JSF page to retrieve the time from the server.

@ManagedBean(name="webTimeBean")

jhtp_30_webapp1.fm Page 11 Tuesday, April 10, 2018 9:26 AM

30_12 Chapter 30 JavaServer™ Faces Web Apps: Part 1

property is used. In line 14 of Fig. 30.5, accessing the property webTimeBean.time results
in a call to the bean’s getTime method, which returns the web server’s time. If this bean
object does not yet exist, the JSF framework instantiates it, then calls the getTime method
on the bean object. The framework can also discard beans that are no longer being used.
We discuss only the EL expressions that we use in this chapter. For more EL details, see
Chapter 9 of the Java EE 7 tutorial at

and Chapter 5 of the JSF 2.0 specification, which you can download from

30.4.3 Building the WebTime JSF Web App in NetBeans
We’ll now build the WebTime app from scratch using NetBeans.

Creating the JSF Web Application Project
Begin by opening the NetBeans IDE and performing the following steps:

1. Select File > New Project... to display the New Project dialog. Select Java Web in
the Categories pane, Web Application in the Projects pane and click Next >.

2. In the dialog’s Name and Location step, specify WebTime as the Project Name. In
the Project Location field, specify where you’d like to store the project (or keep
the default location). These settings will create a WebTime directory to store the
project’s files in the parent directory you specified. Keep the other default settings
and click Next >.

3. In the dialog’s Server and Settings step, specify GlassFish Server 4.1 as the Server
and Java EE 7 Web as the Java EE Version (these may be the default). Keep the
default Context Path and click Next >.

4. In the dialog’s Frameworks step, select JavaServer Faces, then click Finish to cre-
ate the web application project.

Examining the NetBeans Projects Window
Figure 30.7 displays the Projects window, which appears in the upper-left corner of the
IDE. This window displays the contents of the project. The app’s XHTML documents are
placed in the Web Pages node. NetBeans supplies the default web page index.xhtml that
will be displayed when a user requests this web app from a browser. When you add Java
source code to the project, it will be placed in the Source Packages node.

http://docs.oracle.com/javaee/7/tutorial/

http://download.oracle.com/otndocs/jcp/jsf-2_2-fr-spec/index.html

Fig. 30.7 | Projects window for the WebTime project.

JSF app’s default web page

jhtp_30_webapp1.fm Page 12 Tuesday, April 10, 2018 9:26 AM

30.4 Your First JSF Web App 30_13

Examining the Default index.xhtml Page
Figure 30.8 displays index.xthml—the default page that will be displayed when a user re-
quests this web app. We reformatted the code to match our coding conventions. When
this file is first created, it contains elements for setting up the page, including linking to
the page’s style sheet and declaring the JSF libraries that will be used. By default, NetBeans
does not show line numbers in the source-code editor. To view the line numbers, select
View > Show Line Numbers.

Editing the h:head Element’s Contents
Modify line 7 of Fig. 30.8 by changing the title element’s content from "Facelet
Title" to "Web Time: A Simple Example". After the closing </title> tag, press Enter, then
insert the meta element

which will cause the browser to refresh this page once per minute. As you type, notice that
NetBeans provides a code-completion window to help you write your code. For example,
after typing “<meta” and a space, the IDE displays the code-completion window in
Fig. 30.9, which shows the list of valid attributes for the starting tag of a meta element.
You can then double click an item in the list to insert it into your code. Code-completion
support is provided for XHTML elements, JSF elements and Java code.

Fig. 30.8 | Default index.xhtml page generated by NetBeans for the web app.

<meta http-equiv="refresh" content="60"/>

Fig. 30.9 | NetBeans code-completion window.

jhtp_30_webapp1.fm Page 13 Tuesday, April 10, 2018 9:26 AM

30_14 Chapter 30 JavaServer™ Faces Web Apps: Part 1

Editing the h:body Element’s Contents
In the h:body element, replace "Hello from Facelets" with the h1 header element

Don’t insert the expression #{webTimeBean.time} yet. After we define the WebTimeBean
class, we’ll come back to this file and insert this expression to demonstrate that the IDE
provides code-completion support for the Java classes you define in your project.

Defining the Page’s Logic: Class WebTimeBean
We’ll now create the WebTimeBean class—the @ManagedBean class that will allow the JSF
page to obtain the web server’s time. To create the class, perform the following steps:

1. In the NetBeans Projects tab, right click the WebTime project’s Source Packages
node and select New > Other… to display the New File dialog.

2. In the Categories list, select JavaServer Faces, then in the File Types list select JSF
Managed Bean. Click Next >.

3. In the Name and Location step, specify WebTimeBean as the Class Name and
webtime as the Package, then click Finish.

NetBeans creates the WebTimeBean.java file and places it within the webtime package in
the project’s Source Packages node. Figure 30.10 shows this file’s default source code dis-
played in the IDE. At line 16, notice that NetBeans added the @RequestScoped annota-
tion to the class—this indicates that an object of this class exists only for the duration of
the request that’s being processed. (We’ll discuss @RequestScoped and other bean scopes
in more detail in Section 30.8.) We did not include this annotation in Fig. 30.6, because
all JSF beans are request scoped by default. Replace the code in Fig. 30.10 with the code
in Fig. 30.6.

<h1>Current time on the web server: </h1>

jhtp_30_webapp1.fm Page 14 Tuesday, April 10, 2018 9:26 AM

30.4 Your First JSF Web App 30_15

Adding the EL Expression to the index.xhtml Page
Now that you’ve created the WebTimeBean, let’s go back to the index.xhtml file and add
the EL expression that will obtain the time. In the index.xhtml file, modify the line

by inserting the expression #{webTimeBean.time} before the h1 element’s closing tag. Af-
ter you type the characters # and {, the IDE automatically inserts the closing }, inserts the
cursor between the braces and displays the code-completion window. This shows various
items that could be placed in the braces of the EL expression, including the webTimeBean
object (of type WebTimeBean). To insert webTimeBean in the code, you can type the object’s
name or double click it in the code-completion window. As you type, the list of items in
the code-completion window is filtered by what you’ve typed so far.

Running the Application
You’ve now completed the WebTime app. To test it, right click the project’s name in the
Projects tab and select Run from the pop-up menu. The IDE will compile the code and
deploy (that is, install) the WebTime app on the GlassFish application server running on
your local machine. Then, the IDE will launch your default web browser and request the

Fig. 30.10 | Default source code for the WebTimeBean class.

<h1>Current time on the web server: </h1>

jhtp_30_webapp1.fm Page 15 Tuesday, April 10, 2018 9:26 AM

30_16 Chapter 30 JavaServer™ Faces Web Apps: Part 1

WebTime app’s default web page (index.xhtml). Because GlassFish is installed on your
local computer, the URL displayed in the browser’s address bar will be

where 8080 is the port number on which the GlassFish server runs by default. Depending
on your web browser, the http:// may not be displayed (Fig. 30.5).

Debugging the Application
If there’s a problem with your web app’s logic, you can press <Ctrl> F5 ( F5 on Mac
OS X) to build the application and run it in debug mode—the NetBeans built-in debug-
ger can help you troubleshoot applications. If you press F6, the program executes without
debugging enabled.

Testing the Application from Other Web Browsers
After deploying your project, you can test it from another web browser on your computer
by entering the app’s URL into the other browser’s address field. Since your application
resides on the local file system, GlassFish must be running. If you’ve already executed the
application using one of the techniques above and have not closed NetBeans, GlassFish
will still be running. Otherwise, you can start the server from the IDE. To do so, open the
Services tab (located in the same panel as the Projects), expand the Servers node, right
click GlassFish Server 4.1 (or whichever version you have installed) and select Start. Then
you can type the URL in the browser to execute the application.

30.5 Model-View-Controller Architecture of JSF Apps
JSF applications adhere to the Model-View-Controller (MVC) architecture, which sepa-
rates an application’s data (contained in the model) from the graphical presentation (the
view) and the processing logic (the controller). Figure 30.11 shows the relationships be-
tween components in MVC.

