
31JavaServer™ Faces Web
Apps: Part 2

O b j e c t i v e s
In this chapter you’ll learn:

■ To access databases from JSF
applications.

■ The basic principles and
advantages of Ajax
technology.

■ To use Ajax in a JSF web app.

jhtp_31_webapp2.fm Page 1 Tuesday, April 10, 2018 9:30 AM

31_2 Chapter 31 JavaServer™ Faces Web Apps: Part 2

31.1 Introduction
This chapter continues our discussion of JSF web application development with two ad-
ditional examples. In the first, we present a simple address book app that retrieves data
from and inserts data into a Java DB database. The app allows users to view the existing
contacts in the address book and to add new contacts. In the second example, we add so-
called Ajax capabilities to the Validation example from Section 30.7. As you’ll learn, Ajax
improves application performance and responsiveness. This chapter’s examples, like those
in Chapter 30, were developed in NetBeans, but similar capabilities are available in other
IDEs.

31.2 Accessing Databases in Web Apps
Many web apps access databases to store and retrieve persistent data. In this section, we
build an address book web app that uses a Java DB database display contacts from the ad-
dress book on a web page and to store contacts in the address book. Figure 31.1 shows
sample interactions with the AddressBook app.

31.1 Introduction
31.2 Accessing Databases in Web Apps

30.2.1 Setting Up the Database
30.2.2 Class AddressBean
30.2.3 index.xhtml Facelets Page
30.2.4 addentry.xhtml Facelets Page

31.3 Ajax
31.4 Adding Ajax Functionality to the

Validation App
31.5 Wrap-Up

Summary | Self-Review Exercise | Answers to Self-Review Exercise | Exercises

Fig. 31.1 | Sample outputs from the AddressBook app. (Part 1 of 2.)

a) Table of addresses displayed when the AddressBook app is first requested

jhtp_31_webapp2.fm Page 2 Tuesday, April 10, 2018 9:30 AM

31.2 Accessing Databases in Web Apps 31_3

If the app’s database already contains addresses, the initial request to the app displays
those addresses as shown in Fig. 31.1(a)—we populated the database with the sample
addresses shown. Clicking Add Entry displays the addentry.xhtml page for adding an
address to the database (Fig. 31.1(b)). Clicking Save Address validates the form’s fields. If
the fields are valid, the JSF app adds the address to the database and returns to the
index.xhtml page to show the updated list of addresses (Fig. 31.1(c)). This example also
introduces the h:dataTable element for displaying data in tabular format.

Fig. 31.1 | Sample outputs from the AddressBook app. (Part 2 of 2.)

b) Form for adding an entry

c) Table of addresses updated with the new entry added in Part (b)

jhtp_31_webapp2.fm Page 3 Tuesday, April 10, 2018 9:30 AM

31_4 Chapter 31 JavaServer™ Faces Web Apps: Part 2

The next several sections explain how to build the AddressBook application. First, we
set up the database (Section 31.2.1). Next, we present class AddressBean (Section 31.2.2),
which enables the app’s Facelets pages to interact with the database. Finally, we present
the index.xthml (Section 31.2.3) and addentry.xhtml (Section 31.2.4) Facelets pages.

31.2.1 Setting Up the Database
You’ll now create the addressbook database and populate it with sample data.

Open NetBeans and Ensure that Java DB and GlassFish Are Running
Before you can create the data source in NetBeans, the IDE must be open and the Java DB
and GlassFish servers must be running. Perform the following steps:

1. Open the NetBeans IDE.

2. On the Services tab, expand the Databases node then right click Java DB. If Java
DB is not already running the Start Server option will be enabled. In this case, Se-
lect Start server to launch the Java DB server.

3. On the Services tab, expand the Servers node then right click GlassFish Server
4.1 (or the version that was installed with NetBeans). If GlassFish Server 4.1 is not
already running the Start option will be enabled. In this case, select Start to
launch GlassFish.

You may need to wait a few moments for the servers to begin executing.

Creating the Database
In web apps that receive many requests, it’s inefficient to create separate database connec-
tions for each request. Instead, you use a connection pool to allow the server to manage a
limited number of database connections and share them among requests. To create a con-
nection pool for this app, perform the following steps:

1. On the Services tab, expand the Databases node, right click Java DB and select
Create Database…. This opens the Create Java DB Database dialog.

2. Specify the following values:

• Database Name: addressbook

• User Name: APP

• Password: APP

3. Click OK to create the database.

You can specify any User name and Password you like and should change these as appro-
priate for real applications. The preceding steps create a new entry in the Databases node
showing the database’s URL (jdbc:derby://localhost:1527/addressbook). The data-
base server that provides access to this database resides on the local machine and accepts
connections on port 1527.

Populate the addressbook Database with Sample Data
You’ll now populate the database with sample data using the AddressBook.sql SQL script
that’s provided with this chapter’s examples. NetBeans must be connected to the database
to execute SQL statements. If NetBeans is already connected to the database, the icon

jhtp_31_webapp2.fm Page 4 Tuesday, April 10, 2018 9:30 AM

31.2 Accessing Databases in Web Apps 31_5

is displayed next to the database’s URL; otherwise, the icon is displayed. In this case,
right click the icon and select Connect….

To populate the database with sample data, perform the following steps:

1. Expand the jdbc:derby://localhost:1527/addressbook node, then expand
the nested APP node.

2. Right click the Tables node and select Execute Command… to open a SQL editor
tab in NetBeans. In a text editor, open the file AddressBook.sql from this chap-
ter’s examples folder, then copy the SQL statements and paste them into the SQL
editor in NetBeans. Next, right click in the SQL Command editor and select Run
File. This will create the Addresses table with the sample data in Fig. 31.1(a).
[Note: The SQL script attempts to remove the database’s Addresses table if it al-
ready exists. If it doesn’t exist, you’ll receive an error message in the NetBeans
Output window, but the table will still be created properly.] Expand the Tables
node to see the new table. You can view the table’s data by right clicking AD-
DRESSES and selecting View Data…. Notice that we named the columns with all
capital letters. We’ll be using these names in Section 31.2.3.

