
32REST Web Services

O b j e c t i v e s
In this chapter you will learn:
■ What a web service is.
■ How to publish and consume 

web services in NetBeans.
■ How XML, JSON, XML-Based 

Simple Object Access Protocol 
(SOAP) and Representational 
State Transfer (REST) 
Architecture enable Java web 
services.

■ How to create client desktop 
and web applications that 
consume web services.

■ How to use session tracking in 
web services to maintain 
client state information.

■ How to connect to databases 
from web services.

■ How to pass objects of user-
defined types to and return 
them from a web service.

jhtp_32_WebServices.fm  Page 1  Tuesday, April 10, 2018  9:34 AM



32_2 Chapter 32 REST Web Services

32.1 Introduction
This chapter introduces web services, which promote software portability and reusability
in applications that operate over the Internet. A web service is a software component
stored on one computer that can be accessed by an application (or other software compo-
nent) on another computer over a network. Web services communicate using such tech-
nologies as XML, JSON and HTTP. In this chapter, we use two Java APIs that facilitate
web services. The first, JAX-WS, is based on the Simple Object Access Protocol
(SOAP)—an XML-based protocol that allows web services and clients to communicate,
even if the client and the web service are written in different languages. The second, JAX-
RS, uses Representational State Transfer (REST)—a network architecture that uses the
web’s traditional request/response mechanisms such as GET and POST requests. For more
information on SOAP-based and REST-based web services, visit our Web Services Re-
source Centers: 

32.1  Introduction 
32.2  Web Service Basics 
32.3  Simple Object Access Protocol (SOAP) 
32.4  Representational State Transfer (REST) 
32.5  JavaScript Object Notation (JSON) 
32.6  Publishing and Consuming SOAP-

Based Web Services 
32.6.1 Creating a Web Application Project and 

Adding a Web Service Class in 
NetBeans

31.6.2  Defining the WelcomeSOAP Web 
Service in NetBeans 

31.6.3  Publishing the WelcomeSOAP Web 
Service from NetBeans 

31.6.4  Testing the WelcomeSOAP Web 
Service with GlassFish Application 
Server’s Tester Web Page 

32.6.5 Describing a Web Service with the Web 
Service Description Language (WSDL)

31.6.6  Creating a Client to Consume the 
WelcomeSOAP Web Service 

31.6.7  Consuming the WelcomeSOAP Web 
Service 

32.7  Publishing and Consuming REST-
Based XML Web Services 

32.7.1 Creating a REST-Based XML Web 
Service

32.7.2 Consuming a REST-Based XML Web 
Service

32.8  Publishing and Consuming REST-
Based JSON Web Services 

32.8.1 Creating a REST-Based JSON Web 
Service

32.8.2 Consuming a REST-Based JSON Web 
Service

32.9  Session Tracking in a SOAP Web 
Service 

31.9.1  Creating a Blackjack Web Service 
31.9.2  Consuming the Blackjack Web 

Service 
32.10  Consuming a Database-Driven SOAP 

Web Service 
31.10.1  Creating the Reservation Database 
31.10.2  Creating a Web Application to Interact 

with the Reservation Service 
32.11  Equation Generator: Returning User-

Defined Types 
31.11.1  Creating the Equation-

GeneratorXML Web Service 
31.11.2  Consuming the Equation-

GeneratorXML Web Service 
31.11.3  Creating the Equation-

GeneratorJSON Web Service 
31.11.4  Consuming the Equation-

GeneratorJSON Web Service 
32.12  Wrap-Up 

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

www.deitel.com/WebServices/
www.deitel.com/RESTWebServices/

jhtp_32_WebServices.fm  Page 2  Tuesday, April 10, 2018  9:34 AM



32.1  Introduction 32_3

These Resource Centers include information about designing and implementing web ser-
vices in many languages and about web services offered by companies such as Google, Am-
azon and eBay. You’ll also find many additional tools for publishing and consuming web
services. For more information about REST-based Java web services, check out the Jersey
project:

The XML used in this chapter is created and manipulated for you by the APIs, so you
need not know the details of XML to use it here. To learn more about XML, read the fol-
lowing tutorials:

and visit our XML Resource Center:

Business-to-Business Transactions 
Rather than relying on proprietary applications, businesses can conduct transactions via stan-
dardized, widely available web services. This has important implications for business-to-
business (B2B) transactions. Web services are platform and language independent, enabling
companies to collaborate without worrying about the compatibility of their hardware, soft-
ware and communications technologies. Companies such as Amazon, Google, eBay, PayPal
and many others make their server-side applications available to partners via web services. 

By purchasing some web services and using other free ones that are relevant to their
businesses, companies can spend less time developing applications and can create new ones
that are more innovative. E-businesses for example, can provide their customers with
enhanced shopping experiences. Consider an online music store. The store’s website links
to information about various artists, enabling users to purchase their music, to learn about
the artists, to find more titles by those artists, to find other artists’ music they may enjoy,
and more. The store’s website may also link to the site of a company that sells concert
tickets and provides a web service that displays upcoming concert dates for various artists,
allowing users to buy tickets. By consuming the concert-ticket web service on its site, the
online music store can provide an additional service to its customers, increase its site traffic
and perhaps earn a commission on concert-ticket sales. The company that sells concert
tickets also benefits from the business relationship by selling more tickets and possibly by
receiving revenue from the online music store for the use of the web service.

Any Java programmer with a knowledge of web services can write applications that
“consume” web services. The resulting applications would invoke web services running on
servers that could be thousands of miles away.

NetBeans 
NetBeans is one of many tools that enable you to publish and/or consume web services. We
demonstrate how to use NetBeans to implement web services using the JAX-WS and JAX-
RS APIs and how to invoke them from client applications. For each example, we provide
the web service’s code, then present a client application that uses the web service. Our first
examples build simple web services and client applications in NetBeans. Then we demon-
strate web services that use more sophisticated features, such as manipulating databases

jersey.java.net/

www.deitel.com/articles/xml_tutorials/20060401/XMLBasics/
www.deitel.com/articles/xml_tutorials/20060401/XMLStructuringData/

www.deitel.com/XML/

jhtp_32_WebServices.fm  Page 3  Tuesday, April 10, 2018  9:34 AM



32_4 Chapter 32 REST Web Services

with JDBC and manipulating class objects. For information on downloading and install-
ing the NetBeans and the GlassFish server, see Section 30.1.

32.2 Web Service Basics
The machine on which a web service resides is referred to as a web service host. The client
application sends a request over a network to the web service host, which processes the re-
quest and returns a response over the network to the application. This kind of distributed
computing benefits systems in various ways. For example, an application without direct
access to data on another system might be able to retrieve the data via a web service. Sim-
ilarly, an application lacking the processing power to perform specific computations could
use a web service to take advantage of another system’s superior resources.

In Java, a web service is implemented as a class that resides on a server—it’s not part
of the client application. Making a web service available to receive client requests is known
as publishing a web service; using a web service from a client application is known as con-
suming a web service.

32.3 Simple Object Access Protocol (SOAP)
The Simple Object Access Protocol (SOAP) is a platform-independent protocol that uses
XML to interact with web services, typically over HTTP. You can view the SOAP speci-
fication at www.w3.org/TR/soap/. Each request and response is packaged in a SOAP mes-
sage—XML markup containing the information that a web service requires to process the
message. SOAP messages are written in XML so that they’re computer readable, human
readable and platform independent. Most firewalls—security barriers that restrict com-
munication among networks—allow HTTP traffic to pass through, so that clients can
browse the web by sending requests to and receiving responses from web servers. Thus,
SOAP-based services can send and receive SOAP messages over HTTP connections with
few limitations.

SOAP supports an extensive set of types, including the primitive types (e.g., int), as
well as DateTime, XmlNode and others. SOAP can also transmit arrays of these types. When
a program invokes a method of a SOAP web service, the request and all relevant informa-
tion are packaged in a SOAP message enclosed in a SOAP envelope and sent to the server
on which the web service resides. When the web service receives this SOAP message, it
parses the XML representing the message, then processes the message’s contents. The mes-
sage specifies the method that the client wishes to execute and the arguments the client
passed to that method. Next, the web service calls the method with the specified argu-
ments (if any) and sends the response back to the client in another SOAP message. The
client parses the response to retrieve the method’s result. In Section 32.6, you’ll build and
consume a basic SOAP web service.

32.4 Representational State Transfer (REST)
Representational State Transfer (REST) refers to an architectural style for implementing web
services. Such web services are often called RESTful web services. Though REST itself is not
a standard, RESTful web services are implemented using web standards. Each method in a
RESTful web service is identified by a unique URL. Thus, when the server receives a request,

jhtp_32_WebServices.fm  Page 4  Tuesday, April 10, 2018  9:34 AM



32.5  JavaScript Object Notation (JSON) 32_5

it immediately knows what operation to perform. Such web services can be used in a pro-
gram or directly from a web browser. The results of a particular operation may be cached
locally by the browser when the service is invoked with a GET request. This can make subse-
quent requests for the same operation faster by loading the result directly from the browser’s
cache. Amazon’s web services (aws.amazon.com) are RESTful, as are many others.

RESTful web services are alternatives to those implemented with SOAP. Unlike
SOAP-based web services, the request and response of REST services are not wrapped in
envelopes. REST is also not limited to returning data in XML format. It can use a variety
of formats, such as XML, JSON, HTML, plain text and media files. In Sections 32.7–
32.8, you’ll build and consume basic RESTful web services.

32.5 JavaScript Object Notation (JSON)
JavaScript Object Notation (JSON) is an alternative to XML for representing data. JSON
is a text-based data-interchange format used to represent objects in JavaScript as collec-
tions of name/value pairs represented as Strings. It’s commonly used in Ajax applications.
JSON is a simple format that makes objects easy to read, create and parse and, because it’s
much less verbose than XML, allows programs to transmit data efficiently across the In-
ternet. Each JSON object is represented as a list of property names and values contained
in curly braces, in the following format:

Arrays are represented in JSON with square brackets in the following format:

Each value in an array can be a string, a number, a JSON object, true, false or null. To
appreciate the simplicity of JSON data, examine this representation of an array of address-
book entries:

Many programming languages now support the JSON data format. An extensive list of
JSON libraries sorted by language can be found at www.json.org.

32.6 Publishing and Consuming SOAP-Based Web 
Services
This section presents our first example of publishing (enabling for client access) and con-
suming (using) a web service. We begin with a SOAP-based web service.

32.6.1 Creating a Web Application Project and Adding a Web Service 
Class in NetBeans
When you create a web service in NetBeans, you focus on its logic and let the IDE and
server handle its infrastructure. First you create a Web Application project. NetBeans uses
this project type for web services that are invoked by other applications. 

{ propertyName1 : value1, propertyName2 : value2 }

[value1, value2, value3]

[{first: 'Cheryl', last: 'Black'}, 
 {first: 'James', last: 'Blue'}, 
 {first: 'Mike', last: 'Brown'}, 
 {first: 'Meg', last: 'Gold'}] 

jhtp_32_WebServices.fm  Page 5  Tuesday, April 10, 2018  9:34 AM



32_6 Chapter 32 REST Web Services

Creating a Web Application Project in NetBeans
To create a web application, perform the following steps:

1. Select File > New Project… to open the New Project dialog. 

2. Select Java Web from the dialog’s Categories list, then select Web Application
from the Projects list. Click Next >.

3. Specify WelcomeSOAP in the Project Name field and specify where you’d like to
store the project in the Project Location field. You can click the Browse button to
select the location. Click Next >.

4. Select GlassFish Server 4.1 from the Server drop-down list and Java EE 7 Web
from the Java EE Version drop-down list. 

5. Click Finish to create the project.

This creates a web application that will run in a web browser, similar to the projects used
in Chapters 30 and 31. 

Adding a Web Service Class to a Web Application Project
Perform the following steps to add a web service class to the project: 

1. In the Projects tab in NetBeans, right click the WelcomeSOAP project’s node and
select New > Web Service… to open the New Web Service dialog. 

2. Specify WelcomeSOAP in the Web Service Name field.

3. Specify com.deitel.welcomesoap in the Package field.

4. Click Finish to create the web service class.

The IDE generates a sample web service class with the name from Step 2 in the package
from Step 3. You can find this class in your project’s Web Services node. In this class, you’ll
define the methods that your web service makes available to client applications. When you
eventually build your application, the IDE will generate other supporting files for your
web service. 

32.6.2 Defining the WelcomeSOAP Web Service in NetBeans
Figure 32.1 contains the completed WelcomeSOAPService code (reformatted to match the
coding conventions we use in this book). First we discuss this code, then show how to use
the NetBeans web service design view to add the welcome method to the class.  

1 // Fig. 32.1: WelcomeSOAP.java
2 // Web service that returns a welcome message via SOAP.
3 package com.deitel.welcomesoap;
4
5
6
7
8

Fig. 32.1 | Web service that returns a welcome message via SOAP. (Part 1 of 2.)

import javax.jws.WebService; // program uses the annotation @WebService
import javax.jws.WebMethod; // program uses the annotation @WebMethod  
import javax.jws.WebParam; // program uses the annotation @WebParam    

jhtp_32_WebServices.fm  Page 6  Tuesday, April 10, 2018  9:34 AM



32.6  Publishing and Consuming SOAP-Based Web Services 32_7

Annotation import Declarations
Lines 5–7 import the annotations used in this example. By default, each new web service
class created with the JAX-WS APIs is a POJO (plain old Java object), so you do not need
to extend a class or implement an interface to create a web service. 

@WebService Annotation
Line 9 contains a @WebService annotation (imported at line 5) which indicates that class
WelcomeSOAP implements a web service. The annotation is followed by parentheses that
may contain optional annotation attributes. The optional name attribute specifies the
name of the service endpoint interface class that will be generated for the client. A service
endpoint interface (SEI) class (sometimes called a proxy class) is used to interact with the
web service—a client application consumes the web service by invoking methods on the
service endpoint interface object. The optional serviceName attribute specifies the service
name, which is also the name of the class that the client uses to obtain a service endpoint
interface object. If the serviceName attribute is not specified, the web service’s name is as-
sumed to be the Java class name followed by the word Service. NetBeans places the @Web-
Service annotation at the beginning of each new web service class you create. You can
then add the name and serviceName properties in the parentheses following the annota-
tion.

When you deploy a web application containing a class that uses the @WebService
annotation, the server (GlassFish in our case) recognizes that the class implements a web
service and creates all the server-side artifacts that support the web service—that is, the
framework that allows the web service to wait for client requests and respond to those
requests once it’s deployed on an application server. Some popular open-source applica-
tion servers that support Java web services include GlassFish (glassfish.dev.java.net),
Apache Tomcat (tomcat.apache.org) and JBoss Application Server (www.jboss.com/
products/platforms/application).

WelcomeSOAP Service’s welcome Method
The WelcomeSOAP service has only one method, welcome (lines 13–17), which takes the
user’s name as a String and returns a String containing a welcome message. This method
is tagged with the @WebMethod annotation to indicate that it can be called remotely. Any
methods that are not tagged with @WebMethod are not accessible to clients that consume
the web service. Such methods are typically utility methods within the web service class.
The @WebMethod annotation uses the operationName attribute to specify the method name

9             
10 public class WelcomeSOAP
11 {
12    
13    
14    
15    {
16       return "Welcome to JAX-WS web services with SOAP, " + name + "!";
17    } 
18 }

Fig. 32.1 | Web service that returns a welcome message via SOAP. (Part 2 of 2.)

@WebService() // annotates the class as a web service

// WebMethod that returns welcome message                      
@WebMethod(operationName = "welcome")                        
public String welcome(@WebParam(name = "name") String name)

jhtp_32_WebServices.fm  Page 7  Tuesday, April 10, 2018  9:34 AM



32_8 Chapter 32 REST Web Services

that is exposed to the web service’s client. If the operationName is not specified, it’s set to
the actual Java method’s name.

The name parameter to welcome is annotated with the @WebParam annotation (line
14). The optional @WebParam attribute name indicates the parameter name that is exposed
to the web service’s clients. If you don’t specify the name, the actual parameter name is
used.

Completing the Web Service’s Code
[Note: If you enter the code in Fig. 32.1 manually, then you can skip the following steps.]
NetBeans provides a web service design view in which you can define the method(s) and
parameter(s) for your web services. To define the WelcomeSOAP class’s welcome method,
perform the following steps: 

1. With WelcomeSOAP.java open in the editor, click the Design button at the top of
the editor to show the design view (Fig. 32.2).

2. Click the Add Operation… button to display the Add Operation… dialog
(Fig. 32.3).

3. Specify the method name welcome in the Name field. The default Return Type
(String) is correct for this example.

Common Programming Error 32.1
Failing to expose a method as a web method by declaring it with the @WebMethod anno-
tation prevents clients of the web service from accessing the method. There’s one excep-
tion—if none of the class’s methods are declared with the @WebMethod annotation, then
all the public methods of the class will be exposed as web methods.

Common Programming Error 32.2
Methods with the @WebMethod annotation cannot be static. An object of the web service
class must exist for a client to access the service’s web methods.