In JSF, the controller is the JSF framework and is responsible for coordinating inter-
actions between the view and the model. The model contains the application’s data (typ-
ically in a database), and the view presents the data stored in the model (typically as web
pages). When a user interacts with a JSF web app’s view, the framework interacts with the
model to store and/or retrieve data. When the model changes, the view is updated with
the changed data.

http://localhost:8080/WebTime/

Fig. 30.11 | Model-View-Controller architecture.

ViewController
modifies notifies

Model

jhtp_30_webapp1.fm Page 16 Tuesday, April 10, 2018 9:26 AM

30.6 Common JSF Components 30_17

30.6 Common JSF Components
As mentioned in Section 30.4, JSF supports several tag libraries. In this section, we intro-
duce several of the JSF HTML Tag Library’s elements and one element from the JSF Core
Tag Library. Figure 30.12 summarizes elements discussed in this section.

All of these elements are mapped by JSF framework to a combination of XHTML ele-
ments and JavaScript code that enables the browser to render the page. JavaScript is a
scripting language that’s interpreted in all of today’s popular web browsers. It can be used
to perform tasks that manipulate web-page elements in a web browser and provide inter-
activity with the user. You can learn more about JavaScript in our JavaScript Resource
Center at www.deitel.com/JavaScript/.

Figure 30.13 displays a form for gathering user input. [Note: To create this applica-
tion from scratch, review the steps in Section 30.4.3 and name the application WebCompo-
nents.] The h:form element (lines 14–55) contains the components with which a user
interacts to provide data, such as registration or login information, to a JSF app. This
example uses the components summarized in Fig. 30.12. This example does not perform
a task when the user clicks the Register button. Later, we demonstrate how to add func-
tionality to many of these components.

JSF component Description

h:form Inserts an XHTML form element into a page.

h:commandButton Displays a button that triggers an event when
clicked. Typically, such a button is used to submit a
form’s user input to the server for processing.

h:graphicImage Displays an image (e.g., GIF and JPG).

h:inputText Displays a text box in which the user can enter input.

h:outputLink Displays a hyperlink.

h:panelGrid Displays an XHTML table element.

h:selectOneMenu Displays a drop-down list of choices from which the
user can make a selection.

h:selectOneRadio Displays a set of radio buttons.

f:selectItem Specifies an item in an h:selectOneMenu or
h:selectOneRadio (and other similar components).

Fig. 30.12 | Commonly used JSF components.

1 <?xml version='1.0' encoding='UTF-8' ?>
2
3 <!-- index.xhtml -->
4 <!-- Registration form that demonstrates various JSF components -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Fig. 30.13 | Registration form that demonstrates various JSF components. (Part 1 of 3.)

jhtp_30_webapp1.fm Page 17 Tuesday, April 10, 2018 9:26 AM

30_18 Chapter 30 JavaServer™ Faces Web Apps: Part 1

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 >

10 <h:head>
11 <title>Sample Registration Form</title>
12 </h:head>
13 <h:body>
14
15 <h1>Registration Form</h1>
16 <p>Please fill in all fields and click Register</p>
17
18
19
20 <h:graphicImage name="lname.png" library="images"/>
21 <h:inputText id="lastNameInputText"/>
22 <h:graphicImage name="email.png" library="images"/>
23 <h:inputText id="emailInputText"/>
24 <h:graphicImage name="phone.png" library="images"/>
25 <h:inputText id="phoneInputText"/>
26
27 <p><h:graphicImage name="publications.png" library="images"/>
28
Which book would you like information about?</p>
29
30
31
32 <f:selectItem itemValue="CPPHTP"
33 itemLabel="C++ How to Program" />
34 <f:selectItem itemValue="IW3HTP"
35 itemLabel="Internet & World Wide Web How to Program" />
36 <f:selectItem itemValue="JHTP"
37 itemLabel="Java How to Program" />
38 <f:selectItem itemValue="VBHTP"
39 itemLabel="Visual Basic How to Program" />
40 <f:selectItem itemValue="VCSHTP"
41 itemLabel="Visual C# How to Program" />
42
43 <p><h:outputLink value="http://www.deitel.com">
44 Click here to learn more about our books
45 </h:outputLink></p>
46 <h:graphicImage name="os.png" library="images"/>
47
48 <f:selectItem itemValue="WinVista" itemLabel="Windows Vista"/>
49 <f:selectItem itemValue="Win7" itemLabel="Windows 7"/>
50 <f:selectItem itemValue="OSX" itemLabel="macOS"/>
51 <f:selectItem itemValue="Linux" itemLabel="Linux"/>
52 <f:selectItem itemValue="Other" itemLabel="Other"/>
53
54
55
56 </h:body>
57 </html>

Fig. 30.13 | Registration form that demonstrates various JSF components. (Part 2 of 3.)

xmlns:f="http://java.sun.com/jsf/core"

<h:form>

<h:panelGrid columns="4" style="height: 96px; width:456px;">
 <h:graphicImage name="fname.png" library="images"/>
 <h:inputText id="firstNameInputText"/>

</h:panelGrid>

<h:selectOneMenu id="booksSelectOneMenu">
 <f:selectItem itemValue="CHTP"
 itemLabel="C How to Program" />

</h:selectOneMenu>

<h:selectOneRadio id="osSelectOneRadio">

</h:selectOneRadio>
<h:commandButton value="Register"/>

</h:form>

jhtp_30_webapp1.fm Page 18 Tuesday, April 10, 2018 9:26 AM

30.6 Common JSF Components 30_19

h:panelGrid Element
Lines 17–26 define an h:panelGrid element for organizing elements in the page. This
element inserts an XHTML table in the page. The h: prefix indicates that panelGrid is
from the JSF HTML Tag Library. The columns attribute specifies the number of columns
in the table. The elements between the h:panelGrid’s start tag (line 17) and end tag (line
26) are automatically placed into the table’s columns from left to right in the order they
appear in the JSF page. When the number of elements in a row exceeds the number of
columns, the h:panelGrid creates a new row. We use the h:panelGrid to control the po-
sitions of the h:graphicImage and h:inputText elements in the user information section
of the page. In this case, there are eight elements in the h:panelGrid, so the first four (lines
18–21) are placed in the table’s first row and the last four are placed in the second row.
The h:panelGrid’s style attribute specifies the CSS formatting for the table. We use
the CSS attributes width and height to specify the width and height of the table in pixels
(px).The h:panelGrid contains pairs of h:graphicImage and h:inputText elements.

h:graphicImage Element and Resource Libraries
Each h:graphicImage displays an image in the page. For example, line 18 inserts the im-
age fname.png—as specified by the name attribute. You add resources that are used
throughout your app—such as images, CSS files, JavaScript files—to your web apps by
placing them in the app’s resources folder within your project’s Web Pages node. Each
subfolder of resources represents a resource library. Typically, images are placed in an
images library and CSS files in a css library. In line 18, we specify that the image is located
in the images library with the library attribute. JSF knows that the value of this attribute
represents a folder within the resources folder.

Fig. 30.13 | Registration form that demonstrates various JSF components. (Part 3 of 3.)

 h:selectOneMenu

 h:selectOneRadio

 h:inputText

 h:graphicImage

h:commandButton

jhtp_30_webapp1.fm Page 19 Tuesday, April 10, 2018 9:26 AM

30_20 Chapter 30 JavaServer™ Faces Web Apps: Part 1

You can create any library you like in the resources folder. To create this folder:

1. Expand your app’s node in the NetBeans Projects tab.

2. Right click the Web Pages node and select New > Folder… to display the New
Folder dialog. [Note: If the Folder… option is not available in the popup menu,
select Other…, then in the Categories pane select Other and in the File Types pane
select Folder and click Next >.]

3. Specify resources as the Folder Name and press Finish.

Next, right click the resources folder you just created and create an images subfolder.
You can then drag the images from your file system onto the images folder to add them
as resources. The images in this example are located in the images directory with the chap-
ter’s examples.