31.2.2 Class AddressBean
[Note: To build this app from scratch, use the techniques you learned in Chapter 30 to
create a JSF web application named AddressBook and add a second Facelets page named
addentry.xhtml to the app.] Class AddressBean (Fig. 31.2) enables the AddressBook app
to interact with the addressbook database. The class provides properties that represent the
first name, last name, street, city, state and zip code for an entry in the database. These are
used by the addentry.xhtml page when adding a new entry to the database. In addition,
this class declares a DataSource (lines 39–40) for interacting with the database, method
getAddresses (lines 115–148) for obtaining the list of addresses from the database and
method save (lines 151–191) for saving a new address into the database. These methods
use various JDBC techniques you learned in Chapter 24. [Note: It’s also possible to imple-
ment this app’s data storage using the JPA techniques from Chapter 29.]

1 // AddressBean.java
2 // Bean for interacting with the AddressBook database
3 package addressbook;
4
5 import java.io.Serializable;
6 import java.sql.Connection;
7 import java.sql.PreparedStatement;
8 import java.sql.ResultSet;
9 import java.sql.SQLException;

10
11
12
13 import javax.sql.DataSource;
14
15

Fig. 31.2 | AddressBean interacts with a database to store and retrieve addresses. (Part 1 of 5.)

import javax.annotation.Resource;
import javax.annotation.sql.DataSourceDefinition;
import javax.inject.Named;

import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetProvider;

jhtp_31_webapp2.fm Page 5 Tuesday, April 10, 2018 9:30 AM

31_6 Chapter 31 JavaServer™ Faces Web Apps: Part 2

16
17 // define the data source
18
19
20
21
22
23
24
25
26
27
28 public class AddressBean
29 {
30 // instance variables that represent one address
31 private String firstName;
32 private String lastName;
33 private String street;
34 private String city;
35 private String state;
36 private String zipcode;
37
38 // allow the server to inject the DataSource
39
40
41
42 // get the first name
43 public String getFirstName()
44 {
45 return firstName;
46 }
47
48 // set the first name
49 public void setFirstName(String firstName)
50 {
51 this.firstName = firstName;
52 }
53
54 // get the last name
55 public String getLastName()
56 {
57 return lastName;
58 }
59
60 // set the last name
61 public void setLastName(String lastName)
62 {
63 this.lastName = lastName;
64 }
65
66 // get the street
67 public String getStreet()
68 {

Fig. 31.2 | AddressBean interacts with a database to store and retrieve addresses. (Part 2 of 5.)

@DataSourceDefinition(
 name = "java:global/jdbc/addressbook",
 className = "org.apache.derby.jdbc.ClientDataSource",
 url = "jdbc:derby://localhost:1527/addressbook",
 databaseName = "addressbook",
 user = "APP",
 password = "APP")

@Named("addressBean")
@javax.faces.view.ViewScoped

implements Serializable

@Resource(lookup="java:global/jdbc/addressbook")
DataSource dataSource;

jhtp_31_webapp2.fm Page 6 Tuesday, April 10, 2018 9:30 AM

31.2 Accessing Databases in Web Apps 31_7

69 return street;
70 }
71
72 // set the street
73 public void setStreet(String street)
74 {
75 this.street = street;
76 }
77
78 // get the city
79 public String getCity()
80 {
81 return city;
82 }
83
84 // set the city
85 public void setCity(String city)
86 {
87 this.city = city;
88 }
89
90 // get the state
91 public String getState()
92 {
93 return state;
94 }
95
96 // set the state
97 public void setState(String state)
98 {
99 this.state = state;
100 }
101
102 // get the zipcode
103 public String getZipcode()
104 {
105 return zipcode;
106 }
107
108 // set the zipcode
109 public void setZipcode(String zipcode)
110 {
111 this.zipcode = zipcode;
112 }
113
114 // return a ResultSet of entries
115 public ResultSet getAddresses() throws SQLException
116 {
117 // check whether dataSource was injected by the server
118 if (dataSource == null)
119 {
120 throw new SQLException("Unable to obtain DataSource");
121 }

Fig. 31.2 | AddressBean interacts with a database to store and retrieve addresses. (Part 3 of 5.)

jhtp_31_webapp2.fm Page 7 Tuesday, April 10, 2018 9:30 AM

31_8 Chapter 31 JavaServer™ Faces Web Apps: Part 2

122
123 // obtain a connection from the connection pool
124 Connection connection = dataSource.getConnection();
125
126 // check whether connection was successful
127 if (connection == null)
128 {
129 throw new SQLException("Unable to connect to DataSource");
130 }
131
132 try
133 {
134 // create a PreparedSt atement to insert a new address book entry
135 PreparedStatement getAddresses = connection.prepareStatement(
136 "SELECT FIRSTNAME, LASTNAME, STREET, CITY, STATE, ZIP " +
137 "FROM ADDRESSES ORDER BY LASTNAME, FIRSTNAME");
138
139
140
141
142
143 }
144 finally
145 {
146 connection.close(); // return this connection to pool
147 }
148 }
149
150 // save a new address book entry
151 public String save() throws SQLException
152 {
153 // check whether dataSource was injected by the server
154 if (dataSource == null)
155 {
156 throw new SQLException("Unable to obtain DataSource");
157 }
158
159 // obtain a connection from the connection pool
160 Connection connection = dataSource.getConnection();
161
162 // check whether connection was successful
163 if (connection == null)
164 {
165 throw new SQLException("Unable to connect to DataSource");
166 }
167
168 try
169 {
170 // create a PreparedStatement to insert a new address book entry
171 PreparedStatement addEntry =
172 connection.prepareStatement("INSERT INTO ADDRESSES " +
173 "(FIRSTNAME,LASTNAME,STREET,CITY,STATE,ZIP)" +
174 " VALUES (?, ?, ?, ?, ?, ?)");

Fig. 31.2 | AddressBean interacts with a database to store and retrieve addresses. (Part 4 of 5.)