Fig. 32.2 | Web service design view.

jhtp_32_WebServices.fm  Page 8  Tuesday, April 10, 2018  9:34 AM



32.6  Publishing and Consuming SOAP-Based Web Services 32_9

4. Add the method’s name parameter by clicking the Add button to the right of the
Parameters tab then entering name in the Name field. The parameter’s default
Type (String) is correct for this example. 

5. Click OK to create the welcome method. The design view should now appear as
shown in Fig. 32.3.

Fig. 32.3 | Adding an operation to a web service.

Fig. 32.4 | Web service design view after new operation is added.

jhtp_32_WebServices.fm  Page 9  Tuesday, April 10, 2018  9:34 AM



32_10 Chapter 32 REST Web Services

6. At the top of the design view, click the Source button to display the class’s source
code and add the code line 18 of Fig. 32.1 to the body of method welcome.

32.6.3 Publishing the WelcomeSOAP Web Service from NetBeans
Now that you’ve created the WelcomeSOAP web service class, you’ll use NetBeans to build
and publish (that is, deploy) the web service so that clients can consume its services. Net-
Beans handles all the details of building and deploying a web service for you. This includes
creating the framework required to support the web service. Right click the project name
WelcomeSOAP in the Projects tab and select Deploy to build and deploy the web application
to the GlassFish server. If GlassFish is not already running, NetBeans will start it.

32.6.4 Testing the WelcomeSOAP Web Service with GlassFish 
Application Server’s Tester Web Page
Next, you’ll test the WelcomeSOAP web service. We previously selected the GlassFish appli-
cation server to execute this web application. This server can dynamically create a web page
that allows you to test a web service’s methods from a web browser. To use this capability:

1. Expand the project’s Web Services in the NetBeans Projects tab.

2. Right click the web service class name (WelcomeSOAP) and select Test Web Service.

The GlassFish application server builds the Tester web page and loads it into your web
browser. Figure 32.5 shows the Tester web page for the WelcomeSOAP web service. The
web service’s name is automatically the class name followed by Service. 

Once you’ve deployed the web service, you can also type the URL

in your web browser to view the Tester web page. WelcomeSOAPService is the name that
clients use to access the web service—this is simply the class name followed by Service.

To test WelcomeSOAP’s welcome web method, type your name in the text field to the
right of the welcome button then click the button to invoke the method. Figure 32.6
shows the results of invoking WelcomeSOAP’s welcome method with the value Paul.

Fig. 32.5 | Tester web page created by GlassFish for the WelcomeSOAP web service.

http://localhost:8080/WelcomeSOAP/WelcomeSOAPService?Tester

jhtp_32_WebServices.fm  Page 10  Tuesday, April 10, 2018  9:34 AM



32.6  Publishing and Consuming SOAP-Based Web Services 32_11

Application Server Note
You can access the web service only when the application server is running. If NetBeans
launches GlassFish for you, it will automatically shut it down when you close NetBeans.
To keep it running, you can launch it independently of NetBeans before you deploy or
run web applications. The GlassFish Quick Start Guide at 

shows how to manually start and stop the server.

Testing the WelcomeSOAP Web Service from Another Computer
If your computer is connected to a network and allows HTTP requests, then you can test
the web service from another computer on the network by typing the following URL
(where host is the hostname or IP address of the computer on which the web service is de-
ployed) into a browser on another computer:

32.6.5 Describing a Web Service with the Web Service Description 
Language (WSDL)
To consume a web service, a client must determine its functionality and how to use it. For
this purpose, web services normally contain a service description. This is an XML docu-
ment that conforms to the Web Service Description Language (WSDL)—an XML vo-
cabulary that defines the methods a web service makes available and how clients interact
with them. The WSDL document also specifies lower-level information that clients might
need, such as the required formats for requests and responses.

WSDL documents help applications determine how to interact with the web services
described in the documents. You do not need to understand WSDL to take advantage of
it—the GlassFish application server generates a web service’s WSDL dynamically for you,
and client tools can parse the WSDL to help create the client-side service endpoint inter-
face class that a client uses to access the web service. Since GlassFish (and most other

Fig. 32.6 | Results of testing WelcomeSOAP’s welcome method.

https://glassfish.java.net/docs/4.0/quick-start-guide.pdf 

http://host:8080/WelcomeSOAP/WelcomeSOAPService?Tester

jhtp_32_WebServices.fm  Page 11  Tuesday, April 10, 2018  9:34 AM



32_12 Chapter 32 REST Web Services

servers) generate the WSDL dynamically, clients always receive a deployed web service’s
most up-to-date description. To access the WelcomeSOAP web service, the client code will
need the following WSDL URL: 

Accessing the WelcomeSOAP Web Service’s WSDL from Another Computer
Eventually, you’ll want clients on other computers to use your web service. Such clients
need the web service’s WSDL, which they would access with the following URL:

where host is the hostname or IP address of the server that hosts the web service. As we
discussed in Section 32.6.4, this works only if your computer allows HTTP connections
from other computers—as is the case for publicly accessible web and application servers.

32.6.6 Creating a Client to Consume the WelcomeSOAP Web Service
Now you’ll consume the web service from a client application. A web service client can be
any type of application or even another web service. You enable a client application to con-
sume a web service by adding a web service reference to the application.

Service Endpoint Interface (SEI)
An application that consumes a web service consists of an object of a service endpoint in-
terface (SEI) class (sometimes called a proxy class) that’s used to interact with the web ser-
vice and a client application that consumes the web service by invoking methods on the
service endpoint interface object. The client code invokes methods on the service endpoint
interface object, which handles the details of passing method arguments to and receiving
return values from the web service on the client’s behalf. This communication can occur
over a local network, over the Internet or even with a web service on the same computer.
The web service performs the corresponding task and returns the results to the service end-
point interface object, which then returns the results to the client code. Figure 32.7 depicts
the interactions among the client code, the SEI object and the web service. As you’ll soon
see, NetBeans creates these service endpoint interface classes for you.  

Requests to and responses from web services created with JAX-WS (one of many dif-
ferent web service frameworks) are typically transmitted via SOAP. Any client capable of
generating and processing SOAP messages can interact with a web service, regardless of the
language in which the web service is written.

http://localhost:8080/WelcomeSOAP/WelcomeSOAPService?WSDL

http://host:8080/WelcomeSOAP/WelcomeSOAPService?WSDL

Fig. 32.7 | Interaction between a web service client and a web service.

ServerClient

Client
code

Proxy
class

Web
serviceInternet

Client
code

SEI
object

jhtp_32_WebServices.fm  Page 12  Tuesday, April 10, 2018  9:34 AM



32.6  Publishing and Consuming SOAP-Based Web Services 32_13

We now use NetBeans to create a client Java desktop GUI application. Then you’ll
add a web service reference to the project so the client can access the web service. When
you add the reference, the IDE creates and compiles the client-side artifacts—the frame-
work of Java code that supports the client-side service endpoint interface class. The client
then calls methods on an object of the service endpoint interface class, which uses the rest
of the artifacts to interact with the web service. 

Creating a Desktop Application Project in NetBeans 
Before performing the steps in this section, ensure that the WelcomeSOAP web service has
been deployed and that the GlassFish application server is running (see Section 32.6.3).
Perform the following steps to create a client Java desktop application in NetBeans:

1. Select File > New Project… to open the New Project dialog.

2. Select Java from the Categories list and Java Application from the Projects list,
then click Next >.

3. Specify the name WelcomeSOAPClient in the Project Name field and uncheck the
Create Main Class checkbox. Later, you’ll add a subclass of JFrame that contains
a main method.

4. Click Finish to create the project.

Step 2: Adding a Web Service Reference to an Application
Next, you’ll add a web service reference to your application so that it can interact with the
WelcomeSOAP web service. To add a web service reference, perform the following steps.

1. Right click the project name (WelcomeSOAPClient) in the NetBeans Projects tab
and select New > Web Service Client… from the pop-up menu to display the New
Web Service Client dialog.

2. In the WSDL URL field, specify the URL http://localhost:8080/WelcomeSOAP/
WelcomeSOAPService?WSDL (Fig. 32.8). This URL tells the IDE where to find the
web service’s WSDL description. [Note: If the GlassFish application server is
located on a different computer, replace localhost with the hostname or IP
address of that computer.] The IDE uses this WSDL description to generate the
client-side artifacts that compose and support the service endpoint interface.

3. For the other options, leave the default settings, then click Finish to create the web
service reference and dismiss the New Web Service Client dialog.

In the NetBeans Projects tab, the WelcomeSOAPClient project now contains a Web
Service References folder with the WelcomeSOAP web service’s service endpoint interface
(Fig. 32.9). The service endpoint interface’s name is listed as WelcomeSOAPService.

When you specify the web service you want to consume, NetBeans accesses and copies
its WSDL information to a file in your project (named WelcomeSOAPService.wsdl in this
example). You can view this file by double clicking the WelcomeSOAPService node in the
project’s Web Service References folder. If the web service changes, the client-side artifacts
and the client’s copy of the WSDL file can be regenerated by right clicking the Welcome-
SOAPService node shown in Fig. 32.9 and selecting Refresh…. Figure 32.9 also shows the
IDE-generated client-side artifacts, which appear in the Generated Sources (jax-ws) folder.

jhtp_32_WebServices.fm  Page 13  Tuesday, April 10, 2018  9:34 AM



32_14 Chapter 32 REST Web Services

32.6.7 Consuming the WelcomeSOAP Web Service
For this example, we use a GUI application to interact with the WelcomeSOAP web service.
To build the client application’s GUI, add a subclass of JFrame to the project by perform-
ing the following steps:  

1. Right click the project name (WelcomeSOAPClient) in the NetBeans Project tab
and select New > JFrame Form… to display the New JFrame Form dialog.

2. Specify WelcomeSOAPClientJFrame in the Class Name field. 

3. Specify com.deitel.welcomesoapclient in the Package field.

4. Click Finish to close the New JFrame Form dialog.

Fig. 32.8 | New Web Service Client dialog.

Fig. 32.9 | NetBeans Project tab after adding a web service reference to the project.

Generated artifacts

Web service endpoint

jhtp_32_WebServices.fm  Page 14  Tuesday, April 10, 2018  9:34 AM



32.6  Publishing and Consuming SOAP-Based Web Services 32_15

Next, use the NetBeans GUI design tools to build the GUI shown in the sample screen
captures at the end of Fig. 32.10. The GUI consists of a Label, a Text Field and a Button. 

The application in Fig. 32.10 uses the WelcomeSOAP web service to display a welcome
message to the user. To save space, we do not show the NetBeans autogenerated initCom-
ponents method, which contains the code that creates the GUI components, positions
them and registers their event handlers. To view the complete source code, open the Wel-
comeSOAPClientJFrame.java file in this example’s folder under src\java\com\deitel\
welcomesoapclient. NetBeans places the GUI component instance-variable declarations
at the end of the class (lines 114–116). Java allows instance variables to be declared any-
where in a class’s body as long as they’re placed outside the class’s methods. We continue
to declare our own instance variables at the top of the class.

1 // Fig. 32.10: WelcomeSOAPClientJFrame.java
2 // Client desktop application for the WelcomeSOAP web service.
3 package com.deitel.welcomesoapclient;
4
5
6
7 import javax.swing.JOptionPane;
8
9 public class WelcomeSOAPClientJFrame extends javax.swing.JFrame

10 {
11    
12    
13
14    // no-argument constructor
15    public WelcomeSOAPClientJFrame()
16    {
17       initComponents();
18
19       try
20       {
21          
22          
23          
24       } 
25       catch (Exception exception)
26       {
27          exception.printStackTrace();
28          System.exit(1);
29       }
30    } 
31
32    
33    
34    
35    
36

Fig. 32.10 | Client desktop application for the WelcomeSOAP web service. (Part 1 of 2.)

import com.deitel.welcomesoap.WelcomeSOAP;       
import com.deitel.welcomesoap.WelcomeSOAPService;

// references the service endpoint interface object (i.e., the proxy)
private WelcomeSOAP welcomeSOAPProxy;                                

// create the objects for accessing the WelcomeSOAP web service
WelcomeSOAPService service = new WelcomeSOAPService();         
welcomeSOAPProxy = service.getWelcomeSOAPPort();               

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open WelcomeSOAPClientJFrame.java in this       
// example's folder to view the complete generated code.               

jhtp_32_WebServices.fm  Page 15  Tuesday, April 10, 2018  9:34 AM



32_16 Chapter 32 REST Web Services

Lines 5–6 import the classes WelcomeSOAP and WelcomeSOAPService that enable the
client application to interact with the web service. Notice that we do not have import dec-
larations for most of the GUI components used in this example. When you create a GUI
in NetBeans, it uses fully qualified class names (such as javax.swing.JFrame in line 9), so
import declarations are unnecessary. 

Line 12 declares a variable of type WelcomeSOAP that will refer to the service endpoint
interface object. Line 22 in the constructor creates an object of type WelcomeSOAPService.
Line 23 uses this object’s getWelcomeSOAPPort method to obtain the WelcomeSOAP service
endpoint interface object that the application uses to invoke the web service’s methods.

The Submit button handler (lines 88–97) first retrieves the name the user entered
from nameJTextField. It then calls the welcome method on the service endpoint interface

87    // call the web service with the supplied name and display the message
88    private void submitJButtonActionPerformed(
89       java.awt.event.ActionEvent evt)
90    {                                                  
91       String name = nameJTextField.getText(); // get name from JTextField
92
93       
94       
95       JOptionPane.showMessageDialog(this, message,      
96          "Welcome", JOptionPane.INFORMATION_MESSAGE);
97    }
98
99    // main method begins execution
100    public static void main(String args[])
101    {
102       java.awt.EventQueue.invokeLater(
103          new Runnable()
104          {
105             public void run()
106             {
107                new WelcomeSOAPClientJFrame().setVisible(true);
108             }
109          }
110       ); 
111    }
112
113    // Variables declaration - do not modify
114    private javax.swing.JLabel nameJLabel;
115    private javax.swing.JTextField nameJTextField;
116    private javax.swing.JButton submitJButton;
117    // End of variables declaration
118 } 

Fig. 32.10 | Client desktop application for the WelcomeSOAP web service. (Part 2 of 2.)

// retrieve the welcome string from the web service
String message = welcomeSOAPProxy.welcome(name); 

jhtp_32_WebServices.fm  Page 16  Tuesday, April 10, 2018  9:34 AM



32.7  Publishing and Consuming REST-Based XML Web Services 32_17

object (line 94) to retrieve the welcome message from the web service. This object com-
municates with the web service on the client’s behalf. Once the message has been retrieved,
lines 95–96 display it in a message box by calling JOptionPane’s showMessageDialog
method.

32.7 Publishing and Consuming REST-Based XML Web 
Services
The previous section used a service endpoint interface (proxy) object to pass data to and
from a Java web service using the SOAP protocol. Now, we access a Java web service using
the REST architecture. We recreate the WelcomeSOAP example to return data in plain XML
format. You can create a Web Application project as you did in Section 32.6 to begin.
Name the project WelcomeRESTXML.

32.7.1 Creating a REST-Based XML Web Service
NetBeans provides various templates for creating RESTful web services, including ones
that can interact with databases on the client’s behalf. In this chapter, we focus on simple
RESTful web services. To create a RESTful web service:

1. Right-click the WelcomeRESTXML node in the Projects tab, and select New >
Other… to display the New File dialog.

2. Select Web Services under Categories, then select RESTful Web Services from Pat-
terns and click Next >. 

3. Under Select Pattern, ensure Simple Root Resource is selected, and click Next >.

4. Set the Resource Package to com.deitel.welcomerestxml, the Path to welcome
and the Class Name to WelcomeRESTXMLResource. Leave the MIME Type and Rep-
resentation Class set to application/xml and java.lang.String, respectively.
The correct configuration is shown in Fig. 32.11.

5. Click Finish to create the web service.

NetBeans generates the class and sets up the proper annotations. The class is placed
in the project’s RESTful Web Services folder. The code for the completed service is shown
in Fig. 32.12. You’ll notice that the completed code does not include some of the code
generated by NetBeans. We removed the pieces that were unnecessary for this simple web
service. The autogenerated putXml method is not necessary, because this example does not
modify state on the server. The UriInfo instance variable is not needed, because we do not
use HTTP query parameters. We also removed the autogenerated constructor, because we
have no code to place in it.

Lines 6–9 contain the imports for the JAX-RS annotations that help define the
RESTful web service. The @Path annotation on the WelcomeRESTXMLResource class (line
12) indicates the URI for accessing the web service. This URI is appended to the web
application project’s URL to invoke the service. Methods of the class can also use the
@Path annotation (line 17). Parts of the path specified in curly braces indicate parame-
ters—they’re placeholders for values that are passed to the web service as part of the path.

jhtp_32_WebServices.fm  Page 17  Tuesday, April 10, 2018  9:34 AM



32_18 Chapter 32 REST Web Services

Fig. 32.11 | Creating the WelcomeRESTXML RESTful web service.