The h:graphicImage in line 18 is a so-called empty element—an element that does
not have content between its start and end tags. In such an element, data is typically spec-
ified as attributes in the start tag, such as the name and library attributes in line 18. You
can close an empty element either by placing a slash immediately preceding the start tag’s
right angle bracket, as shown in line 18, or by explicitly writing an end tag.

h:inputText Element
Line 19 defines an h:inputText element in which the user can enter text or the app can
display text. For any element that might be accessed by other elements of the page or that
might be used in server-side code, you should specify an id attribute. We specified these
attributes in this example, even though the app does not provide any functionality. We’ll
use the id attribute starting with the next example.

h:selectOneMenu Element
Lines 29–42 define an h:selectOneMenu element, which is typically rendered in a web
page as a drop-down list. When a user clicks the drop-down list, it expands and displays a
list from which the user can make a selection. Each item to display appears between the
start and end tags of this element as an f:selectItem element (lines 30–41). This element
is part of the JSF Core Tag Library. The XML namespace for this tag library is specified
in the html element’s start tag at line 9. Each f:selectItem has itemValue and itemLabel
attributes. The itemLabel is the string that the user will see in the browser, and the item-
Value is the value that’s returned when you programmatically retrieve the user’s selection
from the drop-down list (as you’ll see in a later example).

h:outputLink Element
The h:outputLink element (lines 43–45) inserts a hyperlink in a web page. Its value at-
tribute specifies the resource (http://www.deitel.com in this case) that’s requested when
a user clicks the hyperlink. By default, h:outputLink elements cause pages to open in the
same browser window, but you can set the element’s target attribute to change this be-
havior.

h:selectOneMenu Element
Lines 47–53 define an h:selectOneRadio element, which provides a series of radio but-
tons from which the user can select only one. Like an h:selectOneMenu, an h:selectOne-
Radio displays items that are specified with f:selectItem elements.

jhtp_30_webapp1.fm Page 20 Tuesday, April 10, 2018 9:26 AM

30.7 Validation Using JSF Standard Validators 30_21

h:commandButton Element
Lines 54 defines an h:commandButton element that triggers an action when clicked—in
this example, we don’t specify the action to trigger, so the default action occurs (re-
requesting the same page from the server) when the user clicks this button. An h:command-
Button typically maps to an XHTML input element with its type attribute set to "sub-
mit". Such elements are often used to submit a form’s user input values to the server for
processing.

30.7 Validation Using JSF Standard Validators
Validating input is an important step in collecting information from users. Validation
helps prevent processing errors due to incomplete, incorrect or improperly formatted user
input. For example, you may perform validation to ensure that all required fields contain
data or that a zip-code field has the correct number of digits. The JSF Core Tag Library
provides several standard validator components and allows you to create your own custom
validators. Multiple validators can be specified for each input element. The validators are:

• f:validateLength—determines whether a field contains an acceptable number
of characters.

• f:validateDoubleRange and f:validateLongRange—determine whether nu-
meric input falls within acceptable ranges of double or long values, respectively.

• f:validateRequired—determines whether a field contains a value.

• f:validateRegex—determines whether a field contains a string that matches a
specified regular expression pattern.

• f:validateBean—allows you to invoke a bean method that performs custom
validation.

Validating Form Data in a Web Application
[Note: To create this application from scratch, review the steps in Section 30.4.3 and name
the application Validation.] The example in this section prompts the user to enter a
name, e-mail address and phone number in a form. When the user enters any data and
presses the Submit button to submit the form’s contents to the web server, validation
ensures that the user entered a value in each field, that the entered name does not exceed
30 characters, and that the e-mail address and phone-number values are in an acceptable
format. In this example, (555) 123-4567, 555-123-4567 and 123-4567 are all considered
valid phone numbers. Once valid data is submitted, the JSF framework stores the submit-
ted values in a bean object of class ValidationBean (Fig. 30.14), then sends a response
back to the web browser. We simply display the validated data in the page to demonstrate
that the server received the data. A real business application would typically store the sub-
mitted data in a database or in a file on the server.

Class ValidationBean
Class ValidationBean (Fig. 30.14) provides the read/write properties name, email and
phone, and the read-only property result. Each read/write property has an instance vari-
able (lines 11–13) and corresponding set/get methods (lines 16–25, 28–37 and 40–49) for
manipulating the instance variables. The read-only property response has only a get-

jhtp_30_webapp1.fm Page 21 Tuesday, April 10, 2018 9:26 AM

30_22 Chapter 30 JavaServer™ Faces Web Apps: Part 1

Result method (lines 52–60), which returns a paragraph (p) element containing the vali-
dated data. (You can create the ValidationBean managed bean class by using the steps
presented in Fig. 30.4.3.)

1 // ValidationBean.java
2 // Validating user input.
3 package validation;
4
5 import java.io.Serializable;
6 import javax.faces.bean.ManagedBean;
7
8 @ManagedBean(name="validationBean")
9 public class ValidationBean implements Serializable

10 {
11 private String name;
12 private String email;
13 private String phone;
14
15 // return the name String
16 public String getName()
17 {
18 return name;
19 }
20
21 // set the name String
22 public void setName(String name)
23 {
24 this.name = name;
25 }
26
27 // return the email String
28 public String getEmail()
29 {
30 return email;
31 }
32
33 // set the email String
34 public void setEmail(String email)
35 {
36 this.email = email;
37 }
38
39 // return the phone String
40 public String getPhone()
41 {
42 return phone;
43 }
44
45 // set the phone String
46 public void setPhone(String phone)
47 {

Fig. 30.14 | ValidationBean stores the validated data, which is then used as part of the
response to the client. (Part 1 of 2.)

jhtp_30_webapp1.fm Page 22 Tuesday, April 10, 2018 9:26 AM

30.7 Validation Using JSF Standard Validators 30_23

index.xhtml
Figure 30.15 shows this app’s index.xhtml file. The initial request to this web app dis-
plays the page shown in Fig. 30.15(a). When this app is initially requested, the beginning
of the JSF application lifecycle uses this index.xhtml document to build the app’s facelets
view and sends it as the response to the client browser, which displays the form for user
input. During this initial request, the EL expressions (lines 22, 30, 39 and 49) are evalu-
ated to obtain the values that should be displayed in various parts of the page. Nothing is
displayed initially as a result of these four EL expressions being evaluated, because no de-
fault values are specified for the bean’s properties. The page’s h:form element contains an
h:panelGrid (lines 18–45) with three columns and an h:commandButton (line 46), which
by default submits the contents of the form’s fields to the server.

48 this.phone = phone;
49 }
50
51 // returns result for rendering on the client
52 public String getResult()
53 {
54 if (name != null && email != null && phone != null)
55 return "<p style=\"background-color:yellow;width:200px;" +
56 "padding:5px\">Name: " + getName() + "
E-Mail: " +
57 getEmail() + "
Phone: " + getPhone() + "</p>";
58 else
59 return ""; // request has not yet been made
60 }
61 }

1 <?xml version='1.0' encoding='UTF-8' ?>
2
3 <!-- index.xhtml -->
4 <!-- Validating user input -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>
11 <title>Validating Form Data</title>
12
13 </h:head>
14 <h:body>
15 <h:form>
16 <h1>Please fill out the following form:</h1>
17 <p>All fields are required and must contain valid information</p>

Fig. 30.15 | Form to demonstrate validating user input. (Part 1 of 3.)

Fig. 30.14 | ValidationBean stores the validated data, which is then used as part of the
response to the client. (Part 2 of 2.)