CachedRowSet rowSet =
 RowSetProvider.newFactory().createCachedRowSet();
rowSet.populate(getAddresses.executeQuery());
return rowSet;

jhtp_31_webapp2.fm Page 8 Tuesday, April 10, 2018 9:30 AM

31.2 Accessing Databases in Web Apps 31_9

Defining a Data Source with the Annotation @DataSourceDefinition
To connect to the addressbook database from a web app, you must configure a data
source name that will be used to locate the database. Lines 18–24

use Java EE 7’s @DataSourceDefinition annotation to create a data source name for the
addressbook database. Here we specified the following attributes:

• name—The JNDI (Java Naming and Directory Interface) name we’ll use to look
up the data source. JNDI is a technology for locating application components (such
as databases) in a distributed application (such as a multitier web application).

• className—The DataSource subclass. An object of this class will be used to in-
teract with the database. A DataSource (package javax.sql) enables a web appli-
cation to obtain a Connection to a database. ClientDataSource is one of several
DataSource subclasses provided by Java DB. Apps that are expected to manage
many connections at once would typically use ClientConnectionPoolData-
Source or ClientXADataSource.

• url—The URL for connecting to the database. This is the database URL is spec-
ified in the NetBeans Services tab’s Databases > Java DB node.

• databaseName—The database’s name.

• user—The username for logging into the database.

• password—The password for logging into the database.1

175
176 // specify the PreparedStatement's arguments
177 addEntry.setString(1, getFirstName());
178 addEntry.setString(2, getLastName());
179 addEntry.setString(3, getStreet());
180 addEntry.setString(4, getCity());
181 addEntry.setString(5, getState());
182 addEntry.setString(6, getZipcode());
183
184 addEntry.executeUpdate(); // insert the entry
185 return "index"; // go back to index.xhtml page
186 }
187 finally
188 {
189 connection.close(); // return this connection to pool
190 }
191 }
192 }

@DataSourceDefinition(
 name = "java:global/jdbc/addressbook",
 className = "org.apache.derby.jdbc.ClientDataSource",
 url = "jdbc:derby://localhost:1527/addressbook",
 databaseName = "addressbook",
 user = "APP",
 password = "APP")

Fig. 31.2 | AddressBean interacts with a database to store and retrieve addresses. (Part 5 of 5.)

jhtp_31_webapp2.fm Page 9 Tuesday, April 10, 2018 9:30 AM

31_10 Chapter 31 JavaServer™ Faces Web Apps: Part 2

Though we do not do so here, the @DataSourceDefinition annotation also can create the
database, by specifiying the attribute

The app could then create the database’s table(s) programmatically. We manually created
the database in advance so we could prepopulate it with sample address data.

Class AddressBean’s Annotations—@Named and @javax.faces.view.ViewScoped
In Chapter 30, we introduced the @ManagedBean annotation (from the package ja-
vax.faces.bean) to indicate that the JSF framework should create and manage the Java-
Bean object(s) used in the application. @ManagedBean is deprecated in Java EE 7 and
Contexts and Dependency Injection (CDI) should be used instead. Switching to CDI
simply requires changing from JSF’s @ManagedBean annotation to CDI’s @Named annota-
tion (line 26):

As with @ManagedBean, if you do not specify a name in parentheses, the JavaBean object’s
variable name will be the JavaBean class’s name with a lowercase first letter.

We also added the annotation

to indicate that CDI should manage this JavaBean’s lifetime, based on the JSF view that
first referenced the JavaBean. A ViewScoped JavaBean’s class must be Serializable (as in-
dicated in line 28).

Injecting the DataSource into Class AddressBean
Lines 39–40 use the @Resource annotation to inject a DataSource object into the Ad-
dressBean. The annotation’s lookup attribute specifies the JNDI name for the data source
we created in lines 18–24. The @Resource annotation enables the server (GlassFish in our
case) to hide all the complex details of setting up a DataSource object that can interact
with the addressbook database. The server creates a DataSource for you—an object of the
type you specified in the @DataSourceDefinition—and assigns the DataSource object to
the annotated variable declared at line 40. You can now trivially obtain a Connection for
interacting with the database.

AddressBean Method getAddresses
Method getAddresses (lines 115–148) is called when the index.xhtml page is requested.
The method returns a list of addresses for display in the page (Section 31.2.3). First, we
check whether variable dataSource is null (lines 118–121), which would indicate that the
server was unable to create the DataSource object. If the DataSource was created success-
fully, we use it to obtain a Connection to the database (line 124). Next, we check whether
variable connection is null (lines 127–130), which would indicate that we were unable
to connect. If the connection was successful, lines 135–142 get the set of addresses from
the database and return them.

1. Future versions of Java EE might include password aliases to hide the database’s password for addi-
tional security.

properties = {"createDatabase=create"}

@Named("addressBean")

@javax.faces.view.ViewScoped

jhtp_31_webapp2.fm Page 10 Tuesday, April 10, 2018 9:30 AM

31.2 Accessing Databases in Web Apps 31_11

The PreparedStatement at lines 135–137 obtains all the addresses. Because database
connections are a limited resources, you should use and close them quickly in your web
apps. For this reason, we create a CachedRowSet and populate it with the ResultSet
returned by the PreparedStatement’s executeQuery method (lines 139–141). We then
return the CachedRowSet (a disconnected RowSet) for use in the index.xhtml page (line
142) and close the connection object (line 146) in the finally block.