1 // Fig. 32.12: WelcomeRESTXMLResource.java
2 // REST web service that returns a welcome message as XML.
3 package com.deitel.welcomerestxml;
4
5 import java.io.StringWriter;
6
7
8
9

10
11
12
13 public class WelcomeRESTXMLResource
14 {
15    // retrieve welcome message
16    
17    
18    
19    
20    {
21       String message = "Welcome to JAX-RS web services with REST and " +
22          "XML, " + name + "!"; // our welcome message
23       StringWriter writer = new StringWriter();
24       
25       return writer.toString(); // return XML as String
26    } 
27 }

Fig. 32.12 | REST web service that returns a welcome message as XML.

import javax.ws.rs.GET; // annotation to indicate method uses HTTP GET 
import javax.ws.rs.Path; // annotation to specify path of resource     
import javax.ws.rs.PathParam; // annotation to get parameters from URI 
import javax.ws.rs.Produces; // annotation to specify type of data     
import javax.xml.bind.JAXB; // utility class for common JAXB operations

@Path("welcome") // URI used to access the resource

@GET // handles HTTP GET requests                          
@Path("{name}") // URI component containing parameter    
@Produces("application/xml") // response formatted as XML
public String getXml(@PathParam("name") String name)   

JAXB.marshal(message, writer); // marshal String as XML

jhtp_32_WebServices.fm  Page 18  Tuesday, April 10, 2018  9:34 AM



32.7  Publishing and Consuming REST-Based XML Web Services 32_19

The base path for the service is the project’s webresources directory. For example, to get
a welcome message for someone named John, the complete URL is 

Arguments in a URL can be used as arguments to a web service method. To do so, you
bind the parameters specified in the @Path specification to parameters of the web service
method with the @PathParam annotation, as shown in line 19. When the request is re-
ceived, the server passes the argument(s) in the URL to the appropriate parameter(s) in the
web service method.

The @GET annotation denotes that this method is accessed via an HTTP GET request.
The putXml method the IDE created for us had an @PUT annotation, which indicates that
the method is accessed using the HTTP PUT method. Similar annotations exist for HTTP
POST, DELETE and HEAD requests.

The @Produces annotation denotes the content type returned to the client. It’s pos-
sible to have multiple methods with the same HTTP method and path but different @Pro-
duces annotations, and JAX-RS will call the method matching the content type requested
by the client. Standard Java method overloading rules apply, so such methods must have
different names. The @Consumes annotation for the autogenerated putXml method (which
we deleted) restricts the content type that the web service will accept from a PUT operation.

Line 10 imports the JAXB class from package javax.xml.bind. JAXB (Java Architec-
ture for XML Binding) is a set of classes for converting POJOs to and from XML. There
are many related classes in the same package that implement the serializations we perform,
but the JAXB class contains easy-to-use wrappers for common operations. After creating
the welcome message (lines 21–22), we create a StringWriter (line 23) to which JAXB
will output the XML. Line 24 calls the JAXB class’s static method marshal to convert the
String containing our message to XML format. Line 25 calls StringWriter’s toString
method to retrieve the XML text to return to the client.

Testing the RESTful Web Service
Section 32.6.4 demonstrated testing a SOAP service using GlassFish’s Tester page. Glass-
Fish does not provide a testing facility for RESTful services, but you can enter the web
service’s URL directly in your browser to test the web service. To do so:

1. First, deploy the web service’s project. Right click the WelcomeRESTXML project in
the NetBeans Projects tab and select Deploy. This will compile and deploy the
web service, if you have not yet done so.

2. Open a web browser and enter the following URL in the browser’s address bar:
http://localhost:8080/WelcomeRESTXML/webresources/welcome/Paul—you
can replace Paul with your own name. 

Once GlassFish deploys a REST web service, a client can access it on the server (in this
case, localhost at port 8080) at the location

If the method requires parameters, as in this example, each parameter follows the method
name in the form

http://localhost:8080/WelcomeRESTXML/webresources/welcome/John

/ProjectName/webresources/methodName

/argument

jhtp_32_WebServices.fm  Page 19  Tuesday, April 10, 2018  9:34 AM



32_20 Chapter 32 REST Web Services

and the arguments are passed to the method’s parameters in the same order as they’re de-
clared in the method’s parameter list. So the URL 

invokes the WelcomeRESTXML web service’s welcome method and passes Paul to the meth-
od’s name parameter. The web service then returns an XML response that’s displayed di-
rectly in the web browser (Fig. 32.13).

WADL
WADL (Web Application Description Language) has similar design goals to WSDL, but
describes RESTful services instead of SOAP services. You can access this app’s WADL at

Client-code-generation tools can use this description to help implement a client that in-
teracts with this web service. 

32.7.2 Consuming a REST-Based XML Web Service
As we did with SOAP, we create a Java application that retrieves the welcome message
from the web service and displays it to the user. First, create a Java application with the
name WelcomeRESTXMLClient. RESTful web services do not require web service referenc-
es, so you can begin building the GUI immediately by creating a JFrame form called
WelcomeRESTXMLClientJFrame and placing it in the com.deitel.welcomerestxmlclient
package. The GUI is identical to the one in Fig. 32.10, including the names of the GUI
elements. To create the GUI quickly, you can simply copy and paste the GUI from the
Design view of the WelcomeSOAPClientJFrame class and paste it into the Design view of
the WelcomeRESTXMLClientJFrame class. Figure 32.14 contains the completed code.

http://localhost:8080/WelcomeRESTXML/webresources/welcome/Paul 

Fig. 32.13 | Test page for the WelcomeRESTXML web service.

http://localhost:8080/WelcomeRESTJSON/webresources/application.wadl

1 // Fig. 32.14: WelcomeRESTXMLClientJFrame.java
2 // Client that consumes the WelcomeRESTXML service.
3 package com.deitel.welcomerestxmlclient;
4
5 import javax.swing.JOptionPane;

Fig. 32.14 | Client that consumes the WelcomeRESTXML service. (Part 1 of 3.)

jhtp_32_WebServices.fm  Page 20  Tuesday, April 10, 2018  9:34 AM



32.7  Publishing and Consuming REST-Based XML Web Services 32_21

6
7
8 public class WelcomeRESTXMLClientJFrame extends javax.swing.JFrame
9 {

10    // no-argument constructor
11    public WelcomeRESTXMLClientJFrame()
12    {
13       initComponents();
14    }
15
16    
17    
18    
19    
20
72    // call the web service with the supplied name and display the message
73    private void submitJButtonActionPerformed(
74       java.awt.event.ActionEvent evt)
75    {
76       String name = nameJTextField.getText(); // get name from JTextField
77
78       // the URL for the REST service
79       String url = "http://localhost:8080/WelcomeRESTXML/" +
80          "webresources/welcome/" + name;
81
82       
83       
84
85       // display the message to the user
86       JOptionPane.showMessageDialog(this, message,
87             "Welcome", JOptionPane.INFORMATION_MESSAGE);
88    } 
89
90    // main method begins execution
91    public static void main(String args[])
92    {
93       java.awt.EventQueue.invokeLater(
94          new Runnable()
95          {
96             public void run()
97             {
98                new WelcomeRESTXMLClientJFrame().setVisible(true);
99             }
100          } 
101       ); 
102    } 
103
104    // Variables declaration - do not modify
105    private javax.swing.JLabel nameJLabel;
106    private javax.swing.JTextField nameJTextField;
107    private javax.swing.JButton submitJButton;
108    // End of variables declaration
109 }

Fig. 32.14 | Client that consumes the WelcomeRESTXML service. (Part 2 of 3.)

import javax.xml.bind.JAXB; // utility class for common JAXB operations

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open WelcomeRESTXMLClientJFrame.java in this    
// example's folder to view the complete generated code.               

// read from URL and convert from XML to Java String 
String message = JAXB.unmarshal(url, String.class);

jhtp_32_WebServices.fm  Page 21  Tuesday, April 10, 2018  9:34 AM



32_22 Chapter 32 REST Web Services

You can access a RESTful web service with classes from Java API. As in the RESTful
XML web service, we use the JAXB library. The JAXB class (imported on line 6) has a
static unmarshal method that takes as arguments a filename or URL as a String, and a
Class<T> object indicating the Java class to which the XML will be converted (line 83).
In this example, the XML contains a String object, so we use the Java compiler shortcut
String.class to create the Class<String> object we need as the second argument. The
String returned from the call to the unmarshal method is then displayed to the user via
JOptionPane’s showMessageDialog method (lines 86–87), as it was with the SOAP ser-
vice. The URL used in this example to extract data from the web service matches the URL
we used to test the web service directly in a web browser.

32.8 Publishing and Consuming REST-Based JSON Web 
Services
While XML was designed primarily as a document interchange format, JSON is designed
as a data exchange format. Data structures in most programming languages do not map
directly to XML constructs—for example, the distinction between elements and attributes
is not present in programming-language data structures. JSON is a subset of the JavaScript
programming language, and its components—objects, arrays, strings, numbers—can be
easily mapped to constructs in Java and other programming languages.

The standard Java libraries do not currently provide capabilities for working with
JSON, but there are many open-source JSON libraries for Java and other languages; you
can find a list of them at json.org. We chose the Gson library from https://
github.com/google/gson, which provides a simple way to convert POJOs to and from
JSON. A JAR file containing the library can be downloaded from 

32.8.1 Creating a REST-Based JSON Web Service
To begin, create a WelcomeRESTJSON web application, then create the web service by fol-
lowing the steps in Section 32.7.1. In Step 4, change the Resource Package to
com.deitel.welcomerestjson, the Class Name to WelcomeRESTJSONResource and the
MIME Type to application/json. Additionally, you must download the Gson library’s
JAR file, then add it to the project as a library. To add the JAR file to the project, right
click your project’s Libraries folder, select Add JAR/Folder… locate the downloaded Gson
JAR file and click Open. The complete code for the service is shown in Fig. 32.15.

http://search.maven.org/remotecontent?filepath=com/google/code/
gson/gson/2.7/gson-2.7.jar

Fig. 32.14 | Client that consumes the WelcomeRESTXML service. (Part 3 of 3.)

jhtp_32_WebServices.fm  Page 22  Tuesday, April 10, 2018  9:34 AM



32.8  Publishing and Consuming REST-Based JSON Web Services 32_23

All the annotations and the basic structure of the WelcomeRESTJSONResource class are
the same as REST XML example. The argument to the @Produces attribute (line 17) is
"application/json". The TextMessage class (lines 30–45) addresses a difference
between JSON and XML. JSON does not permit strings or numbers to stand on their

1 // Fig. 32.15: WelcomeRESTJSONResource.java
2 // REST web service that returns a welcome message as JSON.
3 package com.deitel.welcomerestjson;
4
5
6
7
8
9

10
11
12 public class WelcomeRESTJSONResource
13 {
14    // retrieve welcome message
15    
16    
17    
18    
19    {
20       // add welcome message to field of TextMessage object
21       TextMessage message = new TextMessage(); // create wrapper object
22       message.setMessage(String.format("%s, %s!", 
23          "Welcome to JAX-RS web services with REST and JSON", name));
24
25       
26    } 
27 } 
28
29 // private class that contains the message we wish to send
30 class TextMessage
31 {
32    private String message; // message we're sending
33
34    // returns the message
35    public String getMessage()
36    {
37       return message;
38    } 
39
40    // sets the message
41    public void setMessage(String value)
42    {
43       message = value;
44    } 
45 }

Fig. 32.15 | REST web service that returns a welcome message as JSON.

import com.google.gson.Gson; // converts POJO to JSON and back again  
import javax.ws.rs.GET; // annotation to indicate method uses HTTP GET
import javax.ws.rs.Path; // annotation to specify path of resource    
import javax.ws.rs.PathParam; // annotation to get parameters from URI
import javax.ws.rs.Produces; // annotation to specify type of data    

@Path("welcome") // path used to access the resource

@GET // handles HTTP GET requests                            
@Path("{name}") // takes name as a path parameter          
@Produces("application/json") // response formatted as JSON
public String getJson(@PathParam("name") String name)    

return new Gson().toJson(message); // return JSON-wrapped message

jhtp_32_WebServices.fm  Page 23  Tuesday, April 10, 2018  9:34 AM



32_24 Chapter 32 REST Web Services

own—they must be encapsulated in a composite data type. So, we created class TextMes-
sage to encapsulate the String representing the message.

When a client invokes this web service, line 21 creates the TextMessage object, then
lines 22–23 set its contained message. Next, line 25 creates a Gson object (from package
com.google.gson.Gson) and calls its toJson method to convert the TextMessage into its
JSON String representation. We return this String, which is then sent back to the client
in the web service’s response. There are multiple overloads of the toJson method, such as
one that sends its output to a Writer instead of returning a String.

RESTful services returning JSON can be tested in the same way as those returning
XML. Follow the procedure outlined in Section 32.7.1, but use the URL

to invoke the web service. In this case, the browser will display the JSON response

32.8.2 Consuming a REST-Based JSON Web Service
We now create a Java application that retrieves the welcome message from the web service
and displays it to the user. First, create a Java application with the name WelcomeREST-
JSONClient. Then, create a JFrame form called WelcomeRESTXMLClientJFrame and place
it in the com.deitel.welcomerestjsonclient package. The GUI is identical to the one
in Fig. 32.10. To create the GUI quickly, copy it from the Design view of the Welcome-
SOAPClientJFrame class and paste it into the Design view of the WelcomeRESTJSONClient-
JFrame class. Figure 32.16 contains the completed code.

http://localhost:8080/WelcomeRESTJSON/webresources/welcome/Paul

{"message":"Welcome to JAX-RS web services with REST and JSON, Paul!"}

1 // Fig. 32.16: WelcomeRESTJSONClientJFrame.java
2 // Client that consumes the WelcomeRESTJSON service.
3 package com.deitel.welcomerestjsonclient;
4
5
6 import java.io.InputStreamReader;
7 import java.net.URL;
8 import javax.swing.JOptionPane;
9

10 public class WelcomeRESTJSONClientJFrame extends javax.swing.JFrame
11 {
12    // no-argument constructor
13    public WelcomeRESTJSONClientJFrame()
14    {
15       initComponents();
16    } 
17
18    
19    
20    
21    
22

Fig. 32.16 | Client that consumes the WelcomeRESTJSON service. (Part 1 of 3.)

import com.google.gson.Gson; // converts POJO to JSON and back again

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open WelcomeRESTJSONClientJFrame.java in this   
// example's folder to view the complete generated code.               

jhtp_32_WebServices.fm  Page 24  Tuesday, April 10, 2018  9:34 AM



32.8  Publishing and Consuming REST-Based JSON Web Services 32_25

73    // call the web service with the supplied name and display the message
74    private void submitJButtonActionPerformed(
75       java.awt.event.ActionEvent evt)
76    {
77       String name = nameJTextField.getText(); // get name from JTextField
78
79       // retrieve the welcome string from the web service
80       try
81       {
82          // the URL of the web service
83          
84          
85          
86          
87          
88          
89
90          
91          
92          
93
94          // display message to the user
95          JOptionPane.showMessageDialog(this, message.getMessage(),
96             "Welcome", JOptionPane.INFORMATION_MESSAGE);
97       }
98       catch (Exception exception)
99       {
100          exception.printStackTrace(); // show exception details
101       } 
102    }
103
104    // main method begin execution
105    public static void main(String args[])
106    {
107       java.awt.EventQueue.invokeLater(
108          new Runnable()
109          {
110             public void run()
111             {
112                new WelcomeRESTJSONClientJFrame().setVisible(true);
113             } 
114          } 
115       );
116    }
117
118    // Variables declaration - do not modify
119    private javax.swing.JLabel nameJLabel;
120    private javax.swing.JTextField nameJTextField;
121    private javax.swing.JButton submitJButton;
122    // End of variables declaration
123 } 
124

Fig. 32.16 | Client that consumes the WelcomeRESTJSON service. (Part 2 of 3.)

String url = "http://localhost:8080/WelcomeRESTJSON/" +
   "webresources/welcome/" + name;                     

// open URL, using a Reader to convert bytes to chars   
InputStreamReader reader =                              
   new InputStreamReader(new URL(url).openStream());

// parse the JSON back into a TextMessage           
TextMessage message =                               
   new Gson().fromJson(reader, TextMessage.class);

jhtp_32_WebServices.fm  Page 25  Tuesday, April 10, 2018  9:34 AM



32_26 Chapter 32 REST Web Services

Lines 83–84 create the URL String that is used to invoke the web service. Lines 87–
88 create a URL object using this String, then call the URL’s openStream method to invoke
the web service and obtain an InputStream from which the client can read the response.
The InputStream is wrapped in an InputStreamReader so it can be passed as the first
argument to the Gson class’s fromJson method. This method is overloaded. The version
we use takes as arguments a Reader from which to read a JSON String and a Class<T>
object indicating the Java class to which the JSON String will be converted (line 92). In
this example, the JSON String contains a TextMessage object, so we use the Java com-
piler shortcut TextMessage.class to create the Class<TextMessage> object we need as
the second argument. Lines 95–96 display the message in the TextMessage object.

The TextMessage classes in the web service and client are unrelated. Technically, the
client can be written in any programming language, so the manner in which a response is
processed can vary greatly. Since our client is written in Java, we duplicated the TextMes-
sage class in the client so we could easily convert the JSON object back to Java.