<h:outputStylesheet name="style.css" library="css"/>

jhtp_30_webapp1.fm Page 23 Tuesday, April 10, 2018 9:26 AM

30_24 Chapter 30 JavaServer™ Faces Web Apps: Part 1

18 <h:panelGrid columns="3">
19
20
21
22
23
24
25
26
27 <h:outputText value="E-mail:"/>
28 <h:inputText id="emailInputText" required="true"
29 requiredMessage="Please enter a valid e-mail address"
30 value="#{validationBean.email}"
31 validatorMessage="Invalid e-mail address format">
32
33
34 </h:inputText>
35
36 <h:outputText value="Phone:"/>
37 <h:inputText id="phoneInputText" required="true"
38 requiredMessage="Please enter a valid phone number"
39 value="#{validationBean.phone}"
40 validatorMessage="Invalid phone number format">
41
42
43 </h:inputText>
44
45 </h:panelGrid>
46 <h:commandButton value="Submit"/>
47
48 </h:form>
49 </h:body>
50 </html>

Fig. 30.15 | Form to demonstrate validating user input. (Part 2 of 3.)

<h:outputText value="Name:"/>
<h:inputText id="nameInputText" required="true"
 requiredMessage="Please enter your name"
 value="#{validationBean.name}"
 validatorMessage="Name must be fewer than 30 characters">
 <f:validateLength maximum="30" />
</h:inputText>
<h:message for="nameInputText" styleClass="error"/>

<f:validateRegex pattern=
 "\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*" />

<h:message for="emailInputText" styleClass="error"/>

<f:validateRegex pattern=
 "((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}" />

<h:message for="phoneInputText" styleClass="error"/>

<h:outputText escape="false" value="#{validationBean.result}"/>

a) Submitting the form before entering any information

jhtp_30_webapp1.fm Page 24 Tuesday, April 10, 2018 9:26 AM

30.7 Validation Using JSF Standard Validators 30_25

Fig. 30.15 | Form to demonstrate validating user input. (Part 3 of 3.)

b) Error messages displayed after submitting the empty form

c) Error messages displayed after submitting invalid information

d) Successfully submitted form

jhtp_30_webapp1.fm Page 25 Tuesday, April 10, 2018 9:26 AM

30_26 Chapter 30 JavaServer™ Faces Web Apps: Part 1

First Row of the h:panelGrid
In this application, we demonstrate several new elements and attributes. The first new el-
ement is the h:outputText element (line 19; from the JSF HTML Tag Library), which
inserts text in the page. In this case, we insert a literal string ("Name:") that is specified with
the element’s value attribute.

The h:inputText element (lines 20–25) displays a text box in which the user can
enter a name. We’ve specified several attributes for this element:

• id—This enables other elements or server-side code to reference this element.

• required—Ensuring that the user has made a selection or entered some text in a
required input element is a basic type of validation. When set to "true", this at-
tribute specifies that the element must contain a value.

• requiredMessage—This specifies the message that should be displayed if the
user submits the form without first providing a value for this required element.

• value—This specifies the value to display in the field or to be saved into a bean
on the server. In this case, the EL expression indicates the bean property that’s
associated with this field.

• validatorMessage—This specifies the message to display if a validator is associ-
ated with this h:inputText and the data the user enters is invalid.

The messages specified by the requiredMessage and validatorMessage attributes
are displayed in an associated h:message element (line 26) when validation fails. The ele-
ment’s for attribute specifies the id of the specific element for which messages will be dis-
played (nameInputText), and the styleClass attribute specifies the name of a CSS style
class that will format the message. For this example, we defined a CSS style sheet, which
was inserted into the document’s head element at line 12 using the h:outputStylesheet
element. We placed the style sheet in the css library within the resources folder. The
style sheet contains the following CSS rule:

which creates a style class named error (the dot indicates that it’s a style class) and specifies
that any text to which this is applied, such as the error messages, should be red. We use
this CSS style for all the h:message elements in this example.

Validating the nameInputText Element’s Contents
If the user submits the form without a value in the nameInputText, the requiredMessage
"Please enter your name" is displayed in the corresponding h:message element. If the
user specifies a value for the nameInputText, the JSF framework executes the f:vali-
dateLength validator that’s nested in the h:inputText element. Here, we check that the
name contains no more than 30 characters—as specified by the validator’s maximum attri-
bute. This might be useful to ensure that a value will fit within a particular database field.

Users can type as much text in the nameInputText as they wish. If the name is too
long, the validatorMessage is displayed in the h:message element after the user submits
the form. It’s also possible to limit the length of user input in an h:inputText without

.error
{
 color:red;
}

jhtp_30_webapp1.fm Page 26 Tuesday, April 10, 2018 9:26 AM

30.7 Validation Using JSF Standard Validators 30_27

using validation by setting its maxlength attribute, in which case the element’s cursor will
not advance beyond the maximum allowable number of characters. This would prevent
the user from submitting data that exceeds the length limit.

Second and Third Rows of the h:panelGrid
The next two rows of the h:panelGrid have elements similar to those in the first row. In
addition to being required elements, the h:inputText elements at lines 28–34 and 37–43
are each validated by h:validateRegex validators as described next.

Validating the e-Mail Address
The h:validateRegex element at lines 32–33 uses the regular expression

which indicates that an e-mail address is valid if the part before the @ symbol contains one
or more word characters (that is, alphanumeric characters or underscores), followed by
zero or more strings comprised of a hyphen, plus sign, period or apostrophe and additional
word characters. After the @ symbol, a valid e-mail address must contain one or more
groups of word characters potentially separated by hyphens or periods, followed by a re-
quired period and another group of one or more word characters potentially separated by
hyphens or periods. For example, bob's-personal.email@white.email.com, bob-
white@my-email.com and bob.white@email.com are all valid e-mail addresses. If the ad-
dress the user enters has an invalid format, the validatorMessage (line 31) will be dis-
played in the corresponding h:message element (line 35).

Validating the Phone Number
The h:validateRegex element at lines 41–42 uses the regular expression

which indicates that a phone number can contain a three-digit area code either in parentheses
and followed by an optional space or without parentheses and followed by a required hy-
phen. After an optional area code, a phone number must contain three digits, a hyphen and
another four digits. For example, (555) 123-4567, 555-123-4567 and 123-4567 are all valid
phone numbers. If the phone number the user enters has an invalid format, the valida-
torMessage (line 40) will be displayed in the corresponding h:message element (line 44).

Submitting the Form—More Details of the JSF Lifecycle
As we mentioned earlier in this section, when the app receives the initial request, it returns
the page shown in Fig. 30.15(a). When a request does not contain any request values, such
as those the user enters in a form, the JSF framework simply creates the view and returns it
as the response.

The user submits the form to the server by pressing the Submit h:commandButton
(defined at line 46). Since we did not specify an action attribute for this h:command-
Button, the action is configured by default to perform a postback—the browser re-
requests the page index.xhtml and sends the values of the form’s fields to the server for
processing. Next, the JSF framework performs the validations of all the form elements. If
any of the elements is invalid, the framework renders the appropriate error message as part
of the response.

\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*

((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}

jhtp_30_webapp1.fm Page 27 Tuesday, April 10, 2018 9:26 AM

30_28 Chapter 30 JavaServer™ Faces Web Apps: Part 1

If the values of all the elements are valid, the framework uses the values of the elements
to set the properties of the validateBean—as specified in the EL expressions in lines 22,
30 and 39. Each property’s set method is invoked, passing the value of the corresponding
element as an argument. The framework then formulates the response to the client. In the
response, the form elements are populated with the values of the validateBean’s proper-
ties (by calling their get methods), and the h:outputText element at line 47 is populated
with the value of the read-only result property. The value of this property is determined
by the getResult method (lines 52–60 of Fig. 30.14), which uses the submitted form data
in the string that it returns.

When you execute this app, try submitting the form with no data (Fig. 30.15(b)),
with invalid data (Fig. 30.15(c)) and with valid data (Fig. 30.15(d)).

30.8 Session Tracking
Originally, critics accused the Internet and e-business of failing to provide the customized
service typically experienced in “brick-and-mortar” stores. To address this problem, busi-
nesses established mechanisms by which they could personalize users’ browsing experienc-
es, tailoring content to individual users. They tracked each customer’s movement through
the Internet and combined the collected data with information the consumer provided,
including billing information, personal preferences, interests and hobbies.