AddressBean Method save
Method save (lines 151–191) stores a new address in the database (Section 31.2.4). This
occurs when the user submits the addentry.xhtml form—assuming the form’s fields val-
idate successfully. As in getAddresses, we ensure that the DataSource is not null, then
obtain the Connection object and ensure that its not null. Lines 171–174 create a Pre-
paredStatement for inserting a new record in the database. Lines 177–182 specify the val-
ues for each of the parameters in the PreparedStatement. Line 184 then executes the
PreparedStatement to insert the new record. Line 185 returns the string "index", which
as you’ll see in Section 31.2.4 causes the app to display the index.xhtml page again.

31.2.3 index.xhtml Facelets Page
index.xhtml (Fig. 31.3) is the default web page for the AddressBook app. When this page
is requested, it obtains the list of addresses from the AddressBean and displays them in tab-
ular format using an h:dataTable element. The user can click the Add Entry button (line
17) to view the addentry.xhtml page. Recall that the default action for an h:commandBut-
ton is to submit a form. In this case, we specify the button’s action attribute with the val-
ue "addentry". The JSF framework assumes this is a page in the app, appends .xhtml
extension to the action attribute’s value and returns the addentry.xhtml page to the cli-
ent browser.

The h:dataTable Element
The h:dataTable element (lines 19–46) inserts tabular data into a page. We discuss only
the attributes and nested elements that we use here. For more details on this element, its
attributes and other JSF tag library elements, visit bit.ly/JSF2TagLibraryReference.

1 <?xml version='1.0' encoding='UTF-8' ?>
2
3 <!-- index.html -->
4 <!-- Displays an h:dataTable of the addresses in the address book -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>
11 <title>Address Book</title>
12 <h:outputStylesheet name="style.css" library="css"/>
13 </h:head>

Fig. 31.3 | Displays an h:dataTable of the addresses in the address book. (Part 1 of 2.)

jhtp_31_webapp2.fm Page 11 Tuesday, April 10, 2018 9:30 AM

31_12 Chapter 31 JavaServer™ Faces Web Apps: Part 2

The h:dataTable element’s value attribute (line 19) specifies the collection of data
you wish to display. In this case, we use AddressBean’s addresses property, which calls
the getAddresses method (Fig. 31.2). The collection returned by this method is a
CachedRowSet, which is a type of ResultSet.

The h:dataTable iterates over its value collection and, one at a time, assigns each ele-
ment to the variable specified by the var attribute. This variable is used in the h:data-
Table’s nested elements to access each element of the collection—each element in this case
represents one row (i.e., address) in the CachedRowSet.

The rowClasses attribute (line 20) is a space-separated list of CSS style class names
that are used to style the rows in the tabular output. These style classes are defined in the
app’s styles.css file in the css library (which is inserted into the document at line 12).
You can open this file to view the various style class definitions. We specified two style
classes— all the odd numbered rows will have the first style (oddRows) and all the even
numbered rows the second style (evenRows). You can specify as many styles as you like—

14 <h:body>
15 <h1>Address Book</h1>
16 <h:form>
17 <p> </p>
18 </h:form>
19
20
21
22
23
24
25
26 <h:column>
27 <f:facet name="header">Last Name</f:facet>
28
29 </h:column>
30 <h:column>
31 <f:facet name="header">Street</f:facet>
32
33 </h:column>
34 <h:column>
35 <f:facet name="header">City</f:facet>
36
37 </h:column>
38 <h:column>
39 <f:facet name="header">State</f:facet>
40
41 </h:column>
42 <h:column>
43 <f:facet name="header">Zip code</f:facet>
44
45 </h:column>
46 </h:dataTable>
47 </h:body>
48 </html>

Fig. 31.3 | Displays an h:dataTable of the addresses in the address book. (Part 2 of 2.)

<h:commandButton value="Add Entry" action="addentry"/>

<h:dataTable value="#{addressBean.addresses}" var="address"
 rowClasses="oddRows,evenRows" headerClass="header"
 styleClass="table" cellpadding="5" cellspacing="0">

<h:column>
 <f:facet name="header">First Name</f:facet>
 #{address.FIRSTNAME}
</h:column>

#{address.LASTNAME}

#{address.STREET}

#{address.CITY}

#{address.STATE}

#{address.ZIP}

jhtp_31_webapp2.fm Page 12 Tuesday, April 10, 2018 9:30 AM

31.2 Accessing Databases in Web Apps 31_13

they’ll be applied in the order you list them one row at a time until all the styles have been
applied, then the h:DataTable will automatically cycle through the styles again for the
next set of rows. The columnClasses attribute works similarly for columns in the table.

The headerClass attribute (line 20) specifies the column header CSS style. Headers
are defined with f:facet elements nested in h:column elements (discussed momentarily).
The footerClass attribute works similarly for column footers in the table.

The styleClass attribute (line 21) specifies the CSS styles for the entire table. The
cellpadding and cellspacing attributes (line 21) specify the number of pixels around
each table cell’s contents and the number of pixels between table cells, respectively.

The h:column Elements
Lines 22–45 define the table’s columns with six nested h:column elements. We focus here
on the one at lines 22–25. When the CachedRowSet is populated in the AddressBean class,
it automatically uses the database’s column names as property names for each row object
in the CachedRowSet. Line 28 inserts into the column the FIRSTNAME property of the
CachedRowSet’s current row. To display a column header above the column, you define
an f:facet element (line 23) and set its name attribute to "header". Similarly, to display
a column footer, use an f:facet with its name attribute set to "footer". The header is for-
matted with the CSS style specified in the h:dataTable’s headerClass attribute (line 20).
The remaining h:column elements perform similar tasks for the current row’s LASTNAME,
STREET, CITY, STATE and ZIP properties.