32.9 Session Tracking in a SOAP Web Service
Section 30.8 described the advantages of using session tracking to maintain client-state in-
formation so you can personalize the users’ browsing experiences. Now we’ll incorporate
session tracking into a web service. Suppose a client application needs to call several meth-
ods from the same web service, possibly several times each. In such a case, it can be bene-
ficial for the web service to maintain state information for the client, thus eliminating the
need for client information to be passed between the client and the web service multiple

125 // private class that contains the message we are receiving
126 class TextMessage
127 {
128    private String message; // message we're receiving
129
130    // returns the message
131    public String getMessage()
132    {
133       return message;
134    }
135
136    // sets the message
137    public void setMessage(String value)
138    {
139       message = value;
140    } 
141 } 

Fig. 32.16 | Client that consumes the WelcomeRESTJSON service. (Part 3 of 3.)

jhtp_32_WebServices.fm  Page 26  Tuesday, April 10, 2018  9:34 AM



32.9  Session Tracking in a SOAP Web Service 32_27

times. For example, a web service that provides local restaurant reviews could store the cli-
ent user’s street address during the initial request, then use it to return personalized, local-
ized results in subsequent requests. Storing session information also enables a web service
to distinguish between clients.

32.9.1 Creating a Blackjack Web Service
Our next example is a web service that assists you in developing a blackjack card game.
The Blackjack web service (Fig. 32.17) provides web methods to shuffle a deck of cards,
deal a card from the deck and evaluate a hand of cards. After presenting the web service,
we use it to serve as the dealer for a game of blackjack (Fig. 32.18). The Blackjack web
service uses an HttpSession object to maintain a unique deck of cards for each client ap-
plication. Several clients can use the service at the same time, but web method calls made
by a specific client use only the deck of cards stored in that client’s session. Our example
uses the following blackjack rules:

Two cards each are dealt to the dealer and the player. The player’s cards are dealt face
up. Only the first of the dealer’s cards is dealt face up. Each card has a value. A card
numbered 2 through 10 is worth its face value. Jacks, queens and kings each count as
10. Aces can count as 1 or 11—whichever value is more beneficial to the player (as
we’ll soon see). If the sum of the player’s two initial cards is 21 (i.e., the player was
dealt a card valued at 10 and an ace, which counts as 11 in this situation), the player
has “blackjack” and immediately wins the game—if the dealer does not also have
blackjack (which would result in a “push”—i.e., a tie). Otherwise, the player can
begin taking additional cards one at a time. These cards are dealt face up, and the
player decides when to stop taking cards. If the player “busts” (i.e., the sum of the
player’s cards exceeds 21), the game is over and the player loses. When the player is sat-
isfied with the current set of cards, the player “stands” (i.e., stops taking cards), and the
dealer’s hidden card is revealed. If the dealer’s total is 16 or less, the dealer must take
another card; otherwise, the dealer must stand. The dealer must continue taking cards
until the sum of the dealer’s cards is greater than or equal to 17. If the dealer exceeds
21, the player wins. Otherwise, the hand with the higher point total wins. If the
dealer and the player have the same point total, the game is a “push,” and no one
wins. The value of an ace for a dealer depends on the dealer’s other card(s) and the
casino’s house rules. A dealer typically must hit for totals of 16 or less and must stand
for totals of 17 or more. However, for a “soft 17”—a hand with a total of 17 with one
ace counted as 11—some casinos require the dealer to hit and some require the dealer
to stand (we require the dealer to stand). Such a hand is known as a “soft 17” because
taking another card cannot bust the hand.

The web service (Fig. 32.17) stores each card as a String consisting of a number, 1–
13, representing the card’s face (ace through king, respectively), followed by a space and a
digit, 0–3, representing the card’s suit (hearts, diamonds, clubs or spades, respectively). For
example, the jack of clubs is represented as "11 2" and the two of hearts as "2 0". To
create and deploy this web service, follow the steps that we presented in Sections 32.6.2–
32.6.3 for the WelcomeSOAP service. 

jhtp_32_WebServices.fm  Page 27  Tuesday, April 10, 2018  9:34 AM



32_28 Chapter 32 REST Web Services

1 // Fig. 32.17: Blackjack.java
2 // Blackjack web service that deals cards and evaluates hands
3 package com.deitel.blackjack;
4
5 import com.sun.xml.ws.developer.servlet.HttpSessionScope;
6 import java.util.ArrayList;
7 import java.util.Random;
8 import javax.jws.WebMethod;
9 import javax.jws.WebParam;

10 import javax.jws.WebService;
11
12
13 @WebService()
14 public class Blackjack
15 {
16    private ArrayList<String> deck; // deck of cards for one user session
17    private static final Random randomObject = new Random(); 
18
19    // deal one card
20    @WebMethod(operationName = "dealCard")
21    public String dealCard()
22    {
23       String card = "";
24       card = deck.get(0); // get top card of deck
25       deck.remove(0); // remove top card of deck
26       return card; 
27    }
28    
29    // shuffle the deck
30    @WebMethod(operationName = "shuffle")
31    public void shuffle()
32    {
33       // create new deck when shuffle is called
34       deck = new ArrayList<String>();
35       
36       // populate deck of cards
37       for (int face = 1; face <= 13; face++) // loop through faces
38          for (int suit = 0; suit <= 3; suit++) // loop through suits
39             deck.add(face + " " + suit); // add each card to deck
40       
41       String tempCard; // holds card temporarily during swapping
42       int index; // index of randomly selected card
43
44       for (int i = 0; i < deck.size() ; i++) // shuffle
45       {
46          index = randomObject.nextInt(deck.size() - 1);
47          
48          // swap card at position i with randomly selected card
49          tempCard = deck.get(i); 
50          deck.set(i, deck.get(index)); 
51          deck.set(index, tempCard); 
52       } 
53    } 

Fig. 32.17 | Blackjack web service that deals cards and evaluates hands. (Part 1 of 2.) 

@HttpSessionScope // enable web service to maintain session state

jhtp_32_WebServices.fm  Page 28  Tuesday, April 10, 2018  9:34 AM



32.9  Session Tracking in a SOAP Web Service 32_29

Session Tracking in Web Services: @HttpSessionScope Annotation
In JAX-WS 2.2, it’s easy to enable session tracking in a web service. You simply precede
your web service class with the @HttpSessionScope annotation. This annotation is located
in package com.sun.xml.ws.developer.servlet. To use this package you must add the
JAX-WS 2.2 library to your project. To do so, right click the Libraries node in your Black-

54    
55    // determine a hand's value 
56    @WebMethod(operationName = "getHandValue")
57    public int getHandValue(@WebParam(name = "hand") String hand)
58    {
59       // split hand into cards
60       String[] cards = hand.split("\t");
61       int total = 0; // total value of cards in hand
62       int face; // face of current card
63       int aceCount = 0; // number of aces in hand
64       
65       for (int i = 0; i < cards.length; i++)
66       {
67          // parse string and get first int in String
68          face = Integer.parseInt(
69             cards[i].substring(0, cards[i].indexOf(" ")));
70          
71          switch (face)
72          {
73             case 1: // if ace, increment aceCount
74                ++aceCount;
75                break;
76             case 11: // jack
77             case 12: // queen
78             case 13: // king
79                total += 10;
80                break;
81             default: // otherwise, add face
82                total += face;
83                break;
84          } 
85       } 
86       
87       // calculate optimal use of aces
88       if (aceCount > 0)
89       {
90          // if possible, count one ace as 11
91          if (total + 11 + aceCount - 1 <= 21)
92             total += 11 + aceCount - 1;
93          else // otherwise, count all aces as 1
94             total += aceCount;
95        } 
96       
97       return total;
98    } 
99 } 

Fig. 32.17 | Blackjack web service that deals cards and evaluates hands. (Part 2 of 2.) 

jhtp_32_WebServices.fm  Page 29  Tuesday, April 10, 2018  9:34 AM



32_30 Chapter 32 REST Web Services

jack web application project and select Add Library…. Then, in the dialog that appears,
locate and select JAX-WS 2.2, then click Add Library. Once a web service is annotated with
@HttpSessionScope, the server automatically maintains a separate instance of the class for
each client session. Thus, the deck instance variable (line 16) will be maintained separately
for each client.

Client Interactions with the Blackjack Web Service
A client first calls the Blackjack web service’s shuffle web method (lines 30–53) to create
a new deck of cards (line 34), populate it (lines 37–39) and shuffle it (lines 41–52). Lines
37–39 generate Strings in the form "face suit" to represent each possible card in the deck. 

Lines 20–27 define the dealCard web method. Method shuffle must be called before
method dealCard is called the first time for a client—otherwise, deck could be null. The
method gets the top card from the deck (line 24), removes it from the deck (line 25) and
returns the card’s value as a String (line 26). Without using session tracking, the deck of
cards would need to be passed back and forth with each method call. Session tracking
makes the dealCard method easy to call (it requires no arguments) and eliminates the
overhead of sending the deck over the network multiple times.

Method getHandValue (lines 56–98) determines the total value of the cards in a hand
by trying to attain the highest score possible without going over 21. Recall that an ace can
be counted as either 1 or 11, and all face cards count as 10. This method does not use the
session object, because the deck of cards is not used in this method.

As you’ll soon see, the client application maintains a hand of cards as a String in
which each card is separated by a tab character. Line 60 splits the hand of cards (repre-
sented by hand) into individual cards by calling String method split and passing to it a
String containing the delimiter characters (in this case, just a tab). Method split uses the
delimiter characters to separate tokens in the String. Lines 65–85 count the value of each
card. Lines 68–69 retrieve the first integer—the face—and use that value in the switch
statement (lines 71–84). If the card is an ace, the method increments variable aceCount.
We discuss how this variable is used shortly. If the card is an 11, 12 or 13 (jack, queen or
king), the method adds 10 to the total value of the hand (line 79). If the card is anything
else, the method increases the total by that value (line 82).

Because an ace can have either of two values, additional logic is required to process
aces. Lines 88–95 process the aces after all the other cards. If a hand contains several aces,
only one ace can be counted as 11. The condition in line 91 determines whether counting
one ace as 11 and the rest as 1 will result in a total that does not exceed 21. If this is pos-
sible, line 92 adjusts the total accordingly. Otherwise, line 94 adjusts the total, counting
each ace as 1.

Method getHandValue maximizes the value of the current cards without exceeding
21. Imagine, for example, that the dealer has a 7 and receives an ace. The new total could
be either 8 or 18. However, getHandValue always maximizes the value of the cards without
going over 21, so the new total is 18.

32.9.2 Consuming the Blackjack Web Service
The blackjack application in Fig. 32.18 keeps track of the player’s and dealer’s cards, and
the web service tracks the cards that have been dealt. The constructor (lines 34–83) sets
up the GUI (line 36), changes the window’s background color (line 40) and creates the
Blackjack web service’s service endpoint interface object (lines 46–47). In the GUI, each

jhtp_32_WebServices.fm  Page 30  Tuesday, April 10, 2018  9:34 AM



32.9  Session Tracking in a SOAP Web Service 32_31

player has 11 JLabels—the maximum number of cards that can be dealt without auto-
matically exceeding 21 (i.e., four aces, four twos and three threes). These JLabels are
placed in an ArrayList of JLabels (lines 59–82), so we can index the ArrayList during
the game to determine the JLabel that will display a particular card image.

1 // Fig. 32.18: BlackjackGameJFrame.java
2 // Blackjack game that uses the Blackjack Web Service.
3 package com.deitel.blackjackclient;
4
5
6
7 import java.awt.Color;
8 import java.util.ArrayList;
9 import javax.swing.ImageIcon;

10 import javax.swing.JLabel;
11 import javax.swing.JOptionPane;
12
13
14 public class BlackjackGameJFrame extends javax.swing.JFrame
15 {
16    private String playerCards;
17    private String dealerCards;
18    private ArrayList<JLabel> cardboxes; // list of card image JLabels
19    private int currentPlayerCard; // player's current card number
20    private int currentDealerCard; // blackjackProxy's current card number
21    
22    
23
24    // enum of game states
25    private enum GameStatus
26    {
27       PUSH, // game ends in a tie
28       LOSE, // player loses
29       WIN, // player wins
30       BLACKJACK // player has blackjack
31    }
32
33    // no-argument constructor
34    public BlackjackGameJFrame()
35    {
36       initComponents();
37
38       // due to a bug in NetBeans, we must change the JFrame's background
39       // color here rather than in the designer
40       getContentPane().setBackground(new Color(0, 180, 0));
41
42       // initialize the blackjack proxy
43       try
44       {
45          
46          
47          

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 1 of 10.)

import com.deitel.blackjack.Blackjack;       
import com.deitel.blackjack.BlackjackService;

import javax.xml.ws.BindingProvider;

private BlackjackService blackjackService; // used to obtain proxy 
private Blackjack blackjackProxy; // used to access the web service

// create the objects for accessing the Blackjack web service
blackjackService = new BlackjackService();                   
blackjackProxy = blackjackService.getBlackjackPort();        

jhtp_32_WebServices.fm  Page 31  Tuesday, April 10, 2018  9:34 AM



32_32 Chapter 32 REST Web Services

48
49          
50          
51          
52       } 
53       catch (Exception e)
54       {
55          e.printStackTrace();
56       } 
57
58       // add JLabels to cardBoxes ArrayList for programmatic manipulation
59       cardboxes = new ArrayList<JLabel>();
60
61       cardboxes.add(dealerCard1JLabel);
62       cardboxes.add(dealerCard2JLabel);
63       cardboxes.add(dealerCard3JLabel);
64       cardboxes.add(dealerCard4JLabel);
65       cardboxes.add(dealerCard5JLabel);
66       cardboxes.add(dealerCard6JLabel);
67       cardboxes.add(dealerCard7JLabel);
68       cardboxes.add(dealerCard8JLabel);
69       cardboxes.add(dealerCard9JLabel);
70       cardboxes.add(dealerCard10JLabel);
71       cardboxes.add(dealerCard11JLabel);
72       cardboxes.add(playerCard1JLabel);
73       cardboxes.add(playerCard2JLabel);
74       cardboxes.add(playerCard3JLabel);
75       cardboxes.add(playerCard4JLabel);
76       cardboxes.add(playerCard5JLabel);
77       cardboxes.add(playerCard6JLabel);
78       cardboxes.add(playerCard7JLabel);
79       cardboxes.add(playerCard8JLabel);
80       cardboxes.add(playerCard9JLabel);
81       cardboxes.add(playerCard10JLabel);
82       cardboxes.add(playerCard11JLabel);
83    } 
84
85    // play the dealer’s hand
86    private void dealerPlay()
87    {
88       try
89       {
90          // while the value of the dealers's hand is below 17
91          // the dealer must continue to take cards
92          String[] cards = dealerCards.split("\t");
93
94          // display dealer's cards
95          for (int i = 0; i < cards.length; i++)
96          {
97             displayCard(i, cards[i]);
98          }
99

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 2 of 10.)

// enable session tracking                                   
((BindingProvider) blackjackProxy).getRequestContext().put(
   BindingProvider.SESSION_MAINTAIN_PROPERTY, true);        

jhtp_32_WebServices.fm  Page 32  Tuesday, April 10, 2018  9:34 AM



32.9  Session Tracking in a SOAP Web Service 32_33

100          
101          {
102             
103             dealerCards += "\t" + newCard; // deal new card
104             displayCard(currentDealerCard, newCard);
105             ++currentDealerCard;
106             JOptionPane.showMessageDialog(this, "Dealer takes a card",
107                "Dealer's turn", JOptionPane.PLAIN_MESSAGE);
108          } 
109
110          
111          
112
113          // if dealer busted, player wins
114          if (dealersTotal > 21)
115          {
116             gameOver(GameStatus.WIN);
117             return;
118          }
119
120          // if dealer and player are below 21
121          // higher score wins, equal scores is a push
122          if (dealersTotal > playersTotal)
123          {
124             gameOver(GameStatus.LOSE);
125          }
126          else if (dealersTotal < playersTotal)
127          {
128             gameOver(GameStatus.WIN);
129          }
130          else
131          {
132             gameOver(GameStatus.PUSH);
133          }
134       } 
135       catch (Exception e)
136       {
137          e.printStackTrace();
138       } 
139    } 
140
141    // displays the card represented by cardValue in specified JLabel
142    private void displayCard(int card, String cardValue)
143    {
144       try
145       {
146          // retrieve correct JLabel from cardBoxes
147          JLabel displayLabel = cardboxes.get(card);
148
149          // if string representing card is empty, display back of card
150          if (cardValue.equals(""))
151          {

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 3 of 10.)

while (blackjackProxy.getHandValue(dealerCards) < 17)

String newCard = blackjackProxy.dealCard(); // deal new card

int dealersTotal = blackjackProxy.getHandValue(dealerCards);
int playersTotal = blackjackProxy.getHandValue(playerCards);

jhtp_32_WebServices.fm  Page 33  Tuesday, April 10, 2018  9:34 AM



32_34 Chapter 32 REST Web Services

152             displayLabel.setIcon(new ImageIcon(getClass().getResource(
153                "/com/deitel/java/blackjackclient/" +
154                "blackjack_images/cardback.png")));
155             return;
156          } 
157
158          // retrieve the face value of the card
159          String face = cardValue.substring(0, cardValue.indexOf(" "));
160
161          // retrieve the suit of the card
162          String suit =
163             cardValue.substring(cardValue.indexOf(" ") + 1);
164
165          char suitLetter; // suit letter used to form image file
166
167          switch (Integer.parseInt(suit))
168          {
169             case 0: // hearts
170                suitLetter = 'h';
171                break;
172             case 1: // diamonds
173                suitLetter = 'd';
174                break;
175             case 2: // clubs
176                suitLetter = 'c';
177                break;
178             default: // spades
179                suitLetter = 's';
180                break;
181          } 
182
183          // set image for displayLabel
184          displayLabel.setIcon(new ImageIcon(getClass().getResource(
185             "/com/deitel/java/blackjackclient/blackjack_images/" +
186             face + suitLetter + ".png")));
187       } 
188       catch (Exception e)
189       {
190          e.printStackTrace();
191       } 
192    } 
193
194    // displays all player cards and shows appropriate message
195    private void gameOver(GameStatus winner)
196    {
197       String[] cards = dealerCards.split("\t");
198
199       // display blackjackProxy's cards
200       for (int i = 0; i < cards.length; i++)
201       {
202          displayCard(i, cards[i]);
203       }
204