Personalization
Personalization enables businesses to communicate effectively with their customers and
also helps users locate desired products and services. Companies that provide content of
particular interest to users can establish relationships with customers and build on those
relationships over time. Furthermore, by targeting consumers with personal offers, recom-
mendations, advertisements, promotions and services, businesses create customer loyalty.
Websites can use sophisticated technology to allow visitors to customize home pages to
suit their individual needs and preferences. Similarly, online shopping sites often store per-
sonal information for customers, tailoring notifications and special offers to their interests.
Such services encourage customers to visit sites more frequently and make purchases more
regularly.

Privacy
A trade-off exists between personalized business service and protection of privacy. Some
consumers embrace tailored content, but others fear the possible adverse consequences if
the info they provide to businesses is released or collected by tracking technologies. Con-
sumers and privacy advocates ask: What if the business to which we give personal data sells
or gives that information to another organization without our knowledge? What if we do
not want our actions on the Internet—a supposedly anonymous medium—to be tracked
and recorded by unknown parties? What if unauthorized parties gain access to sensitive
private data, such as credit-card numbers or medical history? These are questions that must
be addressed by programmers, consumers, businesses and lawmakers alike.

Recognizing Clients
To provide personalized services, businesses must be able to recognize clients when they
request information from a site. As we have discussed, the request/response system on

jhtp_30_webapp1.fm Page 28 Tuesday, April 10, 2018 9:26 AM

30.8 Session Tracking 30_29

which the web operates is facilitated by HTTP. Unfortunately, HTTP is a stateless proto-
col—it does not provide information that would enable web servers to maintain state infor-
mation regarding particular clients. This means that web servers cannot determine
whether a request comes from a particular client or whether the same or different clients
generate a series of requests.

To circumvent this problem, sites can provide mechanisms by which they identify
individual clients. A session represents a unique client on a website. If the client leaves a
site and then returns later, the client will still be recognized as the same user. When the
user closes the browser, the session typically ends. To help the server distinguish among
clients, each client must identify itself to the server. Tracking individual clients is known
as session tracking. One popular session-tracking technique uses cookies (discussed in
Section 30.8.1); another uses beans that are marked with the @SessionScoped annotation
(used in Section 30.8.2). Additional session-tracking techniques are beyond this book’s
scope.

30.8.1 Cookies
Cookies provide you with a tool for personalizing web pages. A cookie is a piece of data
stored by web browsers in a small text file on the user’s computer. A cookie maintains in-
formation about the client during and between browser sessions. The first time a user visits
the website, the user’s computer might receive a cookie from the server; this cookie is then
reactivated each time the user revisits that site. The collected information is intended to
be an anonymous record containing data that is used to personalize the user’s future visits
to the site. For example, cookies in a shopping application might store unique identifiers
for users. When a user adds items to an online shopping cart or performs another task re-
sulting in a request to the web server, the server receives a cookie containing the user’s
unique identifier. The server then uses the unique identifier to locate the shopping cart
and perform any necessary processing.

In addition to identifying users, cookies also can indicate users’ shopping preferences.
When a Web Form receives a request from a client, the Web Form can examine the
cookie(s) it sent to the client during previous communications, identify the user’s prefer-
ences and immediately display products of interest to the client.

Every HTTP-based interaction between a client and a server includes a header con-
taining information either about the request (when the communication is from the client
to the server) or about the response (when the communication is from the server to the
client). When a Web Form receives a request, the header includes information such as the
request type and any cookies that have been sent previously from the server to be stored
on the client machine. When the server formulates its response, the header information
contains any cookies the server wants to store on the client computer and other informa-
tion, such as the MIME type of the response.

The expiration date of a cookie determines how long the cookie remains on the
client’s computer. If you do not set an expiration date for a cookie, the web browser main-
tains the cookie for the duration of the browsing session. Otherwise, the web browser
maintains the cookie until the expiration date occurs. Cookies are deleted by the web
browser when they expire.

jhtp_30_webapp1.fm Page 29 Tuesday, April 10, 2018 9:26 AM

30_30 Chapter 30 JavaServer™ Faces Web Apps: Part 1

30.8.2 Session Tracking with @SessionScoped Beans
The previous web applications used @RequestScoped beans by default—the beans existed
only for the duration of each request. In the next application, we use a @SessionScoped
bean to maintain selections throughout the user’s session. Such a bean is created when a
session begins and exists throughout the entire session. A @SessionScoped bean can be ac-
cessed by all of the app’s pages during the session, and the app server maintains a separate
@SessionScoped bean for each user. By default a session expires after 30 minutes of inac-
tivity or when the user closes the browser that was used to begin the session. When the
session expires, the server discards the bean associated with that session.

Test-Driving the App
This example consists of a SelectionsBean class that is @SessionScoped and two pages
(index.xhtml and recommendations.xhtml) that store data in and retrieve data from a
SelectionsBean object. To understand how these pieces fit together, let’s walk through a
sample execution of the app. When you first execute the app, the index.xhtml page is dis-
played. The user selects a topic from a group of radio buttons and submits the form
(Fig. 30.16).

Portability Tip 30.1
Users may disable cookies in their web browsers to help ensure their privacy. Such users
will experience difficulty using web applications that depend on cookies to maintain state
information.

Software Engineering Observation 30.2
@SessionScoped beans should implement the Serializable interface. Websites with
heavy traffic often use groups of servers (sometimes hundreds or thousands of them) to
respond to requests. Such groups are known as server farms. Server farms often balance the
number of requests being handled on each server by moving some sessions to other servers.
Making a bean Serializable enables the session to be moved properly among servers.

Fig. 30.16 | index.xhtml after the user has made a selection and is about to submit the
form for the first time.

jhtp_30_webapp1.fm Page 30 Tuesday, April 10, 2018 9:26 AM

30.8 Session Tracking 30_31

When the form is submitted, the JSF framework creates a SelectionsBean object that
is specific to this user, stores the selected topic in the bean and returns the index.xhtml
page. The page now shows how many selections have been made (1) and allows the user
to make another selection (Fig. 30.17).

The user makes a second topic selection and submits the form again. The app stores
the selection in this user’s existing SelectionsBean object and returns the index.xhtml
page (Fig. 30.18), which shows how many selections have been made so far (2).

At any time, the user can click the link at the bottom of the index.xhtml page to open
recommendations.xhtml, which obtains the information from this user’s SelectionsBean
object and creates a recommended books list (Fig. 30.19) for the user’s selected topics.

Fig. 30.17 | index.xhtml after the user has submitted the form the first time, made another
selection and is about to submit the form again.

Fig. 30.18 | index.xhtml after the user has submitted the form the second time and is
about to click the link to the recommendations.xhtml page.

jhtp_30_webapp1.fm Page 31 Tuesday, April 10, 2018 9:26 AM

30_32 Chapter 30 JavaServer™ Faces Web Apps: Part 1

@SessionScoped Class SelectionsBean
Class SelectionsBean (Fig. 30.20) uses the @SessionScoped annotation (line 13) to in-
dicate that the server should maintain separate instances of this class for each user session.
The class maintains a static HashMap (created at lines 17–18) of topics and their corre-
sponding book titles. We made this object static, because its values can be shared among
all SelectionsBean objects. The static initializer block (lines 23–28) specifies the Hash-
Map’s key/value pairs. Class SelectionsBean maintains each user’s selections in a
Set<String> (line 32), which allows only unique keys, so selecting the same topic multiple
times does not increase the number of selections.

Fig. 30.19 | recommendations.hxtml showing book recommendations for the topic
selections made by the user in Figs. 30.17 and 30.18.