31.2.4 addentry.xhtml Facelets Page
When the user clicks Add Entry in the index.xhtml page, addentry.xhtml (Fig. 31.4) is
displayed. Each h:inputText in this page has its required attribute set to "true" and in-
cludes a maxlength attribute that restricts the user’s input to the maximum length of the
corresponding database field. When the user clicks Save (lines 48–49), the input element’s
values are validated and (if successful) assigned to the properties of the addressBean man-
aged object. In addition, the button specifies as its action the EL expression

which invokes the addressBean object’s save method to store the new address in the data-
base. When you call a method with the action attribute, if the method returns a value (in
this case, it returns the string "index"), that value is used to request the corresponding
page from the app. If the method does not return a value, the current page is re-requested.

#{addressBean.save}

1 <?xml version='1.0' encoding='UTF-8' ?>
2
3 <!-- addentry.html -->
4 <!-- Form for adding an entry to an address book -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html">

Fig. 31.4 | Form for adding an entry to an address book. (Part 1 of 2.)

jhtp_31_webapp2.fm Page 13 Tuesday, April 10, 2018 9:30 AM

31_14 Chapter 31 JavaServer™ Faces Web Apps: Part 2

31.3 Ajax
The term Ajax—short for Asynchronous JavaScript and XML—was coined by Jesse
James Garrett of Adaptive Path, Inc., in 2005 to describe a range of technologies for de-
veloping highly responsive, dynamic web applications. Ajax applications include Google
Maps, Yahoo’s FlickR and many more. Ajax separates the user interaction portion of an ap-

9 <h:head>
10 <title>Address Book: Add Entry</title>
11 <h:outputStylesheet name="style.css" library="css"/>
12 </h:head>
13 <h:body>
14 <h1>Address Book: Add Entry</h1>
15 <h:form>
16 <h:panelGrid columns="3">
17 <h:outputText value="First name:"/>
18 <h:inputText id="firstNameInputText" required="true"
19 requiredMessage="Please enter first name"
20 value="#{addressBean.firstName}" maxlength="30"/>
21 <h:message for="firstNameInputText" styleClass="error"/>
22 <h:outputText value="Last name:"/>
23 <h:inputText id="lastNameInputText" required="true"
24 requiredMessage="Please enter last name"
25 value="#{addressBean.lastName}" maxlength="30"/>
26 <h:message for="lastNameInputText" styleClass="error"/>
27 <h:outputText value="Street:"/>
28 <h:inputText id="streetInputText" required="true"
29 requiredMessage="Please enter the street address"
30 value="#{addressBean.street}" maxlength="150"/>
31 <h:message for="streetInputText" styleClass="error"/>
32 <h:outputText value="City:"/>
33 <h:inputText id="cityInputText" required="true"
34 requiredMessage="Please enter the city"
35 value="#{addressBean.city}" maxlength="30"/>
36 <h:message for="cityInputText" styleClass="error"/>
37 <h:outputText value="State:"/>
38 <h:inputText id="stateInputText" required="true"
39 requiredMessage="Please enter state"
40 value="#{addressBean.state}" maxlength="2"/>
41 <h:message for="stateInputText" styleClass="error"/>
42 <h:outputText value="Zipcode:"/>
43 <h:inputText id="zipcodeInputText" required="true"
44 requiredMessage="Please enter zipcode"
45 value="#{addressBean.zipcode}" maxlength="5"/>
46 <h:message for="zipcodeInputText" styleClass="error"/>
47 </h:panelGrid>
48
49
50 </h:form>
51 <h:outputLink value="index.xhtml">Return to Addresses</h:outputLink>
52 </h:body>
53 </html>

Fig. 31.4 | Form for adding an entry to an address book. (Part 2 of 2.)

<h:commandButton value="Save Address"
 action="#{addressBean.save}"/>

jhtp_31_webapp2.fm Page 14 Tuesday, April 10, 2018 9:30 AM

31.3 Ajax 31_15

plication from its server interaction, enabling both to proceed in parallel. This enables Ajax
web-based applications to perform at speeds approaching those of desktop applications,
reducing or even eliminating the performance advantage that desktop applications have
traditionally had over web-based applications. This has huge ramifications for the desktop
applications industry—the applications platform of choice is shifting from the desktop to
the web. Many people believe that the web—especially in the context of abundant open-
source software, inexpensive computers and exploding Internet bandwidth—will create
the next major growth phase for Internet companies.

Ajax makes asynchronous calls to the server to exchange small amounts of data with
each call. Where normally the entire page would be submitted and reloaded with every user
interaction on a web page, Ajax allows only the necessary portions of the page to reload, saving
time and resources.

Ajax applications typically make use of client-side scripting technologies such as
JavaScript to interact with page elements. They use the browser’s XMLHttpRequest object
to perform the asynchronous exchanges with the web server that make Ajax applications
so responsive. This object can be used by most scripting languages to pass XML data from
the client to the server and to process XML data sent from the server back to the client.

Using Ajax technologies in web applications can dramatically improve performance,
but programming Ajax directly is complex and error prone. It requires page designers to
know both scripting and markup languages. As you’ll soon see, JSF makes adding Ajax
capabilities to your web apps fairly simple.

Traditional Web Applications
Figure 31.5 presents the typical interactions between the client and the server in a tradi-
tional web application, such as one that uses a user registration form.

Fig. 31.5 | Classic web application reloading the page for every user interaction.

Se
rv

er
C

lie
nt Form

Form

Page 1

Form

Form

Page 2

Form

Form

Page 3

Request 1

Process
request

Generate
response

Process
request

Generate
response

Page
reloading

Request 2

Page
reloading

Form

Form

Page 2

Form

Form

Page 3

1

2

3

4

5

6

7

8

jhtp_31_webapp2.fm Page 15 Tuesday, April 10, 2018 9:30 AM

31_16 Chapter 31 JavaServer™ Faces Web Apps: Part 2

The user first fills in the form’s fields, then submits the form (Fig. 31.5, Step 1). The
browser generates a request to the server, which receives the request and processes it (Step
2). The server generates and sends a response containing the exact page that the browser
will render (Step 3), which causes the browser to load the new page (Step 4) and tempo-
rarily makes the browser window blank. The client waits for the server to respond and
reloads the entire page with the data from the response (Step 4). While such a synchronous
request is being processed on the server, the user cannot interact with the client web page. If
the user interacts with and submits another form, the process begins again (Steps 5–8).