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 4 of 10.)

jhtp_32_WebServices.fm  Page 34  Tuesday, April 10, 2018  9:34 AM



32.9  Session Tracking in a SOAP Web Service 32_35

205       // display appropriate status image
206       if (winner == GameStatus.WIN)
207       {
208          statusJLabel.setText("You win!");
209       }
210       else if (winner == GameStatus.LOSE)
211       {
212          statusJLabel.setText("You lose.");
213       }
214       else if (winner == GameStatus.PUSH)
215       {
216          statusJLabel.setText("It's a push.");
217       }
218       else // blackjack
219       {
220          statusJLabel.setText("Blackjack!");
221       }
222
223       // display final scores
224       
225       
226       dealerTotalJLabel.setText("Dealer: " + dealersTotal);
227       playerTotalJLabel.setText("Player: " + playersTotal);
228
229       // reset for new game
230       standJButton.setEnabled(false);
231       hitJButton.setEnabled(false);
232       dealJButton.setEnabled(true);
233    } 
234
235    
236    
237    
238    
239
542    // handles dealJButton click
543    private void dealJButtonActionPerformed(
544       java.awt.event.ActionEvent evt)
545    {                                                
546       String card; // stores a card temporarily until it's added to a hand
547
548       // clear card images
549       for (int i = 0; i < cardboxes.size(); i++)
550       {
551          cardboxes.get(i).setIcon(null);
552       }
553
554       statusJLabel.setText("");
555       dealerTotalJLabel.setText("");
556       playerTotalJLabel.setText("");
557
558       
559       

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 5 of 10.)

int dealersTotal = blackjackProxy.getHandValue(dealerCards);
int playersTotal = blackjackProxy.getHandValue(playerCards);

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open BlackjackGameJFrame.java in this           
// example's folder to view the complete generated code 

// create a new, shuffled deck on remote machine
blackjackProxy.shuffle();                       

jhtp_32_WebServices.fm  Page 35  Tuesday, April 10, 2018  9:34 AM



32_36 Chapter 32 REST Web Services

560
561       // deal two cards to player
562       
563       displayCard(11, playerCards); // display first card
564       
565       displayCard(12, card); // display second card
566       playerCards += "\t" + card; // add second card to hand
567
568       // deal two cards to blackjackProxy, but only show first
569       
570       displayCard(0, dealerCards); // display first card
571       
572       displayCard(1, ""); // display back of card
573       dealerCards += "\t" + card; // add second card to hand
574
575       standJButton.setEnabled(true);
576       hitJButton.setEnabled(true);
577       dealJButton.setEnabled(false);
578
579       
580       
581       
582
583       // if hands both equal 21, it is a push
584       if (playersTotal == dealersTotal && playersTotal == 21)
585       {
586          gameOver(GameStatus.PUSH);
587       }
588       else if (dealersTotal == 21) // blackjackProxy has blackjack
589       {
590          gameOver(GameStatus.LOSE);
591       }
592       else if (playersTotal == 21) // blackjack
593       {
594          gameOver(GameStatus.BLACKJACK);
595       }
596
597       // next card for blackjackProxy has index 2
598       currentDealerCard = 2;
599
600       // next card for player has index 13
601       currentPlayerCard = 13;
602    } 
603
604    // handles standJButton click
605    private void hitJButtonActionPerformed(
606       java.awt.event.ActionEvent evt)
607    {                                               
608       // get player another card
609       
610       playerCards += "\t" + card; // add card to hand
611

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 6 of 10.)

playerCards = blackjackProxy.dealCard(); // add first card to hand

card = blackjackProxy.dealCard(); // deal second card

dealerCards = blackjackProxy.dealCard(); // add first card to hand

card = blackjackProxy.dealCard(); // deal second card

// determine the value of the two hands                       
int dealersTotal = blackjackProxy.getHandValue(dealerCards);
int playersTotal = blackjackProxy.getHandValue(playerCards);

String card = blackjackProxy.dealCard(); // deal new card

jhtp_32_WebServices.fm  Page 36  Tuesday, April 10, 2018  9:34 AM



32.9  Session Tracking in a SOAP Web Service 32_37

612       // update GUI to display new card
613       displayCard(currentPlayerCard, card);
614       ++currentPlayerCard;
615
616       
617       
618
619       if (total > 21) // player busts
620       {
621          gameOver(GameStatus.LOSE);
622       }
623       else if (total == 21) // player cannot take any more cards
624       {
625          hitJButton.setEnabled(false);
626          dealerPlay();
627       } 
628    } 
629
630    // handles standJButton click
631    private void standJButtonActionPerformed(
632       java.awt.event.ActionEvent evt)
633    {                                                 
634       standJButton.setEnabled(false);
635       hitJButton.setEnabled(false);
636       dealJButton.setEnabled(true);
637       dealerPlay();
638    } 
639
640    // begins application execution
641    public static void main(String args[])
642    {
643       java.awt.EventQueue.invokeLater(
644          new Runnable()
645          {
646             public void run()
647             {
648                new BlackjackGameJFrame().setVisible(true);
649             }
650          }
651       ); 
652    } 
653
654    // Variables declaration - do not modify                     
655    private javax.swing.JButton dealJButton;
656    private javax.swing.JLabel dealerCard10JLabel;
657    private javax.swing.JLabel dealerCard11JLabel;
658    private javax.swing.JLabel dealerCard1JLabel;
659    private javax.swing.JLabel dealerCard2JLabel;
660    private javax.swing.JLabel dealerCard3JLabel;
661    private javax.swing.JLabel dealerCard4JLabel;
662    private javax.swing.JLabel dealerCard5JLabel;
663    private javax.swing.JLabel dealerCard6JLabel;
664    private javax.swing.JLabel dealerCard7JLabel;

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 7 of 10.)

// determine new value of player's hand                
int total = blackjackProxy.getHandValue(playerCards);

jhtp_32_WebServices.fm  Page 37  Tuesday, April 10, 2018  9:34 AM



32_38 Chapter 32 REST Web Services

665    private javax.swing.JLabel dealerCard8JLabel;
666    private javax.swing.JLabel dealerCard9JLabel;
667    private javax.swing.JLabel dealerJLabel;
668    private javax.swing.JLabel dealerTotalJLabel;
669    private javax.swing.JButton hitJButton;
670    private javax.swing.JLabel playerCard10JLabel;
671    private javax.swing.JLabel playerCard11JLabel;
672    private javax.swing.JLabel playerCard1JLabel;
673    private javax.swing.JLabel playerCard2JLabel;
674    private javax.swing.JLabel playerCard3JLabel;
675    private javax.swing.JLabel playerCard4JLabel;
676    private javax.swing.JLabel playerCard5JLabel;
677    private javax.swing.JLabel playerCard6JLabel;
678    private javax.swing.JLabel playerCard7JLabel;
679    private javax.swing.JLabel playerCard8JLabel;
680    private javax.swing.JLabel playerCard9JLabel;
681    private javax.swing.JLabel playerJLabel;
682    private javax.swing.JLabel playerTotalJLabel;
683    private javax.swing.JButton standJButton;
684    private javax.swing.JLabel statusJLabel;
685    // End of variables declaration                   
686 } 

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 8 of 10.)

a) Dealer and player hands after the user clicks the Deal JButton.

b) Dealer and player hands
after the user clicks Stand. In
this case, the result is a loss for
the player because the dealer
has 21 and the player has 18.

jhtp_32_WebServices.fm  Page 38  Tuesday, April 10, 2018  9:34 AM



32.9  Session Tracking in a SOAP Web Service 32_39

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 9 of 10.)

c) Hands after the user clicks Hit twice and draws 21. In this case, the player wins with the higher hand. 

d) Hands after the player is dealt blackjack.

jhtp_32_WebServices.fm  Page 39  Tuesday, April 10, 2018  9:34 AM



32_40 Chapter 32 REST Web Services

Configuring the Client for Session Tracking
When interacting with a JAX-WS web service that performs session tracking, the client ap-
plication must indicate whether it wants to allow the web service to maintain session in-
formation. Lines 50–51 in the constructor perform this task. We first cast the service
endpoint interface object to interface type BindingProvider. A BindingProvider enables
the client to manipulate the request information that will be sent to the server. This infor-
mation is stored in an object that implements interface RequestContext. The Binding-
Provider and RequestContext are part of the framework that is created by the IDE when
you add a web service client to the application. Next, we invoke the BindingProvider’s
getRequestContext method to obtain the RequestContext object. Then we call the Re-
questContext’s put method to set the property 

to true. This enables the client side of the session-tracking mechanism, so that the web
service knows which client is invoking the service’s web methods. 

Method gameOver
Method gameOver (lines 195–233) displays all the dealer’s cards, shows the appropriate
message in statusJLabel and displays the final point totals of both the dealer and the
player. Method gameOver receives as an argument a member of the GameStatus enum (de-
fined in lines 25–31). The enum constants represent whether the player tied, lost or won
the game; its four members are PUSH, LOSE, WIN and BLACKJACK. 

BindingProvider.SESSION_MAINTAIN_PROPERTY 

Fig. 32.18 | Blackjack game that uses the Blackjack web service. (Part 10 of 10.)

e) Hands after the dealer is dealt blackjack

jhtp_32_WebServices.fm  Page 40  Tuesday, April 10, 2018  9:34 AM



32.9  Session Tracking in a SOAP Web Service 32_41

Method dealJButtonActionPerformed
When the player clicks the Deal JButton, method dealJButtonActionPerformed (lines
543–602) clears all of the JLabels that display cards or game status information. Next, the
deck is shuffled (line 559), and the player and dealer receive two cards each (lines 562–
573). Lines 580–581 then total each hand. If the player and the dealer both obtain scores
of 21, the program calls method gameOver, passing GameStatus.PUSH (line 586). If only
the dealer has 21, the program passes GameStatus.LOSE to method gameOver (line 590).
If only the player has 21 after the first two cards are dealt, the program passes GameSta-
tus.BLACKJACK to method gameOver (line 594). 

Method hitJButtonActionPerformed
If dealJButtonActionPerformed does not call gameOver, the player can take more cards
by clicking the Hit JButton, which calls hitJButtonActionPerformed in lines 605–628.
Each time a player clicks Hit, the program deals the player one more card (line 609) and
displays it in the GUI (line 613). If the player exceeds 21, the game is over and the player
loses (line 621). If the player has exactly 21, the player is not allowed to take any more
cards (line 625), and method dealerPlay is called (line 626).

Method dealerPlay
Method dealerPlay (lines 86–139) displays the dealer’s cards, then deals cards to the
dealer until the dealer’s hand has a value of 17 or more (lines 100–108). If the dealer ex-
ceeds 21, the player wins (line 116); otherwise, the values of the hands are compared, and
gameOver is called with the appropriate argument (lines 122–133).

Method standJButtonActionPerformed
Clicking the Stand JButton indicates that a player does not want to be dealt another card.
Method standJButtonActionPerformed (lines 631–638) disables the Hit and Stand but-
tons, enables the Deal button, then calls method dealerPlay.

Method displayCard
Method displayCard (lines 142–192) updates the GUI to display a newly dealt card. The
method takes as arguments an integer index for the JLabel in the ArrayList that must
have its image set and a String representing the card. An empty String indicates that we
wish to display the card face down. If method displayCard receives a String that’s not
empty, the program extracts the face and suit from the String and uses this information
to display the correct image. The switch statement (lines 167–181) converts the number
representing the suit to an integer and assigns the appropriate character to variable suit-
Letter (h for hearts, d for diamonds, c for clubs and s for spades). The character in suit-
Letter is used to complete the image’s filename (lines 184–186). You must add the folder
blackjack_images to your project so that lines 152–154 and 184–186 can access the images
properly. To do so, copy the folder blackjack_images from this chapter’s examples folder
and paste it into the project’s src\com\deitel\java\blackjackclient folder.

jhtp_32_WebServices.fm  Page 41  Tuesday, April 10, 2018  9:34 AM



32_42 Chapter 32 REST Web Services

32.10 Consuming a Database-Driven SOAP Web Service 
Our prior examples accessed web services from desktop applications created in NetBeans.
However, we can just as easily use them in web applications created with NetBeans. In
fact, because web-based businesses are becoming increasingly popular, it’s common for
web applications to consume web services. In this section, we present an airline reservation
web service that receives information regarding the type of seat a customer wishes to re-
serve and makes a reservation if such a seat is available. Later in the section, we present a
web application that allows a customer to specify a reservation request, then uses the airline
reservation web service to attempt to execute the request. 

32.10.1 Creating the Reservation Database
Our web service uses a reservation database containing a single table named Seats to
locate a seat matching a client’s request. Review the steps presented in Section 31.2.1 for
configuring a data source and the addressbook database. Then perform those steps for the
reservation database used in this example. This chapter’s examples directory contains the
Seats.sql SQL script to create the seats table and populate it with sample data. The
sample data is shown in Fig. 32.19.

Creating the Reservation Web Service
You can now create a web service that uses the reservation database (Fig. 32.20). We
used the @DataSourceDefinition annotation (lines 17–23) to create a data source named 

for accessing the database. 

number location class taken

1 Aisle Economy 0

2 Aisle Economy 0

3 Aisle First 0

4 Middle Economy 0

5 Middle Economy 0

6 Middle First 0

7 Window Economy 0

8 Window Economy 0

9 Window First 0

10 Window First 0

Fig. 32.19 | Data from the seats table.

java:global/jdbc/reservation

1 // Fig. 32.20: Reservation.java
2 // Airline reservation web service.
3 package com.deitel.reservation;
4

Fig. 32.20 | Airline reservation web service.  (Part 1 of 3.)

jhtp_32_WebServices.fm  Page 42  Tuesday, April 10, 2018  9:34 AM



32.10  Consuming a Database-Driven SOAP Web Service 32_43

5 import java.sql.Connection;
6 import java.sql.PreparedStatement;
7 import java.sql.ResultSet;
8 import java.sql.SQLException;
9 import javax.annotation.Resource;

10 import javax.annotation.sql.DataSourceDefinition;
11 import javax.jws.WebMethod;
12 import javax.jws.WebParam;
13 import javax.jws.WebService;
14 import javax.sql.DataSource;
15
16 // define the data source
17 @DataSourceDefinition(
18    
19    className = "org.apache.derby.jdbc.ClientDataSource",
20    url = "jdbc:derby://localhost:1527/reservation",
21    databaseName = "reservation",
22    user = "APP",
23    password = "APP")
24
25 @WebService()
26 public class Reservation
27 {
28    // allow the server to inject the DataSource
29    
30    
31    
32    // a WebMethod that can reserve a seat
33    @WebMethod(operationName = "reserve")
34    public boolean reserve(@WebParam(name = "seatType") String seatType,
35       @WebParam(name = "classType") String classType)
36    {
37       Connection connection = null;
38       PreparedStatement lookupSeat = null;
39       PreparedStatement reserveSeat = null;
40
41       try
42       {
43          
44          
45          
46          
47          
48          
49          
50          
51          
52          // if requested seat is available, reserve it
53          if (resultSet.next())
54          {
55             
56             
57             

Fig. 32.20 | Airline reservation web service.  (Part 2 of 3.)

name = "java:global/jdbc/reservation",

@Resource(lookup="java:global/jdbc/reservation")
DataSource dataSource;                          

connection = DriverManager.getConnection(                    
   DATABASE_URL, USERNAME, PASSWORD);                        
lookupSeat = connection.prepareStatement(                    
   "SELECT \"number\" FROM \"seats\" WHERE (\"taken\" = 0) " +
   "AND (\"location\" = ?) AND (\"class\" = ?)");            
lookupSeat.setString(1, seatType);                          
lookupSeat.setString(2, classType);                         
ResultSet resultSet = lookupSeat.executeQuery();              

int seat = resultSet.getInt(1);                          
reserveSeat = connection.prepareStatement(                
   "UPDATE \"seats\" SET \"taken\"=1 WHERE \"number\"=?");

jhtp_32_WebServices.fm  Page 43  Tuesday, April 10, 2018  9:34 AM



32_44 Chapter 32 REST Web Services

The airline reservation web service has a single web method—reserve (lines 33–
89)—which searches the Seats table to locate a seat matching a user’s request. The
method takes two arguments—a String representing the desired seat type (i.e., "Window",
"Middle" or "Aisle") and a String representing the desired class type (i.e., "Economy" or
"First"). If it finds an appropriate seat, method reserve updates the database to make
the reservation and returns true; otherwise, no reservation is made, and the method
returns false. The statements at lines 45–50 and lines 56–59 that query and update the
database use objects of JDBC types ResultSet and PreparedStatement.