1 // SelectionsBean.java
2 // Manages a user's topic selections
3 package sessiontracking;
4
5 import java.io.Serializable;
6 import java.util.HashMap;
7 import java.util.Set;
8 import java.util.TreeSet;
9 import javax.faces.bean.ManagedBean;

10
11
12 @ManagedBean(name="selectionsBean")
13
14 public class SelectionsBean implements Serializable
15 {
16 // map of topics to book titles
17 private static final HashMap< String, String > booksMap =
18 new HashMap< String, String >();
19
20 // initialize booksMap
21 static
22 {
23 booksMap.put("java", "Java How to Program");
24 booksMap.put("cpp", "C++ How to Program");

Fig. 30.20 | @SessionScoped SelectionsBean class. (Part 1 of 2.)

import javax.faces.bean.SessionScoped;

@SessionScoped

jhtp_30_webapp1.fm Page 32 Tuesday, April 10, 2018 9:26 AM

30.8 Session Tracking 30_33

Methods of Class SelectionsBean
Method getNumberOfSelections (lines 36–39) returns the number of topics the user has
selected and represents the read-only property numberOfSelections. We use this property
in the index.xhtml document to display the number of selections the user has made so far.

Methods getSelection (lines 42–45) and setSelection (lines 48–52) represent the
read/write selection property. When a user makes a selection in index.xhtml and sub-
mits the form, method setSelection looks up the corresponding book title in the booksMap
(line 50), then stores that title in selections (line 51).

Method getSelections (lines 55–58) represents the read-only property selections,
which returns an array of Strings containing the book titles for the topics selected by the
user so far. When the recommendations.xhtml page is requested, it uses the selections
property to get the list of book titles and display them in the page.

25 booksMap.put("iphone",
26 "iPhone for Programmers: An App-Driven Approach");
27 booksMap.put("android",
28 "Android for Programmers: An App-Driven Approach");
29 }
30
31 // stores individual user's selections
32 private Set< String > selections = new TreeSet< String >();
33 private String selection; // stores the current selection
34
35 // return number of selections
36 public int getNumberOfSelections()
37 {
38 return selections.size();
39 }
40
41 // returns the current selection
42 public String getSelection()
43 {
44 return selection;
45 }
46
47 // store user's selection
48 public void setSelection(String topic)
49 {
50 selection = booksMap.get(topic);
51 selections.add(selection);
52 }
53
54 // return the Set of selections
55 public String[] getSelections()
56 {
57 return selections.toArray(new String[selections.size()]);
58 }
59 }

Fig. 30.20 | @SessionScoped SelectionsBean class. (Part 2 of 2.)

jhtp_30_webapp1.fm Page 33 Tuesday, April 10, 2018 9:26 AM

30_34 Chapter 30 JavaServer™ Faces Web Apps: Part 1

index.xhtml
The index.xhtml document (Fig. 30.21) contains an h:selectOneRadio element (lines
19–26) with the options Java, C++, iPhone and Android. The user selects a topic by click-
ing a radio button, then pressing Submit to send the selection. As the user makes each se-
lection and submits the form, the selectionsBean object’s selection property is updated
and this document is returned. The EL expression at line 15 inserts the number of selec-
tions that have been made so far into the page. When the user clicks the h:outputLink
(lines 29–31) the recommendations.xhtml page is requested. The value attribute specifies
only recommendations.xhtml, so the browser assumes that this page is on the same server
and at the same location as index.xhtml.

recommendations.xhtml
When the user clicks the h:outputLink in the index.xhtml page, the browser requests the
recommendations.xhtml (Fig. 30.22), which displays book recommendations in an
XHTML unordered (bulleted) list (lines 15–19). The h:outputLink (lines 20–22) allows
the user to return to index.xhtml to select additional topics.

1 <?xml version='1.0' encoding='UTF-8' ?>
2
3 <!-- index.xhtml -->
4 <!-- Allow the user to select a topic -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>
11 <title>Topic Selection Page</title>
12 </h:head>
13 <h:body>
14 <h1>Welcome to Sessions!</h1>
15 <p>You have made selection(s)
16 </p>
17 <h3>Make a Selection and Press Submit</h3>
18 <h:form>
19 <h:selectOneRadio id="topicSelectOneRadio" required="true"
20 requiredMessage="Please choose a topic, then press Submit"
21 >
22 <f:selectItem itemValue="java" itemLabel="Java"/>
23 <f:selectItem itemValue="cpp" itemLabel="C++"/>
24 <f:selectItem itemValue="iphone" itemLabel="iPhone"/>
25 <f:selectItem itemValue="android" itemLabel="Android"/>
26 </h:selectOneRadio>
27 <p><h:commandButton value="Submit"/></p>
28 </h:form>
29 <p>
30 Click here for book recommendations
31 </h:outputLink></p>
32 </h:body>
33 </html>

Fig. 30.21 | index.xhtml allows the user to select a topic.

#{selectionsBean.numberOfSelections}

value="#{selectionsBean.selection}"

<h:outputLink value="recommendations.xhtml">

jhtp_30_webapp1.fm Page 34 Tuesday, April 10, 2018 9:26 AM

30.9 Wrap-Up 30_35

Iterating Through the List of Books
Line 9 enables us to use elements from the JSF Facelets Tag Library. This library includes
the ui:repeat element (lines 16–18), which can be thought of as an enhanced for loop
that iterates through collections JSF Expression Language. The element inserts its nested
element(s) once for each element in a collection. The collection is specified by the value
attribute’s EL expression, which must return an array, a List, a java.sql.ResultSet or
an Object. If the EL expression does not return an array, a List or a ResultSet, the
ui:repeat element inserts its nested element(s) only once for the returned Object. In this
example, the ui:repeat element renders the items returned by the selectionsBean’s se-
lections property.

The ui:repeat element’s var attribute creates a variable named book to which each
item in the collection is assigned in sequence. You can use this variable in EL expressions
in the nested elements. For example, the expression #{book} in line 17 inserts between the
 and tags the String representation of one item in the collection. You can also
use the variable to invoke methods on, or access properties of, the referenced object.

30.9 Wrap-Up
In this chapter, we introduced web application development using JavaServer Faces in
NetBeans. We began by discussing the simple HTTP transactions that take place when
you request and receive a web page through a web browser. We then discussed the three

1 <?xml version='1.0' encoding='UTF-8' ?>
2
3 <!-- recommendations.xhtml -->
4 <!-- Display recommended books based on the user's selected topics -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 >

10 <h:head>
11 <title>Recommended Books</title>
12 </h:head>
13 <h:body>
14 <h1>Book Recommendations</h1>
15
16
17
18
19
20 <p><h:outputLink value="index.xhtml">
21 Click here to choose another topic
22 </h:outputLink></p>
23 </h:body>
24 </html>

Fig. 30.22 | recommendations.xhtml displays book recommendations based on the user’s
selections.

xmlns:ui="http://java.sun.com/jsf/facelets"

<ui:repeat value="#{selectionsBean.selections}" var="book">
 #{book}
</ui:repeat>

jhtp_30_webapp1.fm Page 35 Tuesday, April 10, 2018 9:26 AM

30_36 Chapter 30 JavaServer™ Faces Web Apps: Part 1

tiers (i.e., the client or top tier, the business logic or middle tier and the information or
bottom tier) that comprise most web applications.

You learned how to use NetBeans and the GlassFish Application Server to create,
compile and execute web applications. We demonstrated several common JSF compo-
nents. We also showed how to use validators to ensure that user input satisfies the require-
ments of an application.

We discussed the benefits of maintaining user information across multiple pages of a
website. We then demonstrated how you can include such functionality in a web applica-
tion using @SessionScoped beans.

In Chapter 31, we continue our discussion of Java web application development with
more advanced concepts. You’ll learn how to access a database from a JSF web application
and how to use AJAX to help web-based applications provide the interactivity and respon-
siveness that users typically expect of desktop applications.

Summary

Section 30.1 Introduction
• Web-based apps create content for web browser clients. This content includes eXtensible Hyper-

Text Markup Language (XHTML), JavaScript client-side scripting, Cascading Style Sheets
(CSS), images and binary data.

• XHTML is an XML (eXtensible Markup Language) vocabulary that is based on HTML (Hyper-
Text Markup Language).