This model was originally designed for a web of hypertext documents—what some
people call the “brochure web.” As the web evolved into a full-scale applications platform,
the model shown in Fig. 31.5 yielded “choppy” application performance. Every full-page
refresh required users to reestablish their understanding of the full-page contents. Users
began to demand a model that would yield the responsiveness of desktop applications.

Ajax Web Applications
Ajax applications add a layer between the client and the server to manage communication
between the two (Fig. 31.6).

When the user interacts with the page, the client creates an XMLHttpRequest object to
manage a request (Step 1). This object sends the request to the server (Step 2) and awaits
the response. The requests are asynchronous, so the user can continue interacting with the
application on the client side while the server processes the earlier request concurrently.
Other user interactions could result in additional requests to the server (Steps 3 and 4).
Once the server responds to the original request (Step 5), the XMLHttpRequest object that
issued the request calls a client-side function to process the data returned by the server.
This function—known as a callback function—uses partial page updates (Step 6) to dis-

Fig. 31.6 | Ajax-enabled web application interacting with the server asynchronously.

Se
rv

er
C

lie
nt Form

Form

Page 1

Process
request 1

Generate
response

Process
request 2

Generate
response

Request object

Callback function
Response processing Request object

Callback function
Response processing

Update Update

User interaction initiates
asynchronous request

User interaction initiates
asynchronous request

Partial
page update

Partial
page update

1

2

3

4

5

6

7

8

data data

jhtp_31_webapp2.fm Page 16 Tuesday, April 10, 2018 9:30 AM

31.4 Adding Ajax Functionality to the Validation App 31_17

play the data in the existing web page without reloading the entire page. At the same time,
the server may be responding to the second request (Step 7) and the client side may be
starting to do another partial page update (Step 8). The callback function updates only a
designated part of the page. Such partial page updates help make web applications more
responsive, making them feel more like desktop applications. The web application does
not load a new page while the user interacts with it.

31.4 Adding Ajax Functionality to the Validation App
The example in this section adds Ajax capabilities to the Validation app that we presented
in Section 30.7. Figure 31.7 shows the sample outputs from the ValidationAjax version
of the app that we’ll build momentarily. Part (a) shows the initial form that’s displayed
when this app first executes. Parts (b) and (c) show validation errors that are displayed
when the user submits an empty form and invalid data, respectively. Part (d) shows the
page after the form is submitted successfully.

Fig. 31.7 | JSP that demonstrates validation of user input. (Part 1 of 2.)

a) Submitting the form before entering any information

b) Error messages displayed after submitting the empty form

jhtp_31_webapp2.fm Page 17 Tuesday, April 10, 2018 9:30 AM

31_18 Chapter 31 JavaServer™ Faces Web Apps: Part 2

As you can see, the app has the same functionality as the version in Section 30.7; how-
ever, you’ll notice a couple of changes in how the app works. First, the URL displayed in
the web browser always reads localhost:8080/ValidationAjax/, whereas the URL in
the Section 30.7 changes after the form is submitted the first time. Also, in the non-Ajax
version of the app, the page refreshes each time you press the Submit button. In the Ajax
version, only the parts of the page that need updating actually change.

index.xhtml
The changes required to add Ajax functionality to this app are minimal. All of the changes
are in the index.xhtml file (Fig. 31.8) and are highlighted. The ValidationBean class is
identical to the version in Section 30.7, so we don’t show it here.

Fig. 31.7 | JSP that demonstrates validation of user input. (Part 2 of 2.)

c) Error messages displayed after submitting invalid information

d) Successfully submitted form

jhtp_31_webapp2.fm Page 18 Tuesday, April 10, 2018 9:30 AM

31.4 Adding Ajax Functionality to the Validation App 31_19

1 <?xml version='1.0' encoding='UTF-8' ?>
2
3 <!-- index.xhtml -->
4 <!-- Validating user input -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>
11 <title>Validating Form Data</title>
12 <h:outputStylesheet name="style.css" library="css"/>
13 </h:head>
14 <h:body>
15 <h:form>
16 <h1>Please fill out the following form:</h1>
17 <p>All fields are required and must contain valid information</p>
18 <h:panelGrid columns="3">
19 <h:outputText value="Name:"/>
20 <h:inputText id="nameInputText" required="true"
21 requiredMessage="Please enter your name"
22 value="#{validationBean.name}"
23 validatorMessage="Name must be fewer than 30 characters">
24 <f:validateLength maximum="30" />
25 </h:inputText>
26
27
28 <h:outputText value="E-mail:"/>
29 <h:inputText id="emailInputText" required="true"
30 requiredMessage="Please enter a valid e-mail address"
31 value="#{validationBean.email}"
32 validatorMessage="Invalid e-mail address format">
33 <f:validateRegex pattern=
34 "\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*" />
35 </h:inputText>
36
37
38 <h:outputText value="Phone:"/>
39 <h:inputText id="phoneInputText" required="true"
40 requiredMessage="Please enter a valid phone number"
41 value="#{validationBean.phone}"
42 validatorMessage="Invalid phone number format">
43 <f:validateRegex pattern=
44 "((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}" />
45 </h:inputText>
46
47
48 </h:panelGrid>
49
50
51
52
53

Fig. 31.8 | Ajax enabling the Validation app. (Part 1 of 2.)