58             
59             
60             return true;
61          }
62          
63          return false;
64       }
65       catch (SQLException e)
66       {
67          e.printStackTrace();
68          return false;
69       }
70       catch (Exception e)
71       {
72          e.printStackTrace();  
73          return false;
74       }
75       finally
76       {
77          try
78          {
79             lookupSeat.close();
80             reserveSeat.close();
81             connection.close();
82          } 
83          catch (Exception e)
84          {
85             e.printStackTrace();
86             return false;
87          } 
88       }
89    } 
90 } 

Software Engineering Observation 32.1
Using PreparedStatements to create SQL statements is highly recommended to secure
against so-called SQL injection attacks in which executable code is inserted into SQL code.
The site www.owasp.org/index.php/Preventing_SQL_Injection_in_Java provides a
summary of SQL injection attacks and ways to mitigate against them.

Fig. 32.20 | Airline reservation web service.  (Part 3 of 3.)

reserveSeat.setInt(1, seat);                             
reserveSeat.executeUpdate();                               

jhtp_32_WebServices.fm  Page 44  Tuesday, April 10, 2018  9:34 AM



32.10  Consuming a Database-Driven SOAP Web Service 32_45

Our database contains four columns—the seat number (i.e., 1–10), the seat type (i.e.,
Window, Middle or Aisle), the class type (i.e., Economy or First) and a column containing
either 1 (true) or 0 (false) to indicate whether the seat is taken. Lines 45–50 retrieve the
seat numbers of any available seats matching the requested seat and class type. This state-
ment fills the resultSet with the results of the query

The parameters type and class in the query are replaced with values of method reserve’s
seatType and classType parameters. 

 If resultSet is not empty (i.e., at least one seat is available that matches the selected
criteria), the condition in line 53 is true and the web service reserves the first matching
seat number. Recall that ResultSet method next returns true if a nonempty row exists,
and positions the cursor on that row. We obtain the seat number (line 55) by accessing
resultSet’s first column (i.e., resultSet.getInt(1)—the first column in the row).
Then lines 56–59 configure a PreparedStatement and execute the SQL: 

which marks the seat as taken in the database. The parameter number is replaced with the
value of seat. Method reserve returns true (line 60) to indicate that the reservation was
successful. If there are no matching seats, or if an exception occurred, method reserve re-
turns false (lines 63, 68, 73 and 86) to indicate that no seats matched the user’s request.

32.10.2 Creating a Web Application to Interact with the Reservation 
Service
This section presents a ReservationClient JSF web application that consumes the Res-
ervation web service. The application allows users to select "Aisle", "Middle" or "Win-
dow" seats in "Economy" or "First" class, then submit their requests to the web service. If
the database request is not successful, the application instructs the user to modify the re-
quest and try again. The application presented here was built using the techniques present-
ed in Chapters 30–31. We assume that you’ve already read those chapters and thus know
how to build a Facelets page and a corresponding JavaBean.

index.xhtml 
index.xhtml (Fig. 32.21) defines two h:selectOneMenus and an h:commandButton. The
h:selectOneMenu at lines 16–20) displays all the seat types from which users can select.
The one at lines 21–24) provides choices for the class type. The values of these are stored
in the seatType and classType properties of the reservationBean (Fig. 32.22). Users
click the Reserve button (lines 25–26) to submit requests after making selections from the
h:selectOneMenus. Clicking the button calls the reservationBean’s reserveSeat meth-
od. The page displays the result of each attempt to reserve a seat in line 28.

SELECT number
FROM seats
WHERE (taken = 0) AND (type = type) AND (class = class)

UPDATE seats
SET taken = 1
WHERE (number = number)

jhtp_32_WebServices.fm  Page 45  Tuesday, April 10, 2018  9:34 AM



32_46 Chapter 32 REST Web Services

1 <?xml version='1.0' encoding='UTF-8' ?>
2
3 <!-- Fig. 31.21: index.xhtml -->
4 <!-- Facelets page that allows a user to select a seat -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
6    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
7 <html xmlns="http://www.w3.org/1999/xhtml"
8    xmlns:h="http://java.sun.com/jsf/html"
9    xmlns:f="http://java.sun.com/jsf/core">

10    <h:head>
11       <title>Airline Reservations</title>
12    </h:head>
13    <h:body>
14       <h:form>
15          <h3>Please select the seat type and class to reserve:</h3>
16          <h:selectOneMenu value="#{reservationBean.seatType}">
17             <f:selectItem itemValue="Aisle" itemLabel="Aisle" />
18             <f:selectItem itemValue="Middle" itemLabel="Middle" />
19             <f:selectItem itemValue="Window" itemLabel="Window" />
20          </h:selectOneMenu>
21          <h:selectOneMenu value="#{reservationBean.classType}">
22             <f:selectItem itemValue="Economy" itemLabel="Economy" />
23             <f:selectItem itemValue="First" itemLabel="First" />
24          </h:selectOneMenu>
25          <h:commandButton value="Reserve"
26             action="#{reservationBean.reserveSeat}"/>
27       </h:form>
28       <h3>#{reservationBean.result}</h3>
29    </h:body>
30 </html>

Fig. 32.21 | Facelets page that allows a user to select a seat. (Part 1 of 2.)

a) Selecting
a seat

b) Seat reserved
successfully

jhtp_32_WebServices.fm  Page 46  Tuesday, April 10, 2018  9:34 AM



32.10  Consuming a Database-Driven SOAP Web Service 32_47

ReservationBean.java 
Class ReservationBean (Fig. 32.22) defines the seatType, classType and result prop-
erties and the reserveSeat method that are used in the index.xhtml page. When the user
clicks the Reserve button in index.xhtml, method reserveSeat (lines 59–76) executes.
Lines 63–64 use the service endpoint interface object (created in lines 24–25) to invoke
the web service’s reserve method, passing the selected seat type and class type as argu-
ments. If reserve returns true, line 67 sets result to a message thanking the user for
making a reservation; otherwise, lines 69–70 set result to a message notifying the user
that the requested seat type is not available and instructing the user to try again. 

1 // Fig. 31.22: ReservationBean.java
2 // Bean for seat reservation client.
3 package reservationclient;
4
5 import com.deitel.reservation.Reservation;
6 import com.deitel.reservation.ReservationService;
7 import java.io.Serializable;
8 import javax.faces.bean.ManagedBean;
9

10 @Named("reservationBean")
11 @javax.faces.view.ViewScoped 
12 public class ReservationBean implements Serializable
13 {
14    // references the service endpoint interface object (i.e., the proxy)
15    private Reservation reservationServiceProxy; // reference to proxy
16    private String seatType; // type of seat to reserve
17    private String classType; // class of seat to reserve
18    private String result; // result of reservation attempt
19    
20    // no-argument constructor
21    public ReservationBean()
22    {
23       // get service endpoint interface
24       
25       
26    } 

Fig. 32.22 | Page bean for seat reservation client. (Part 1 of 2.)

Fig. 32.21 | Facelets page that allows a user to select a seat. (Part 2 of 2.)

c) Attempting to
reserve an aisle
economy seat

when no more
are available—

because no seats
match the

requested seat
type and class,

the user is asked
to try again

ReservationService reservationService = new ReservationService(); 
reservationServiceProxy = reservationService.getReservationPort();

jhtp_32_WebServices.fm  Page 47  Tuesday, April 10, 2018  9:34 AM



32_48 Chapter 32 REST Web Services

27
28    // return classType
29    public String getClassType()
30    {
31       return classType;
32    } 
33
34    // set classType
35    public void setClassType(String classType)
36    {
37       this.classType = classType;
38    } 
39
40    // return seatType
41    public String getSeatType()
42    {
43       return seatType;
44    }
45
46    // set seatType
47    public void setSeatType(String seatType)
48    {
49       this.seatType = seatType;
50    }
51
52    // return result
53    public String getResult()
54    {
55       return result;
56    } 
57
58    // invoke the web service when the user clicks Reserve button
59    public void reserveSeat()
60    {
61       try
62       {
63          
64          
65
66          if (reserved) 
67             result = "Your reservation has been made. Thank you!";
68          else  
69             result = "This type of seat is not available. " +
70                "Please modify your request and try again.";
71       } 
72       catch (Exception e)
73       {
74          e.printStackTrace();
75       } 
76    }
77 } 

Fig. 32.22 | Page bean for seat reservation client. (Part 2 of 2.)

boolean reserved = reservationServiceProxy.reserve(
   getSeatType(), getClassType());                 

jhtp_32_WebServices.fm  Page 48  Tuesday, April 10, 2018  9:34 AM



32.11  Equation Generator: Returning User-Defined Types 32_49

32.11 Equation Generator: Returning User-Defined Types
Most of the web services we’ve demonstrated received and returned primitive-type in-
stances. It’s also possible to process instances of class types in a web service. These types
can be passed to or returned from web service methods.

This section presents a RESTful EquationGenerator web service that generates
random arithmetic equations of type Equation. The client is a math-tutoring application
that accepts information about the mathematical question that the user wishes to attempt
(addition, subtraction or multiplication) and the skill level of the user (1 specifies equa-
tions using numbers from 1 through 9, 2 specifies equations involving numbers from 10
through 99, and 3 specifies equations containing numbers from 100 through 999). Each
web service then generates an equation consisting of random numbers in the proper range.
The client application receives the Equation and displays the sample question to the user.
We present the web service and client twice—once using XML and once using JSON. 

Defining Class Equation
We define class Equation in Fig. 32.23. All the programs in this section have a copy of this
class in their corresponding package. Except for the package name, the class is identical in
each project, so we show it only once. Like the TextMessage class used earlier, the server-
side and client-side copies of class Equation are unrelated to each other. The only require-
ment for serialization and deserialization to work with the JAXB and Gson classes is that
class Equation must have the same public properties on both the server and the client.
Such properties can be public instance variables or private instance variables that have
corresponding, appropriately named set and get methods. 

1 // Fig. 32.23: Equation.java
2 // Equation class that contains information about an equation.
3 package com.deitel.equationgeneratorxml;
4
5 public class Equation
6 {
7    private int leftOperand;
8    private int rightOperand;
9    private int result;

10    private String operationType;
11
12    // required no-argument constructor
13    public Equation()
14    {
15       this(0, 0, "add");
16    } 
17
18    // constructor that receives the operands and operation type
19    public Equation(int leftValue, int rightValue, String type)
20    {
21       leftOperand = leftValue;
22       rightOperand = rightValue;
23

Fig. 32.23 | Equation class that contains information about an equation. (Part 1 of 3.)

jhtp_32_WebServices.fm  Page 49  Tuesday, April 10, 2018  9:34 AM



32_50 Chapter 32 REST Web Services

24       // determine result
25       if (type.equals("add")) // addition
26       {
27          result = leftOperand + rightOperand;
28          operationType = "+";
29       } 
30       else if (type.equals("subtract")) // subtraction
31       {
32          result = leftOperand - rightOperand;
33          operationType = "-";
34       } 
35       else // multiplication
36       {
37          result = leftOperand * rightOperand;
38          operationType = "*";
39       } 
40    }
41
42    // gets the leftOperand
43    public int getLeftOperand()
44    {
45       return leftOperand;
46    } 
47
48    // required setter
49    public void setLeftOperand(int value)
50    {
51       leftOperand = value;
52    } 
53
54    // gets the rightOperand
55    public int getRightOperand()
56    {
57       return rightOperand;
58    } 
59
60    // required setter
61    public void setRightOperand(int value)
62    {
63       rightOperand = value;
64    } 
65
66    // gets the resultValue
67    public int getResult()
68    {
69       return result;
70    } 
71
72    // required setter
73    public void setResult(int value)
74    {
75       result = value;
76    } 

Fig. 32.23 | Equation class that contains information about an equation. (Part 2 of 3.)

jhtp_32_WebServices.fm  Page 50  Tuesday, April 10, 2018  9:34 AM



32.11  Equation Generator: Returning User-Defined Types 32_51

 Lines 19–40 define a constructor that takes two ints representing the left and right
operands, and a String representing the arithmetic operation. The constructor stores this
information, then calculates the result. The parameterless constructor (lines 13–16) calls
the three-argument constructor (lines 19–40) and passes default values.

Class Equation defines get and set methods for example variables leftOperand (lines
43–52), rightOperand (lines 55–64), result (line 67–76) and operationType (lines 79–
88). It also provides get methods for the left-hand and right-hand sides of the equation and
a toString method that returns the entire equation as a String. An instance variable can
be serialized only if it has both a get and a set method. Because the different sides of the
equation and the result of toString can be generated from the other instance variables,
there’s no need to send them across the wire. The client in this case study does not use the
getRightHandSide method, but we included it in case future clients choose to use it.

32.11.1 Creating the EquationGeneratorXML Web Service
Figure 32.24 presents the EquationGeneratorXML web service’s class for creating random-
ly generated Equations. Method getXml (lines 19–38) takes two parameters—a String
representing the mathematical operation ("add", "subtract" or "multiply") and an int

77
78    // gets the operationType
79    public String getOperationType()
80    {
81       return operationType;
82    } 
83
84    // required setter
85    public void setOperationType(String value)
86    {
87       operationType = value;
88    } 
89
90    // returns the left hand side of the equation as a String
91    public String getLeftHandSide()
92    {
93       return leftOperand + " " + operationType + " " + rightOperand;
94    } 
95
96    // returns the right hand side of the equation as a String
97    public String getRightHandSide()
98    {
99       return "" + result;
100    }
101
102    // returns a String representation of an Equation
103    public String toString()
104    {
105       return getLeftHandSide() + " = " + getRightHandSide();
106    }
107 }

Fig. 32.23 | Equation class that contains information about an equation. (Part 3 of 3.)

jhtp_32_WebServices.fm  Page 51  Tuesday, April 10, 2018  9:34 AM



32_52 Chapter 32 REST Web Services

representing the difficulty level. JAX-RS automatically converts the arguments to the cor-
rect type and will return a “not found” error to the client if the argument cannot be con-
verted from a String to the destination type. Supported types for conversion include
integer types, floating-point types, boolean and the corresponding type-wrapper classes.

The getXml method first determines the minimum (inclusive) and maximum (exclu-
sive) values for the numbers in the equation it will return (lines 26–27). It then uses a
Random object (created at line 16) to generate two random numbers in that range (lines
30–31). Line 34 creates an Equation object, passing these two numbers and the requested
operation to the constructor. The getXml method then uses JAXB to convert the Equation
object to XML (line 36), which is output to the StringWriter created on line 35. Finally,

1 // Fig. 32.24: EquationGeneratorXMLResource.java
2 // RESTful equation generator that returns XML.
3 package com.deitel.equationgeneratorxml;
4
5 import java.io.StringWriter;
6 import java.security.SecureRandom;
7 import javax.ws.rs.PathParam;
8 import javax.ws.rs.Path;
9 import javax.ws.rs.GET;

10 import javax.ws.rs.Produces;
11 import javax.xml.bind.JAXB; // utility class for common JAXB operations
12
13 @Path("equation")
14 public class EquationGeneratorXMLResource
15 {
16    private static SecureRandom randomObject = new SecureRandom();
17
18    // retrieve an equation formatted as XML
19    
20    
21    
22    
23    
24    {
25       // compute minimum and maximum values for the numbers
26       int minimum = (int) Math.pow(10, level - 1);
27       int maximum = (int) Math.pow(10, level);
28
29       // create the numbers on the left-hand side of the equation
30       int first = randomObject.nextInt(maximum - minimum) + minimum;
31       int second = randomObject.nextInt(maximum - minimum) + minimum;
32
33       // create Equation object and marshal it into XML
34       Equation equation = new Equation(first, second, operation);
35       
36       
37       
38    } 
39 }

Fig. 32.24 | RESTful equation generator that returns XML.

@GET                                                             
@Path("{operation}/{level}")                                   
@Produces("application/xml")                                   
public String getXml(@PathParam("operation") String operation,
   @PathParam("level") int level)                             

StringWriter writer = new StringWriter(); // XML output here       
JAXB.marshal(equation, writer); // write Equation to StringWriter
return writer.toString(); // return XML string                     

jhtp_32_WebServices.fm  Page 52  Tuesday, April 10, 2018  9:34 AM



32.11  Equation Generator: Returning User-Defined Types 32_53

it retrieves the data that was written to the StringWriter and returns it to the client. For
example, if you invoke the web service with

the response will have the format

[Note: We’ll reimplement this web service with JSON in Section 32.11.3.]