• Java multitier applications are typically implemented using the features of Java Enterprise Edi-
tion (Java EE).

• The JavaServer Faces subset of Java EE is a web-application framework (p. 2) for building mul-
titier web apps by extending the framework with your application-specific capabilities. The
framework handles the details of receiving client requests and returning responses for you.

Section 30.2 HyperText Transfer Protocol (HTTP) Transactions
• In its simplest form, a web page is nothing more than an XHTML document that describes to a

web browser how to display and format the document’s information.

• XHTML documents normally contain hyperlinks that link to different pages or to other parts of
the same page. When the user clicks a hyperlink, the requested web page loads into the browser.

• Computers that run web-server software (p. 3) make resources available, such as web pages, im-
ages, PDF documents and even objects that perform complex tasks.

• The HTTP protocol allows clients and servers to interact and exchange information.

• HTTP uses URLs (Uniform Resource Locators) to locate resources on the Internet.

• A URL contains information that directs a browser to the resource that the user wishes to access.

• The computer that houses and maintains resources is usually referred to as the host (p. 3).

• Host names are translated into IP addresses by domain-name system (DNS) servers (p. 3).

• The path in a URL typically specifies a virtual directory on the server. The server translates the
this into a real location, thus hiding a resource’s true location.

jhtp_30_webapp1.fm Page 36 Tuesday, April 10, 2018 9:26 AM

 Summary 30_37

• When given a URL, a web browser performs an HTTP transaction to retrieve and display the
web page at that address.

• HTTP headers (p. 5) provide additional information about the data that will be sent.

• Multipurpose Internet Mail Extensions (MIME; p. 5) is an Internet standard that specifies data
formats so that programs can interpret data correctly.

• The two most common HTTP request types are GET and POST (p. 5). A GET request typically asks
for a specific resource on a server. A POST request typically posts (or sends) data to a server.

• GET requests and POST requests can both be used to send form data to a web server, yet each re-
quest type sends the information differently. A GET request sends information to the server in the
URL’s query string (p. 6). A POST request sends form data as part of the HTTP message.

• Browsers often cache (p. 6) web pages for quick reloading. If there are no changes between the
cached version and the current version on the web, this speeds up your browsing experience.

• An HTTP response can indicate the length of time for which the content remains “fresh.” If this
amount of time has not been reached, the browser can avoid another request to the server.

• Browsers typically do not cache the server’s response to a POST request, because the next POST
might not return the same result.

Section 30.3 Multitier Application Architecture
• Web-based applications are multitier (n-tier) applications (p. 6) that divide functionality into

separate tiers (i.e., logical groupings of functionality). Although tiers can be located on the same
computer, the tiers of web-based applications often reside on separate computers.

• The information tier (p. 7) maintains data pertaining to the application.

• The middle tier (p. 7) implements business logic, controller logic and presentation logic to con-
trol interactions between the application’s clients and the application’s data. Business logic in the
middle tier enforces business rules and ensures that data is reliable before the server application
updates the database or presents the data to users. Business rules dictate how clients can and can-
not access application data, and how applications process data.

• The client tier (p. 7) is the application’s user interface, which gathers input and displays output.
Users interact directly with the application through the user interface. In response to user actions
(e.g., clicking a hyperlink), the client tier interacts with the middle tier to make requests and to
retrieve data from the information tier.

Section 30.4 Your First JSF Web App
• The JSF web-application framework’s Faces servlet (p. 8) processes each requested JSF page so

that the server can eventually return a response to the client.

Section 30.4.1 The Default index.xhtml Document: Introducing Facelets
• You present your web app’s content in JSF using Facelets (p. 9)—a combination of XHTML

markup and JSF markup.

• XHTML (p. 9) specifies the content of a web page that is displayed in a web browser. XHTML
separates the presentation of a document from the structure of the document’s data.

• Presentation is specified with Cascading Style Sheets (CSS).

• JSF uses the XHTML 1.0 Transitional Recommendation by default. Transitional markup may
include some non-CSS formatting, but this is not recommended.

• The starting <html> tag may contain one or more xmlns attributes (p. 9). Each has a name and a
value separated by an equal sign (=), and specifies an XML namespace of elements that are used
in the document.

jhtp_30_webapp1.fm Page 37 Tuesday, April 10, 2018 9:26 AM

30_38 Chapter 30 JavaServer™ Faces Web Apps: Part 1

• The attribute xmlns:h="http://java.sun.com/jsf/html" specifies a prefix and a URL for JSF’s
HTML Tag Library (p. 10), allowing the document to use JSF’s elements from that library.

• A tag library defines a set of elements that can be inserted into the XHTML markup.

• The elements in the HTML Tag Library generate XHTML elements.

• The h:head element (p. 10) defines the XHTML page’s head element.

• The document’s title typically appears in the browser window’s title bar, or a browser tab if you
have multiple web pages open in the browser at once.

• The h:body (p. 10) element represents the page’s content.

• A JSF Expression Language (EL; p. 10) expression can interact with a JavaBean to obtain data.

Section 30.4.2 Examining the WebTimeBean Class
• JSF documents typically interact with one or more Java objects to perform the app’s tasks.

• JavaBeans objects (p. 10) are instances of classes that follow certain conventions for class design.
A JavaBean exposes its data as properties (p. 10). Properties can be read/write, read-only or write-
only. To define a read/write property, a JavaBean class provides set and get methods for that prop-
erty. A read-only property would have only a get method and a write-only property only a set
method.

• The JavaBeans used in JSF are also POJOs (plain old Java objects; p. 11)

• The JSF framework creates and manages objects of your JavaBean classes for you.

• The @ManagedBean annotation (from the package javax.faces.bean; p. 11) indicates that the
JSF framework should create and manage instances of the class. The parentheses following the
annotation contain the optional name attribute. If you specify the annotation without the paren-
theses and the name attribute, the JSF framework will use the class name with a lowercase first
letter as the default bean name.

• When the Faces servlet encounters an EL expression that accesses a bean property, it automati-
cally invokes the property’s set or get method based on the context in which the property is used.

Section 30.5 Model-View-Controller Architecture of JSF Apps
• JSF applications adhere to the Model-View-Controller (MVC; p. 16) architecture, which sepa-

rates an application’s data (contained in the model) from the graphical presentation (the view)
and the processing logic (the controller).

• In JSF, the controller is the JSF framework and is responsible for coordinating interactions be-
tween the view and the model. The model contains the application’s data (typically in a data-
base), and the view presents the data stored in the model (typically as web pages).

Section 30.6 Common JSF Components
• Elements from the JSF HTML Tag Library are mapped by the JSF framework to a combination

of XHTML elements and JavaScript code that enables the browser to render the page.

• The h:form element (p. 17) contains the components with which a user interacts to provide data,
such as registration or login information, to a JSF app.

• An h:panelGrid element (p. 19) organizes elements in an XHTML table. The columns attribute
specifies the number of columns in the table. The style attribute specifies the CSS formatting
for the table.

• A h:graphicImage (p. 19) displays an image (specified by the name attribute) in the page.

jhtp_30_webapp1.fm Page 38 Tuesday, April 10, 2018 9:26 AM

 Summary 30_39

• As of JSF 2.0, you add resources (p. 19) that are used throughout your app—such as images, CSS
files, JavaScript files—to your web apps by placing them in the app’s resources folder within
your project’s Web Pages node. Each subfolder of resources represents a resource library (p. 19).

• An empty element (p. 20) does not have content between its start and end tags. In such an ele-
ment, data can be specified as attributes in the start tag. You can close an empty element either
by placing a slash immediately preceding the start tag’s right angle bracket or by explicitly writing
an end tag.

• An h:selectOneMenu element (p. 20) is typically rendered in a web page as a drop-down list.
Each item to display appears between the start and end tags of this element as an f:selectItem
element (from the JSF Core Tag Library; p. 20). An f:selectItem’s itemLabel is the string that
the user will see in the browser, and its itemValue is the value that’s returned when you program-
matically retrieve the user’s selection from the drop-down list.