<h:message id="nameMessage" for="nameInputText"
 styleClass="error"/>

<h:message id="emailMessage" for="emailInputText"
 styleClass="error"/>

<h:message id="phoneMessage" for="phoneInputText"
 styleClass="error"/>

<h:commandButton value="Submit">
 <f:ajax execute="nameInputText emailInputText phoneInputText"
 render=
 "nameMessage emailMessage phoneMessage resultOutputText"/>
</h:commandButton>

jhtp_31_webapp2.fm Page 19 Tuesday, April 10, 2018 9:30 AM

31_20 Chapter 31 JavaServer™ Faces Web Apps: Part 2

Adding id Attributes to Elements
The Facelets elements that will be submitted as part of an Ajax request and the Facelets
elements that will participate in the partial page updates must have id attributes. The
h:inputText elements in the original Validation example already had id attributes.
These elements will be submitted to the server as part of an Ajax request. We’d like the
h:Message elements that show validation errors and the h:outputText element that dis-
plays the result to be updated with partial page updates. For this reason, we’ve added id
attributes to these elements.

f:ajax Element
The other key change to this page is at lines 49–53 where the h:commandButton now con-
tains an f:ajax element, which intercepts the form submission when the user clicks the
button and makes an Ajax request instead. The f:ajax element’s execute attribute spec-
ifies a space-separated list of element ids—the values of these elements are submitted as
part of the Ajax request. The f:ajax element’s render attribute specifies a space-separated
list of element ids for the elements that should be updated via partial page updates.

31.5 Wrap-Up
In this chapter, we built an AddressBook application that allowed a user to add and view
contacts. You learned how to insert user input into a Java DB database and how to display
the contents of a database on a web page using an h:dataTable JSF element. We also
demonstrated how to add Ajax capabilities to JSF web apps by enhancing the Validation
app from Section 30.7. In Chapter 32, you’ll use NetBeans to create web services and con-
sume them from desktop and web applications.

54
55
56 </h:form>
57 </h:body>
58 </html>

Fig. 31.8 | Ajax enabling the Validation app. (Part 2 of 2.)

<h:outputText id="resultOutputText" escape="false"
 value="#{validationBean.response}"/>

Summary
Section 30.2.2 Class AddressBean
• To connect to the addressbook database from a web app, you must configure a data source name

that will be used to locate the database.

• Java EE 7’s @DataSourceDefinition annotation creates a data source name, specifying its JNDI
(Java Naming and Directory Interface) name that is used to look up the data source.

• JNDI is a technology for locating application components (such as databases) in a distributed
application (such as a multitier web application).

• A DataSource (package javax.sql) enables a web application to obtain a Connection to a database.

• ClientDataSource is one of several DataSource subclasses provided by Java DB. Apps that are
expected to manage many connections at once would typically use ClientConnectionPoolData-
Source or ClientXADataSource.

jhtp_31_webapp2.fm Page 20 Tuesday, April 10, 2018 9:30 AM

 Summary 31_21

• @ManagedBean is deprecated in Java EE 7 and Contexts and Dependency Injection (CDI) should
be used instead. Switching to CDI simply requires changing from JSF’s @ManagedBean annota-
tion to CDI’s @Named annotation (line 26):

• As with @ManagedBean, if you do not specify a name in parentheses, the JavaBean object’s variable
name will be the JavaBean class’s name with a lowercase first letter.

• The annotation @javax.faces.view.ViewScoped indicates that CDI should manage a JavaBean’s
lifetime, based on the JSF view that first referenced the JavaBean. A ViewScoped JavaBean’s class
must be Serializable.

• The annotation @Resource (p. 10) can be used to inject a DataSource object into a managed
bean. The annotation’s lookup attribute specifies the JNDI name of a data source.

• The @Resource annotation enables the server to hide all the complex details hide all the complex
details of setting up a DataSource object that can interact with a database. The server creates a
DataSource for you and assigns the DataSource object to the annotated variable. You can then
trivially obtain a Connection for interacting with the database.

• Database connections are limited resources, so you should use and close them quickly in your
web apps. You can use a CachedRowSet to store the results of a query for use later.

Section 30.2.3 index.xhtml Facelets Page
• You can use an h:dataTable element (p. 11) to display a collection of objects, such as the rows

in a CachedRowSet, in tabular format.

• If you specify an h:commandButton’s action attribute (p. 11) with a value that is the name of a
web page (without the filename extension), the JSF framework assumes this is a page in the app,
appends .xhtml extension to the action attribute’s value and returns the page to the client brows-
er.

• The h:dataTable element’s value attribute (p. 12) specifies the collection of data you wish to
display. The h:dataTable iterates over its value collection and, one at a time, assigns each ele-
ment to the variable specified by the var attribute (p. 12). This variable is used in the h:data-
Table’s nested elements to access each element of the collection.

• The h:dataTable rowClasses attribute (p. 12) is a space-separated list of CSS style class names
that are used to style the rows in the tabular output. You can specify as many styles as you like—
they’ll be applied in the order you list them one row at a time until all the styles have been ap-
plied, then the h:DataTable will automatically cycle through the styles again for the next set of
rows. The columnClasses attribute works similarly for columns in the table.

• The headerClass attribute (p. 13) specifies the column header CSS style. The footerClass at-
tribute (p. 13) works similarly for column footers in the table.

• The styleClass attribute (p. 13) specifies the CSS styles for the entire table. The cellpadding
and cellspacing attributes (p. 13) specify the number of pixels around each table cell’s contents
and the number of pixels between table cells, respectively.

• An h:column element (p. 13) defines a column in an h:dataTable.

• To display a column header above a column, define an f:facet element (p. 13) and set its name
attribute to "header". Similarly, to display a column footer, use an f:facet with its name attri-
bute set to "footer".

Section 30.2.4 addentry.xhtml Facelets Page
• You can call a managed bean’s methods in EL expressions.

jhtp_31_webapp2.fm Page 21 Tuesday, April 10, 2018 9:30 AM

31_22 Chapter 31 JavaServer™ Faces Web Apps: Part 2

• When you call a managed bean method with the action attribute, if the method returns a value,
that value is used to request the corresponding page from the app. If the method does not return
a value, the current page is re-requested.