32.11.2 Consuming the EquationGeneratorXML Web Service
The EquationGeneratorXMLClient application (Fig. 32.25) retrieves an XML-formatted
Equation object from the EquationGeneratorXML web service. The application then dis-
plays the Equation’s left-hand side and waits for user to submit an answer. 

http://localhost:8080/EquationGeneratorXML/webresources/equation/
add/1

<equation>
   <leftOperand>6</leftOperand>
   <operationType>+</operationType>
   <result>11</result>
   <rightOperand>5</rightOperand>
</equation>

1 // Fig. 32.25: EquationGeneratorXMLClientJFrame.java
2 // Math-tutoring program using REST and XML to generate equations.
3 package com.deitel.equationgeneratorxmlclient;
4
5 import javax.swing.JOptionPane;
6 import javax.xml.bind.JAXB; // utility class for common JAXB operations
7
8 public class EquationGeneratorXMLClientJFrame extends javax.swing.JFrame
9 {

10    private String operation = "add"; // operation user is tested on
11    private int difficulty = 1; // 1, 2, or 3 digits in each number
12    private int answer; // correct answer to the question
13
14    // no-argument constructor
15    public EquationGeneratorXMLClientJFrame()
16    {
17       initComponents();
18    } 
19
20    
21    
22    
23    
24
25    // determine if the user answered correctly
26    private void checkAnswerJButtonActionPerformed(
27       java.awt.event.ActionEvent evt)
28    {
29       if (answerJTextField.getText().equals(""))
30       {

Fig. 32.25 | Math-tutoring program using REST and XML to generate equations. (Part 1 of 3.)

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open EquationGeneratorXMLClientJFrame.java in   
// this example's folder to view the complete generated code.          

jhtp_32_WebServices.fm  Page 53  Tuesday, April 10, 2018  9:34 AM



32_54 Chapter 32 REST Web Services

31          JOptionPane.showMessageDialog(
32             this, "Please enter your answer.");
33       } 
34
35       int userAnswer = Integer.parseInt(answerJTextField.getText());
36
37       if (userAnswer == answer)
38       {
39          equationJLabel.setText(""); // clear label
40          answerJTextField.setText(""); // clear text field
41          checkAnswerJButton.setEnabled(false);
42          JOptionPane.showMessageDialog(this, "Correct! Good Job!",
43             "Correct", JOptionPane.PLAIN_MESSAGE);
44       } 
45       else
46       {
47          JOptionPane.showMessageDialog(this, "Incorrect. Try again.",
48             "Incorrect", JOptionPane.PLAIN_MESSAGE);
49       } 
50    }
51
52    // retrieve equation from web service and display left side to user
53    private void generateJButtonActionPerformed(
54       java.awt.event.ActionEvent evt)
55    {
56       try
57       {
58          
59          
60          
61
62          // convert XML back to an Equation object
63          
64
65          
66          
67          checkAnswerJButton.setEnabled(true);
68       } 
69       catch (Exception exception)
70       {
71          exception.printStackTrace();
72       } 
73    } 
74
75    // obtains the mathematical operation selected by the user
76    private void operationJComboBoxItemStateChanged(
77       java.awt.event.ItemEvent evt)
78    {
79       String item = (String) operationJComboBox.getSelectedItem();
80
81       if (item.equals("Addition"))
82          operation = "add"; // user selected addition

Fig. 32.25 | Math-tutoring program using REST and XML to generate equations. (Part 2 of 3.)

String url = String.format("http://localhost:8080/" + 
   "EquationGeneratorXML/webresources/equation/%s/%d",
   operation, difficulty);                            

Equation equation = JAXB.unmarshal(url, Equation.class);

answer = equation.getResult();                              
equationJLabel.setText(equation.getLeftHandSide() + " =");

jhtp_32_WebServices.fm  Page 54  Tuesday, April 10, 2018  9:34 AM



32.11  Equation Generator: Returning User-Defined Types 32_55

83       else if (item.equals("Subtraction"))
84          operation = "subtract"; // user selected subtraction
85       else
86          operation = "multiply"; // user selected multiplication
87    }
88
89    // obtains the difficulty level selected by the user
90    private void levelJComboBoxItemStateChanged(
91       java.awt.event.ItemEvent evt)
92    {
93       // indices start at 0, so add 1 to get the difficulty level
94       difficulty = levelJComboBox.getSelectedIndex() + 1;
95    } 
96
97    // main method begins execution
98    public static void main(String args[])
99    {
100       java.awt.EventQueue.invokeLater(
101          new Runnable()
102          {
103             public void run()
104             {
105                new EquationGeneratorXMLClientJFrame().setVisible(true);
106             }
107          } 
108       );
109    } 
110
111    // Variables declaration - do not modify
112    private javax.swing.JLabel answerJLabel;
113    private javax.swing.JTextField answerJTextField;
114    private javax.swing.JButton checkAnswerJButton;
115    private javax.swing.JLabel equationJLabel;
116    private javax.swing.JButton generateJButton;
117    private javax.swing.JComboBox levelJComboBox;
118    private javax.swing.JLabel levelJLabel;
119    private javax.swing.JComboBox operationJComboBox;
120    private javax.swing.JLabel operationJLabel;
121    private javax.swing.JLabel questionJLabel;
122    // End of variables declaration
123 }

Fig. 32.25 | Math-tutoring program using REST and XML to generate equations. (Part 3 of 3.)

a) Generating a simple equation. b) Sumbitting the answer. c) Dialog indicating correct answer.

jhtp_32_WebServices.fm  Page 55  Tuesday, April 10, 2018  9:34 AM



32_56 Chapter 32 REST Web Services

The default setting for the difficulty level is 1, but the user can change this by choosing
a level from the Choose level JComboBox. Changing the selected value invokes the level-
JComboBoxItemStateChanged event handler (lines 212–217), which sets the difficulty
instance variable to the level selected by the user. Although the default setting for the ques-
tion type is Addition, the user also can change this by choosing from the Choose operation
JComboBox. This invokes the operationJComboBoxItemStateChanged event handler in
lines 198–209, which assigns to instance variable operation the String corresponding to
the user’s selection.

The event handler for generateJButton (lines 175–195) constructs the URL to
invoke the web service, then passes this URL to the unmarshal method, along with an
instance of Class<Equation>, so that JAXB can convert the XML into an Equation object
(line 185). Once the XML has been converted back into an Equation, lines 183–184
retrieve the correct answer and display the left-hand side of the equation. The Check
Answer button is then enabled (line 189), and the user must solve the problem and enter
the answer.

When the user enters a value and clicks Check Answer, the checkAnswerJButtonAc-
tionPerformed event handler (lines 148–172) retrieves the user’s answer from the dialog
box (line 157) and compares it to the correct answer that was stored earlier (line 159). If
they match, lines 161–165 reset the GUI elements so the user can generate another equa-
tion and tell the user that the answer was correct. If they do not match, a message box
asking the user to try again is displayed (lines 169–170).

32.11.3 Creating the EquationGeneratorJSON Web Service
As you saw in Section 32.8, RESTful web services can return data formatted as JSON as
well. Figure 32.26 is a reimplementation of the EquationGeneratorXML service that re-
turns an Equation in JSON format. The logic implemented here is the same as the XML
version except for the last line (line 34), which uses Gson to convert the Equation object
into JSON instead of using JAXB to convert it into XML. The @Produces annotation (line
20) has also changed to reflect the JSON data format.

1 // Fig. 32.26: EquationGeneratorJSONResource.java
2 // RESTful equation generator that returns JSON.
3 package com.deitel.equationgeneratorjson;
4
5 import com.google.gson.Gson; // converts POJO to JSON and back again
6 import java.util.Random;
7 import javax.ws.rs.GET;
8 import javax.ws.rs.Path;
9 import javax.ws.rs.PathParam;

10 import javax.ws.rs.Produces;
11
12 @Path("equation")
13 public class EquationGeneratorJSONResource
14 {
15    static Random randomObject = new Random(); // random number generator
16

Fig. 32.26 | RESTful equation generator that returns JSON. (Part 1 of 2.)

jhtp_32_WebServices.fm  Page 56  Tuesday, April 10, 2018  9:34 AM



32.11  Equation Generator: Returning User-Defined Types 32_57

32.11.4 Consuming the EquationGeneratorJSON Web Service
The program in Fig. 32.27 consumes the EquationGeneratorJSON service and performs
the same function as EquationGeneratorXMLClient—the only difference is in how the
Equation object is retrieved from the web service. Lines 181–183 construct the URL that
is used to invoke the EquationGeneratorJSON service. As in the WelcomeRESTJSONClient
example, we use the URL class and an InputStreamReader to invoke the web service and
read the response (lines 186–187). The retrieved JSON is deserialized using Gson (line
191) and converted back into an Equation object. As before, we use the getResult meth-
od (line 194) of the deserialized object to obtain the answer and the getLeftHandSide
method (line 195) to display the left side of the equation.

17    // retrieve an equation formatted as JSON
18    @GET
19    @Path("{operation}/{level}")
20    
21    public String getJson(@PathParam("operation") String operation,
22       @PathParam("level") int level)
23    {
24       // compute minimum and maximum values for the numbers
25       int minimum = (int) Math.pow(10, level - 1);
26       int maximum = (int) Math.pow(10, level);
27
28       // create the numbers on the left-hand side of the equation
29       int first = randomObject.nextInt(maximum - minimum) + minimum;
30       int second = randomObject.nextInt(maximum - minimum) + minimum;
31
32       // create Equation object and return result
33       Equation equation = new Equation(first, second, operation);
34       
35    } 
36 } 

1 // Fig. 32.27: EquationGeneratorJSONClientJFrame.java
2 // Math-tutoring program using REST and JSON to generate equations.
3 package com.deitel.equationgeneratorjsonclient;
4
5 import com.google.gson.Gson; // converts POJO to JSON and back again
6 import java.io.InputStreamReader;
7 import java.net.URL;
8 import javax.swing.JOptionPane;
9

10 public class EquationGeneratorJSONClientJFrame extends javax.swing.JFrame
11 {
12    private String operation = "add"; // operation user is tested on
13    private int difficulty = 1; // 1, 2, or 3 digits in each number
14    private int answer; // correct answer to the question
15

Fig. 32.27 | Math-tutoring program using REST and JSON to generate equations. (Part 1 of 4.)

Fig. 32.26 | RESTful equation generator that returns JSON. (Part 2 of 2.)

@Produces("application/json")

return new Gson().toJson(equation); // convert to JSON and return

jhtp_32_WebServices.fm  Page 57  Tuesday, April 10, 2018  9:34 AM



32_58 Chapter 32 REST Web Services

16    // no-argument constructor
17    public EquationGeneratorJSONClientJFrame()
18    {
19       initComponents();
20    } 
21
22    
23    
24    
25    
26
147    // determine if the user answered correctly
148    private void checkAnswerJButtonActionPerformed(
149       java.awt.event.ActionEvent evt)
150    {
151       if (answerJTextField.getText().equals(""))
152       {
153          JOptionPane.showMessageDialog(
154             this, "Please enter your answer.");
155       }
156
157       int userAnswer = Integer.parseInt(answerJTextField.getText());
158
159       if (userAnswer == answer)
160       {
161          equationJLabel.setText(""); // clear label
162          answerJTextField.setText(""); // clear text field
163          checkAnswerJButton.setEnabled(false);
164          JOptionPane.showMessageDialog(this, "Correct! Good Job!",
165             "Correct", JOptionPane.PLAIN_MESSAGE);
166       }
167       else
168       {
169          JOptionPane.showMessageDialog(this, "Incorrect. Try again.",
170             "Incorrect", JOptionPane.PLAIN_MESSAGE);
171       } 
172    } 
173
174    // retrieve equation from web service and display left side to user
175    private void generateJButtonActionPerformed(
176       java.awt.event.ActionEvent evt)
177    {
178       try
179       {
180          // URL of the EquationGeneratorJSON service, with parameters
181          String url = String.format("http://localhost:8080/" +
182             "EquationGeneratorJSON/webresources/equation/%s/%d",
183             operation, difficulty);
184           
185          // open URL and create a Reader to read the data
186          
187          
188

Fig. 32.27 | Math-tutoring program using REST and JSON to generate equations. (Part 2 of 4.)

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open EquationGeneratorJSONClientJFrame.java in  
// this example's folder to view the complete generated code.          

InputStreamReader reader =                              
   new InputStreamReader(new URL(url).openStream());

jhtp_32_WebServices.fm  Page 58  Tuesday, April 10, 2018  9:34 AM



32.11  Equation Generator: Returning User-Defined Types 32_59

189          // convert the JSON back into an Equation object
190          
191          
192
193          // update the internal state and GUI to reflect the equation
194          answer = equation.getResult();
195          equationJLabel.setText(equation.getLeftHandSide() + " =");
196          checkAnswerJButton.setEnabled(true);
197       } 
198       catch (Exception exception)
199       {
200          exception.printStackTrace();
201       } 
202    }
203
204    // obtains the mathematical operation selected by the user
205    private void operationJComboBoxItemStateChanged(
206       java.awt.event.ItemEvent evt)
207    {
208       String item = (String) operationJComboBox.getSelectedItem();
209
210       if (item.equals("Addition"))
211          operation = "add"; // user selected addition
212       else if (item.equals("Subtraction"))
213          operation = "subtract"; // user selected subtraction
214       else
215          operation = "multiply"; // user selected multiplication
216    } 
217
218    // obtains the difficulty level selected by the user
219    private void levelJComboBoxItemStateChanged(
220       java.awt.event.ItemEvent evt)
221    {
222       // indices start at 0, so add 1 to get the difficulty level
223       difficulty = levelJComboBox.getSelectedIndex() + 1;
224    } 
225
226    // main method begins execution
227    public static void main(String args[])
228    {
229       java.awt.EventQueue.invokeLater(
230          new Runnable()
231          {
232             public void run()
233             {
234                new EquationGeneratorJSONClientJFrame().setVisible(true);
235             }
236          } 
237       );
238    } 
239
240    // Variables declaration - do not modify
241    private javax.swing.JLabel answerJLabel;

Fig. 32.27 | Math-tutoring program using REST and JSON to generate equations. (Part 3 of 4.)

Equation equation =                              
   new Gson().fromJson(reader, Equation.class);

jhtp_32_WebServices.fm  Page 59  Tuesday, April 10, 2018  9:34 AM



32_60 Chapter 32 REST Web Services

32.12 Wrap-Up
This chapter introduced web services—a set of technologies for building distributed sys-
tems in which system components communicate with one another over networks. In par-
ticular, we presented JAX-WS SOAP-based web services and JAX-RS REST-based web
services. You learned that a web service is a class that allows client software to call the web
service’s methods remotely via common data formats and protocols, such as XML, JSON,
HTTP, SOAP and REST. We also benefits of distributed computing with web services.

We explained how NetBeans and the JAX-WS and JAX-RS APIs facilitate publishing
and consuming web services. You learned how to define web services and methods using
both SOAP protocol and REST architecture, and how to return data in both XML and
JSON formats. You consumed SOAP-based web services using proxy classes to call the
web service’s methods. You also consumed REST-based web services by using class URL to
invoke the services and open InputStreams from which the clients could read the services’
responses. You learned how to define web services and web methods, as well as how to con-
sume them both from Java desktop applications and from web applications. After
explaining the mechanics of web services through our Welcome examples, we demonstrated
more sophisticated web services that use session tracking, database access and user-defined
types. We also explained XML and JSON serialization and showed how to retrieve objects
of user-defined types from web services.

242    private javax.swing.JTextField answerJTextField;
243    private javax.swing.JButton checkAnswerJButton;
244    private javax.swing.JLabel equationJLabel;
245    private javax.swing.JButton generateJButton;
246    private javax.swing.JComboBox levelJComboBox;
247    private javax.swing.JLabel levelJLabel;
248    private javax.swing.JComboBox operationJComboBox;
249    private javax.swing.JLabel operationJLabel;
250    private javax.swing.JLabel questionJLabel;
251    // End of variables declaration
252 } 

Fig. 32.27 | Math-tutoring program using REST and JSON to generate equations. (Part 4 of 4.)

Summary

Section 32.1 Introduction
• A web service (p. 2) is a software component stored on one computer that can be accessed by an

application (or other software component) on another computer over a network. 

• Web services communicate using such technologies as XML, JSON and HTTP. 

• JAX-WS (p. 2) is based on the Simple Object Access Protocol (SOAP; p. 2)—an XML-based
protocol that allows web services and clients to communicate. 

• JAX-RS (p. 2) uses Representational State Transfer (REST; p. 2)—a network architecture that
uses the web’s traditional request/response mechanisms such as GET and POST requests. 

• Web services enable businesses to conduct transactions via standardized, widely available web ser-
vices rather than relying on proprietary applications. 

jhtp_32_WebServices.fm  Page 60  Tuesday, April 10, 2018  9:34 AM



 Summary 32_61

• Web services are platform and language independent, so companies can collaborate via web ser-
vices without hardware, software and communications compatibility issues. 

• NetBeans is one of the many tools that enable you to publish and/or consume web services. 

Section 32.2 Web Service Basics
• The machine on which a web service resides is referred to as a web service host. 

• A client application that accesses the web service sends a method call over a network to the web
service host, which processes the call and returns a response over the network to the application. 

• In Java, a web service is implemented as a class. The class that represents the web service resides
on a server—it’s not part of the client application. 

• Making a web service available to receive client requests is known as publishing a web service
(p. 4); using a web service from a client application is known as consuming a web service (p. 4).

Section 32.3 Simple Object Access Protocol (SOAP)
• SOAP is a platform-independent protocol that uses XML to make remote procedure calls, typi-

cally over HTTP. Each request and response is packaged in a SOAP message (p. 4)—an XML
message containing the information that a web service requires to process the message. 

• SOAP messages are written in XML so that they’re computer readable, human readable and plat-
form independent.