• An h:outputLink element (p. 20) inserts a hyperlink in a web page. Its value attribute specifies
the resource that’s requested when a user clicks the hyperlink.

• An h:selectOneRadio element (p. 20) provides a series of radio buttons from which the user can
select only one.

• An h:commandButton element (p. 21) triggers an action when clicked. An h:commandButton typ-
ically maps to an XHTML input element with its type attribute set to "submit". Such elements
are often used to submit a form’s user input values to the server for processing.

Section 30.7 Validation Using JSF Standard Validators
• Form validation (p. 21) helps prevent processing errors due to incomplete or improperly format-

ted user input.

• An f:validateLength validator (p. 21) determines whether a field contains an acceptable num-
ber of characters.

• f:validateDoubleRange and f:validateLongRange validators (p. 21) determine whether numer-
ic input falls within acceptable ranges.

• An f:validateRequired validator (p. 21) determines whether a field contains a value.

• An f:validateRegex validator (p. 21) determines whether a field contains a string that matches
a specified regular expression pattern.

• An f:validateBean validator (p. 21) invokes a bean method that performs custom validation.

• An h:outputText element (p. 26) inserts text in a page.

• An input element’s required attribute (when set to "true"; p. 26) ensures that the user has made
a selection or entered some text in a required input element is a basic type of validation.

• An input element’s requiredMessage attribute (p. 26) specifies the message that should be dis-
played if the user submits the form without first providing a value for the required element.

• An input element’s validatorMessage attribute (p. 26) specifies the message to display if a vali-
dator is associated with the element and the data the user enters is invalid.

• The messages specified by the requiredMessage and validatorMessage attributes are displayed
in an associated h:message element (p. 26) when validation fails.

• To limit the length of user input in an h:inputText, set its maxlength attribute (p. 27)—the el-
ement’s cursor will not advance beyond the maximum allowable number of characters.

• In a postback (p. 27), the browser re-requests the page and sends the values of the form’s fields
to the server for processing.

jhtp_30_webapp1.fm Page 39 Tuesday, April 10, 2018 9:26 AM

30_40 Chapter 30 JavaServer™ Faces Web Apps: Part 1

Section 30.8 Session Tracking
• Personalization (p. 28) makes it possible for e-businesses to communicate effectively with their

customers and also improves the user’s ability to locate desired products and services.

• A trade-off exists between personalized e-business service and protection of privacy. Some con-
sumers embrace the idea of tailored content, but others fear the possible adverse consequences if
the information they provide to e-businesses is released or collected by tracking technologies.

• HTTP is a stateless protocol—it does not provide information that would enable web servers to
maintain state information regarding particular clients.

• To help the server distinguish among clients, each client must identify itself to the server. Track-
ing individual clients, known as session tracking, can be achieved in a number of ways. One pop-
ular technique uses cookies; another uses the @SessionScoped annotation.

Section 30.8.1 Cookies
• A cookie (p. 29) is a piece of data stored in a small text file on the user’s computer. A cookie

maintains information about the client during and between browser sessions.

• The expiration date (p. 29) of a cookie determines how long the cookie remains on the client’s
computer. If you do not set an expiration date for a cookie, the web browser maintains the cookie
for the duration of the browsing session.

Section 30.8.2 Session Tracking with @SessionScoped Beans
• A @SessionScoped bean (p. 30) can maintain a user’s selections throughout the user’s session.

Such a bean is created when a session begins and exists throughout the entire session.

• A @SessionScoped bean can be accessed by all of the app’s pages, and the app server maintains a
separate @SessionScoped bean for each user.

• By default a session expires after 30 minutes of inactivity or when the user closes the browser that
was used to begin the session. When the session expires, the server discards the bean that was as-
sociated with that session.

• The ui:repeat element (from the JSF Facelets Tag Library; p. 35) inserts its nested element(s)
once for each element in a collection. The collection is specified by the value attribute’s EL ex-
pression, which must return an array, a List, a java.sql.ResultSet or an Object.

• The ui:repeat element’s var attribute creates a variable named book to which each item in the
collection is assigned in sequence.

Self-Review Exercises
30.1 State whether each of the following is true or false. If false, explain why.

a) A URL contains information that directs a browser to the resource that the user wishes
to access.

b) Host names are translated into IP addresses by web servers.
c) The path in a URL typically specifies a resource’s exact location on the server.
d) GET requests and POST requests can both be used to send form data to a web server.
e) Browsers typically cache the server’s response to a POST request.
f) A tag library defines a set of elements that can be inserted into the XHTML markup.
g) You must create and manage the JavaBean objects that are used in your JSF web appli-

cations.
h) When the Faces servlet encounters an EL expression that accesses a bean property, it au-

tomatically invokes the property’s set or get method based on the context in which the
property is used.

jhtp_30_webapp1.fm Page 40 Tuesday, April 10, 2018 9:26 AM

 Answers to Self-Review Exercises 30_41

i) An h:panelGrid element organizes elements in an XHTML table.
j) An h:selectOneMenu element is typically rendered in a web page as a set of radio but-

tons.
k) The messages specified by an element’s requiredMessage and validatorMessage attri-

butes are displayed in an associated h:message element when validation fails.
l) The HTTP protocol provides information that enables web servers to maintain state in-

formation regarding particular clients.
m) The ui:repeat element inserts its nested element(s) once for each element in a collec-

tion. The collection can be any IEnumerable type.

30.2 Fill in the blanks in each of the following statements:
a) Java multitier applications are typically implemented using the features of .
b) Computers that run software make resources available, such as web pages,

images, PDF documents and even objects that perform complex tasks.
c) The JSF web-application framework’s processes each requested JSF page.
d) A(n) exposes its data as read/write, read-only or write-only properties.
e) The annotation indicates that the JSF framework should create and manage

instances of the class.
f) A(n) element contains the components with which a user interacts to provide

data, such as registration or login information, to a JSF app.
g) A(n) element triggers an action when clicked.
h) A(n) validator determines whether a field contains an acceptable number of

characters.
i) A(n) validator determines whether a field contains a string that matches a

specified regular expression pattern.
j) In a(n) , the browser re-requests the page and sends the values of the form’s

fields to the server for processing.
k) A(n) bean is created when a session begins and exists throughout the entire

session.

Answers to Self-Review Exercises
30.1 a) True. b) False. Host names are translated into IP addresses by DNS servers. c) False. The
server translates a virtual directory into a real location, thus hiding a resource’s true location.
d) True. e) False. Browsers typically do not cache the server’s response to a POST request, because the
next POST might not return the same result. f) True. g) False. The JSF framework creates and man-
ages objects of your JavaBean classes for you. h) True. i) True. j) False. An h:selectOneRadio ele-
ment is rendered as a set of radio buttons. An h:selectOneMenu is rendered as a drop-down list.
k) True. l) False. HTTP is a stateless protocol that does not provide information that enables web
servers to maintain state information regarding particular clients—a separate tracking technology
must be used. m) False. A ui:repeat element can iterate over only arrays, Lists and ResultSets.
For any other object, the elements in a ui:repeat element will be inserted once.

30.2 a) Java Enterprise Edition (Java EE). b) web-server. c) Faces servlet. d) JavaBean. e) @Man-
agedBean. f) h:form. g) h:commandButton. h) f:validateLength. i) f:validateRegex. j) postback.
k) @SessionScoped.

Exercises
30.3 (Registration Form Modification) Modify the WebComponents application to add function-
ality to the Register button. When the user clicks Register, validate all input fields to make sure the
user has filled out the form completely and entered a valid email address and phone number. Then,

jhtp_30_webapp1.fm Page 41 Tuesday, April 10, 2018 9:26 AM

30_42 Chapter 30 JavaServer™ Faces Web Apps: Part 1

jhtp_30_webapp1.fm Page 42 Tuesday, April 10, 2018 9:26 AM