Section 31.3 Ajax
• The term Ajax—short for Asynchronous JavaScript and XML—was coined by Jesse James Gar-

rett of Adaptive Path, Inc., in February 2005 to describe a range of technologies for developing
highly responsive, dynamic web applications.

• Ajax separates the user interaction portion of an application from its server interaction, enabling
both to proceed asynchronously in parallel. This enables Ajax web-based applications to perform
at speeds approaching those of desktop applications.

• Ajax makes asynchronous calls to the server to exchange small amounts of data with each call.
Where normally the entire page would be submitted and reloaded with every user interaction on
a web page, Ajax reloads only the necessary portions of the page, saving time and resources.

• Ajax applications typically make use of client-side scripting technologies such as JavaScript to in-
teract with page elements. They use the browser’s XMLHttpRequest object to perform the asyn-
chronous exchanges with the web server that make Ajax applications so responsive.

• In a traditional web application, the user fills in a form’s fields, then submits the form. The
browser generates a request to the server, which receives the request and processes it. The server
generates and sends a response containing the exact page that the browser will render. The brows-
er loads the new page, temporarily making the browser window blank. The client waits for the
server to respond and reloads the entire page with the data from the response. While such a syn-
chronous request is being processed on the server, the user cannot interact with the web page.
This model yields “choppy” application performance.

• In an Ajax application, when the user interacts with the page, the client creates an XMLHttpRe-
quest object to manage a request. This object sends the request to the server and awaits the re-
sponse. The requests are asynchronous, so the user can interact with the application on the client
side while the server processes the earlier request concurrently. Other user interactions could re-
sult in additional requests to the server. Once the server responds to the original request, the XM-
LHttpRequest object that issued the request calls a client-side function to process the data
returned by the server. This callback function uses partial page updates to display the data in the
existing web page without reloading the entire page. At the same time, the server may be respond-
ing to the second request and the client side may be starting to do another partial page update.

• Partial page updates help make web applications more responsive, making them feel more like
desktop applications.

Section 31.4 Adding Ajax Functionality to the Validation App
• The Facelets elements that will be submitted as part of an Ajax request and the Facelets elements

that will participate in the partial page updates must have id attributes.

• When you nest an f:ajax element (p. 20) in an h:commandButton element, the f:ajax element
intercepts the form submission and makes an Ajax request instead.

• The f:ajax element’s execute attribute (p. 20) specifies a space-separated list of element ids—
the values of these elements are submitted as part of the Ajax request.

• The f:ajax element’s render attribute (p. 20) specifies a space-separated list of element ids for
the elements that should be updated via partial page updates.

jhtp_31_webapp2.fm Page 22 Tuesday, April 10, 2018 9:30 AM

 Self-Review Exercise 31_23

Self-Review Exercise
31.1 Fill in the blanks in each of the following statements.

a) Ajax is an acronym for .
b) A(n) allows the server to manage a limited number of database connections

and share them among requests.
c) is a technology for locating application components (such as databases) in a distributed

application.
d) A(n) enables a web application to obtain a Connection to a database.
e) The annotation can be used to inject a DataSource object into a managed bean.
f) A(n) element displays a collection of objects in tabular format.
g) An h:commandButton’s attribute can specify the name of another page in the

web app that should be returned to the client.
h) To specify headers or footers for the columns in h:dataTables, use elements

nested with their name attributes set to and , respectively.
i) separates the user interaction portion of an application from its server inter-

action, enabling both to proceed asynchronously in parallel.
j) help make web applications more responsive, making them feel more like

desktop applications.
k) The f:ajax element’s attribute specifies a space-separated list of element

ids—the values of these elements are submitted as part of the Ajax request.
l) The f:ajax element’s attribute specifies a space-separated list of element ids

for the elements that should be updated via partial page updates.

Answers to Self-Review Exercise
31.1 a) Asynchronous JavaScript and XML. b) connection pool. c) JNDI (Java Naming and Di-
rectory Interface). d) DataSource. e) @Resource. f) h:dataTable. g) action. h) f:facet, "header",
"footer". i) Ajax. j) partial page updates. k) execute. l) render.

Exercises
31.2 (Guestbook Application) Create a JSF web app that allows users to sign and view a guest-
book. Use the Guestbook database to store guestbook entries. [Note: A SQL script to create the
Guestbook database is provided in the examples directory for this chapter.] The Guestbook database
has a single table, Messages, which has four columns: Date, Name, Email and Message. The database
already contains a few sample entries. Using the AddressBook app in Section 31.2 as your guide, cre-
ate two Facelets pages and a managed bean. The index.xhtml page should show the Guestbook en-
tries in tabular format and should provide a button to add an entry to the Guestbook. When the
user clicks this button, display an addentry.xhtml page. Provide h:inputText elements for the user’s
name and email address, an h:inputTextarea for the message and a Sign Guestbook button to sub-
mit the form. When the form is submitted, you should store in the Guestbook database a new entry
containing the user’s input and the date of the entry.

31.3 (AddressBook Application Modification: Ajax) Combine the two Facelets pages of the Ad-
dressBook application (Section 31.2) into a single page. Use Ajax capabilities to submit the new ad-
dress book entry and to perform a partial page update that rerenders h:dataTable with the updated
list of addresses.

31.4 (AddressBook Application Modification) Modify your solution to Exercise 31.3 to add a
search capability that allows the user to search by last name. When the user presses the Search but-
ton, use Ajax to submit the search key and perform a partial page update that displays only the
matching addresses in the h:dataTable.

jhtp_31_webapp2.fm Page 23 Tuesday, April 10, 2018 9:30 AM

31_24 Chapter 31 JavaServer™ Faces Web Apps: Part 2

jhtp_31_webapp2.fm Page 24 Tuesday, April 10, 2018 9:30 AM