• SOAP supports an extensive set of types—the primitive types, as well as DateTime, XmlNode and
others. SOAP can also transmit arrays of these types.

• When a program invokes a method of a SOAP web service, the request and all relevant informa-
tion are packaged in a SOAP message, enclosed in a SOAP envelope (p. 4) and sent to the server
on which the web service resides.

• When a web service receives a SOAP message, it parses the XML representing the message, then
processes the message’s contents. The message specifies the method that the client wishes to ex-
ecute and the arguments the client passed to that method. 

• After a web service parses a SOAP message, it calls the appropriate method with the specified ar-
guments (if any) and sends the response back to the client in another SOAP message. The client
parses the response to retrieve the method’s result.

Section 32.4 Representational State Transfer (REST)
• Representational State Transfer (REST) refers to an architectural style for implementing web ser-

vices. Such web services are often called RESTful web services (p. 4). Though REST itself is not
a standard, RESTful web services are implemented using web standards. 

• Each operation in a RESTful web service is identified by a unique URL.

• REST can return data in many formats, including XML and JSON.

Section 32.5 JavaScript Object Notation (JSON)
• JavaScript Object Notation (JSON; p. 5) is an alternative to XML for representing data.

• JSON is a text-based data-interchange format used to represent objects in JavaScript as collec-
tions of name/value pairs represented as Strings. 

• JSON is a simple format that makes objects easy to read, create and parse and allows programs
to transmit data efficiently across the Internet, because it’s much less verbose than XML.

• Each value in a JSON array can be a string, a number, a JSON object, true, false or null.

jhtp_32_WebServices.fm  Page 61  Tuesday, April 10, 2018  9:34 AM



32_62 Chapter 32 REST Web Services

Section 32.6.1 Creating a Web Application Project and Adding a Web Service Class 
in NetBeans
• When you create a web service in NetBeans, you focus on the web service’s logic and let the IDE

handle the web service’s infrastructure.

• To create a web service in NetBeans, you first create a Web Application project (p. 5). 

Section 31.6.2 Defining the WelcomeSOAP Web Service in NetBeans
• By default, each new web service class created with the JAX-WS APIs is a POJO (plain old Java

object)—you do not need to extend a class or implement an interface to create a web service.

• When you deploy a web application containing a JAX-WS web service, the server creates the serv-
er-side artifacts that support the web service.

• The @WebService annotation (p. 7) indicates that a class represents a web service. The optional
name attribute (p. 7) specifies the service endpoint interface (SEI; p. 7) class’s name. The optional
serviceName attribute (p. 7) specifies the name of the class that the client uses to obtain an SEI
object. 

• Methods that are tagged with the @WebMethod annotation (p. 7) can be called remotely. 

• The @WebMethod annotation’s optional operationName attribute (p. 7) specifies the method name
that is exposed to the web service’s clients. 

• Web method parameters are annotated with the @WebParam annotation (p. 8). The optional name
attribute (p. 8) indicates the parameter name that is exposed to the web service’s clients.

Section 31.6.3 Publishing the WelcomeSOAP Web Service from NetBeans
• NetBeans handles all the details of building and deploying a web service for you. This includes

creating the framework required to support the web service.

Section 31.6.4 Testing the WelcomeSOAP Web Service with GlassFish Application 
Server’s Tester Web Page
• GlassFish can dynamically create a web page for testing a web service’s methods from a web

browser. To open the test page, expand the project’s Web Services node in the NetBeans Projects

tab, then right click the web service class name and select Test Web Service.

• A client can access a web service only when the application server is running. If NetBeans launch-
es the application server for you, the server will shut down when you close NetBeans. To keep
the application server up and running, you can launch it independently of NetBeans. 

Section 32.6.5 Describing a Web Service with the Web Service Description Language 
(WSDL)
• To consume a web service, a client must know where to find it and must be provided with the

web service’s description. 

• JAX-WS uses the Web Service Description Language (WSDL; p. 11)—a standard XML vocab-
ulary for describing web services in a platform-independent manner. 

• The server generates a web service’s WSDL dynamically for you, and client tools can parse the
WSDL to help create the client-side proxy class that a client uses to access the web service. 

Section 31.6.6 Creating a Client to Consume the WelcomeSOAP Web Service
• A web service reference (p. 12) defines the service endpoint interface class so that a client can ac-

cess the a service.

jhtp_32_WebServices.fm  Page 62  Tuesday, April 10, 2018  9:34 AM



 Summary 32_63

• An application that consumes a SOAP-based web service invokes methods on a service endpoint
interface (SEI) object that interact with the web service on the client’s behalf.

• The service endpoint interface object handles the details of passing method arguments to and re-
ceiving return values from the web service. This communication can occur over a local network,
over the Internet or even with a web service on the same computer.

• NetBeans creates these service endpoint interface classes for you.

• When you add the web service reference, the IDE creates and compiles the client-side artifacts—
the framework of Java code that supports the client-side service endpoint interface class. The ser-
vice endpoint interface class uses the rest of the artifacts to interact with the web service.

• A web service reference is added by giving NetBeans the URL of the web service’s WSDL file.

Section 31.6.7 Consuming the WelcomeSOAP Web Service
• To consume a JAX-WS web service, you must obtain an SEI object. You then invoke the web

service’s methods through the SEI object.

Section 32.7.1 Creating a REST-Based XML Web Service
• The RESTful Web Services plug-in for NetBeans provides various templates for creating RESTful

web services, including ones that can interact with databases on the client’s behalf.

• The @Path annotation (p. 17) on a JAX-RS web service class indicates the URI for accessing the
web service. This is appended to the web application project’s URL to invoke the service. Meth-
ods of the class can also use the @Path annotation.

• Parts of the path specified in curly braces indicate parameters—they’re placeholders for argu-
ments that are passed to the web service as part of the path. The base path for the service is the
project’s resources directory.

• Arguments in a URL can be used as arguments to a web service method. To do so, you bind the
parameters specified in the @Path specification to parameters of a web service method with the
@PathParam annotation (p. 19). When the request is received, the server passes the argument(s)
in the URL to the appropriate parameter(s) in the web service method.

• The @GET annotation (p. 19) denotes that a method is accessed via an HTTP GET request. Similar
annotations exist for HTTP PUT, POST, DELETE and HEAD requests.

• The @Produces annotation (p. 19) denotes the content type returned to the client. It’s possible
to have multiple methods with the same HTTP method and path but different @Produces anno-
tations, and JAX-RS will call the method matching the content type requested by the client. 

• The @Consumes annotation (p. 19) restricts the content type that a web service accepts from a PUT
request.

• JAXB (Java Architecture for XML Binding; p. 19) is a set of classes for converting POJOs to and
from XML. Class JAXB (package javax.xml.bind) contains static methods for common opera-
tions.

• Class JAXB’s static method marshal (p. 19) converts a Java object to XML format.

• WADL (Web Application Description Language; p. 20) has similar design goals to WSDL, but
describes RESTful services instead of SOAP services. 

Section 32.7.2 Consuming a REST-Based XML Web Service
• Clients of RESTful web services do not require web service references. 

• The JAXB class has a static unmarshal method that takes as arguments a filename or URL as a
String, and a Class<T> object indicating the Java class to which the XML will be converted. 

jhtp_32_WebServices.fm  Page 63  Tuesday, April 10, 2018  9:34 AM



32_64 Chapter 32 REST Web Services

Section 32.8 Publishing and Consuming REST-Based JSON Web Services
• JSON components—objects, arrays, strings, numbers—can be easily mapped to constructs in

Java and other programming languages.

Section 32.8.1 Creating a REST-Based JSON Web Service
• To add a JAR file as a library in NetBeans, right click your project’s Libraries folder, select Add

JAR/Folder…, locate the JAR file and click Open.

• For a web service method that returns JSON text, the argument to the @Produces attribute must
be "application/json".

• In JSON, all data must be encapsulated in a composite data type.

• Create a Gson object (from package com.google.gson) and call its toJson method to convert an
object into its JSON String representation. 

Section 32.8.2 Consuming a REST-Based JSON Web Service
• To read JSON data from a URL, create a URL object and call its openStream method (p. 26). This

invokes the web service and returns an InputStream from which the client can read the response.
Wrap the InputStream in an InputStreamReader so it can be passed as the first argument to the
Gson class’s fromJson method (p. 26). 

Section 32.9 Session Tracking in a SOAP Web Service
• It can be beneficial for a web service to maintain client state information, thus eliminating the

need to pass client information between the client and the web service multiple times. Storing
session information also enables a web service to distinguish between clients. 

Section 31.9.1 Creating a Blackjack Web Service
• In JAX-WS 2.2, to enable session tracking in a web service, you simply precede your web service

class with the @HttpSessionScope annotation (p. 29) from package com.sun.xml.ws.develop-
er.servlet. To use this package you must add the JAX-WS 2.2 library to your project. 

• Once a web service is annotated with @HttpSessionScope, the server automatically maintains a
separate instance of the class for each client session. 

Section 31.9.2 Consuming the Blackjack Web Service
• In the JAX-WS framework, the client must indicate whether it wants to allow the web service to

maintain session information. To do this, first cast the proxy object to interface type Binding-
Provider. A BindingProvider enables the client to manipulate the request information that will
be sent to the server. This information is stored in an object that implements interface Request-
Context. The BindingProvider and RequestContext are part of the framework that is created by
the IDE when you add a web service client to the application. 

• Next, invoke the BindingProvider’s getRequestContext method to obtain the RequestContext
object. Then call the RequestContext’s put method to set the property BindingProvider.SES-
SION_MAINTAIN_PROPERTY to true, which enables session tracking from the client side so that the
web service knows which client is invoking the service’s web methods. 

Section 32.11 Equation Generator: Returning User-Defined Types
• It’s also possible to process instances of class types in a web service. These types can be passed to

or returned from web service methods.

• An instance variable can be serialized only if it’s public or has both a get and a set method.

jhtp_32_WebServices.fm  Page 64  Tuesday, April 10, 2018  9:34 AM



 Self-Review Exercises 32_65

• Properties that can be generated from the values of other properties should not be serialized to
prevent redundancy.

• JAX-RS automatically converts arguments from an @Path annotation to the correct type, and it
will return a “not found” error to the client if the argument cannot be converted from the String
passed as part of the URL to the destination type. Supported types for conversion include integer
types, floating-point types, boolean and the corresponding type-wrapper classes.

Self-Review Exercises
32.1 State whether each of the following is true or false. If false, explain why.

a) All methods of a web service class can be invoked by clients of that web service.
b) When consuming a web service in a client application created in NetBeans, you must

create the proxy class that enables the client to communicate with the web service.
c) A proxy class communicating with a web service normally uses SOAP to send and re-

ceive messages.
d) Session tracking is automatically enabled in a client of a web service. 
e) Web methods cannot be declared static.
f) A user-defined type used in a web service must define both get and set methods for any

property that will be serialized.
g) Operations in a REST web service are defined by their own unique URLs. 
h) A SOAP-based web service can return data in JSON format.

32.2 Fill in the blanks for each of the following statements:
a) A key difference between SOAP and REST is that SOAP messages have data wrapped

in a(n) .
b) A web service in Java is a(n) —it does not need to implement any interfaces or

extend any classes.
c) Web service requests are typically transported over the Internet via the  proto-

col.
d) To set the exposed name of a web method, use the  element of the @WebMethod

annotation.
e)  transforms an object into a format that can be sent between a web service and

a client.
f) To return data in JSON format from a method of a REST-based web service, the @Pro-

duces annotation is set to .
g) To return data in XML format from a method of a REST-based web service, the @Pro-

duces annotation is set to .

Answers to Self-Review Exercises
32.1 a) False. Only methods declared with the @WebMethod annotation can be invoked by a web
service’s clients. b) False. The proxy class is created by NetBeans when you add a web service client
to the application. c) True. d) False. In the JAX-WS framework, the client must indicate whether it
wants to allow the web service to maintain session information. First, you must cast the proxy object
to interface type BindingProvider, then use the BindingProvider’s getRequestContext method to
obtain the RequestContext object. Finally, you must use the RequestContext’s put method to set
the property BindingProvider.SESSION_MAINTAIN_PROPERTY to true. e) True. f) True. g) True.
h) False. A SOAP web service implicitly returns data in XML format.

32.2 a) SOAP message or SOAP envelope. b) POJO (plain old Java object) c) HTTP.
d) operationName. e) serialization. f) "application/json". g) "application/xml".

jhtp_32_WebServices.fm  Page 65  Tuesday, April 10, 2018  9:34 AM



32_66 Chapter 32 REST Web Services

Exercises
32.3 (Phone Book Web Service) Create a RESTful web service that stores phone book entries in
the database PhoneBookDB and a web client application that consumes this service. The web service
should output XML. Use the steps in Section 31.2.1 to create the PhoneBook database and a data
source name for accessing it. The database contains one table—PhoneBook—with three columns—
LastName, FirstName and PhoneNumber. The LastName and FirstName columns store up to 30 char-
acters. The PhoneNumber column supports phone numbers of the form (800) 555-1212 that contain
14 characters. Use the PhoneBookDB.sql script provided in the examples folder to create the Phone-
Book table. 

Give the client user the capability to enter a new contact (web method addEntry) and to find
contacts by last name (web method getEntries). Pass only Strings as arguments to the web ser-
vice. The getEntries web method should return an array of Strings that contains the matching
phone book entries. Each String in the array should consist of the last name, first name and phone
number for one phone book entry. These values should be separated by commas. 

The SELECT query that will find a PhoneBook entry by last name should be:

SELECT LastName, FirstName, PhoneNumber
FROM PhoneBook
WHERE (LastName = LastName)

The INSERT statement that inserts a new entry into the PhoneBook database should be:

INSERT INTO PhoneBook (LastName, FirstName, PhoneNumber) 
VALUES (LastName, FirstName, PhoneNumber)

32.4 (Phone Book Web Service Modification) Modify Exercise 32.3 so that it uses a class named
PhoneBookEntry to represent a row in the database. The web service should return objects of type
PhoneBookEntry in XML format for the getEntries method, and the client application should use
the JAXB method unmarshal to retrieve the PhoneBookEntry objects.

32.5 (Phone-Book Web Service with JSON) Modify Exercise 32.4 so that the PhoneBookEntry
class is passed to and from the web service as a JSON object. Use serialization to convert the JSON
object into an object of type PhoneBookEntry.

32.6 (Blackjack Web Service Modification) Modify the Blackjack web service example in
Section 32.9 to include class Card. Modify web method dealCard so that it returns an object of type
Card and modify web method getHandValue so that it receives an array of Card objects from the cli-
ent. Also modify the client application to keep track of what cards have been dealt by using
ArrayLists of Card objects. The proxy class created by NetBeans will treat a web method’s array
parameter as a List, so you can pass these ArrayLists of Card objects directly to the getHandValue
method. Your Card class should include set and get methods for the face and suit of the card. 

32.7 (Project: Airline Reservation Web-Service Modification) Modify the airline reservation web
service in Section 32.10 so that it contains two separate methods—one that allows users to view all
available seats, and another that allows users to reserve a particular seat that is currently available.
Use an object of type Ticket to pass information to and from the web service. The web service must
be able to handle cases in which two users view available seats, one reserves a seat and the second
user tries to reserve the same seat, not knowing that it’s now taken. The names of the methods that
execute  should be reserve and getAllAvailableSeats.

32.8 (Project: Morse Code Web Service) In Exercise 14.22, you learned about Morse Code and
wrote applications that could translate English phrases into Morse Code and vice versa. Create a
SOAP-based web service that provides two methods—one that translates an English phrase into

jhtp_32_WebServices.fm  Page 66  Tuesday, April 10, 2018  9:34 AM



 Making a Difference 32_67

Morse Code and one that translates Morse Code into English. Next, build a Morse Code translator
GUI application that invokes the web service to perform these translations.

Making a Difference
32.9 (Project: Spam Scanner Web Service) In Exercise 14.27, you created a spam scanner appli-
cation that scanned an e-mail and gave it a point rating based on the occurrence of certain words
and phrases that commonly appear in spam e-mails and how many times the words and phrases oc-
curred in the e-mail. Create a SOAP-based Spam scanner web service. Next, modify the GUI appli-
cation you created in Exercise 14.27 to use the web service to scan an e-mail. Then display the point
rating returned by the web service.

32.10 (Project: SMS Web Service) In Exercise 14.28, you created an SMS message-translator ap-
plication. Create a SOAP-based web service with three methods:

a) one that receives an SMS abbreviation and returns the corresponding English word or
phrase, 

b) one that receives an entire SMS message and returns the corresponding English text,
and 

c) one that translates English text into an SMS message.

Use the web service from a GUI application that displays the web service’s responses.

32.11 (Project: Gender-Neutrality Web Service) In Exercise 1.12, you researched eliminating sex-
ism in all forms of communication. You then described the algorithm you’d use to read through a
paragraph of text and replace gender-specific words with gender-neutral equivalents. Create a
SOAP-based web service that receives a paragraph of text, then replaces gender-specific words with
gender-neutral ones. Use the web service from a GUI application that displays the resulting gender-
neutral text.

jhtp_32_WebServices.fm  Page 67  Tuesday, April 10, 2018  9:34 AM


