
33ATM Case Study, Part 1:
Object-Oriented Design with
the UML

O b j e c t i v e s
In this chapter you’ll learn:
■ A simple object-oriented

design methodology.
■ What a requirements

document is.
■ To identify classes and class

attributes from a requirements
document.

■ To identify objects’ states,
activities and operations from
a requirements document.

■ To determine the
collaborations among objects
in a system.

■ To work with the UML’s use
case, class, state, activity,
communication and sequence
diagrams to graphically model
an object-oriented system.

jhtp_33_ATMPart1.fm Page 1 Tuesday, April 11, 2017 1:04 PM

33_2 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

33.1 Case Study Introduction
Now we begin the optional portion of our object-oriented design and implementation case
study. In this chapter and Chapter 34, you’ll design and implement an object-oriented au-
tomated teller machine (ATM) software system. The case study provides you with a con-
cise, carefully paced, complete design and implementation experience. In Sections 33.2–
33.7 and 34.2–34.3, you’ll perform the steps of an object-oriented design (OOD) process
using the UML while relating these steps to the object-oriented concepts discussed in
Chapters 2–10. In this chapter, you’ll work with six popular types of UML diagrams to
graphically represent the design. In Chapter 34, you’ll tune the design with inheritance,
then fully implement the ATM as a Java application (Section 34.4). This is not an exercise;
rather, it’s an end-to-end learning experience that concludes with a detailed walkthrough
of the complete Java code that implements our design.

These chapters can be studied as a continuous unit after you’ve completed the intro-
duction to object-oriented programming in Chapters 8–11. Or, you can pace the sections
one at a time after Chapters 2–8 and 10. Each section of the case study begins with a note
telling you the chapter after which it can be covered.

33.2 Examining the Requirements Document
[Note: This section m after Chapter 2.]
We begin our design process by presenting a requirements document that specifies the
purpose of the ATM system and what it must do. Throughout the case study, we refer of-
ten to this requirements document.

Requirements Document
A local bank intends to install a new automated teller machine (ATM) to allow users (i.e.,
bank customers) to perform basic financial transactions (Fig. 33.1). Each user can have
only one account at the bank. ATM users should be able to view their account balance,
withdraw cash (i.e., take money out of an account) and deposit funds (i.e., place money
into an account). The user interface of the automated teller machine contains:

• a screen that displays messages to the user

• a keypad that receives numeric input from the user

• a cash dispenser that dispenses cash to the user and

• a deposit slot that receives deposit envelopes from the user.

33.1 Case Study Introduction
33.2 Examining the Requirements

Document
33.3 Identifying the Classes in a

Requirements Document
33.4 Identifying Class Attributes

33.5 Identifying Objects’ States and
Activities

33.6 Identifying Class Operations
33.7 Indicating Collaboration Among

Objects
33.8 Wrap-Up

Answers to Self-Review Exercises

jhtp_33_ATMPart1.fm Page 2 Tuesday, April 11, 2017 1:04 PM

33.2 Examining the Requirements Document 33_3

The cash dispenser begins each day loaded with 500 $20 bills. [Note: Owing to the limited
scope of this case study, certain elements of the ATM described here do not accurately
mimic those of a real ATM. For example, a real ATM typically contains a device that reads
a user’s account number from an ATM card, whereas this ATM asks the user to type the
account number on the keypad. A real ATM also usually prints a receipt at the end of a
session, but all output from this ATM appears on the screen.]

The bank wants you to develop software to perform the financial transactions initi-
ated by bank customers through the ATM. The bank will integrate the software with the
ATM’s hardware at a later time. The software should encapsulate the functionality of the
hardware devices (e.g., cash dispenser, deposit slot) within software components, but it
need not concern itself with how these devices perform their duties. The ATM hardware
has not been developed yet, so instead of writing your software to run on the ATM, you
should develop a first version to run on a personal computer. This version should use the
computer’s monitor to simulate the ATM’s screen, and the computer’s keyboard to sim-
ulate the ATM’s keypad.

An ATM session consists of authenticating a user (i.e., proving the user’s identity)
based on an account number and personal identification number (PIN), followed by cre-
ating and executing financial transactions. To authenticate a user and perform transac-
tions, the ATM must interact with the bank’s account information database (i.e., an
organized collection of data stored on a computer; database access was presented in
Chapter 24). For each bank account, the database stores an account number, a PIN and a
balance indicating the amount of money in the account. [Note: We assume that the bank
plans to build only one ATM, so we need not worry about multiple ATMs accessing this
database at the same time. Furthermore, we assume that the bank does not make any
changes to the information in the database while a user is accessing the ATM. Also, any

Fig. 33.1 | Automated teller machine user interface.

Welcome!

Please enter your account number: 12345

Enter your PIN: 54321

Insert deposit envelope hereInsert deposit envelope hereInsert deposit envelope here

Take cash hereTake cash hereTake cash here

Keypad

Screen

Deposit slot

Cash dispenser

Security issue:
The PIN would
not be displayed
as plain text in
an actual ATM

jhtp_33_ATMPart1.fm Page 3 Tuesday, April 11, 2017 1:04 PM

33_4 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

business system like an ATM faces complex and challenging security issues that are beyond
the scope of this case study. We make the simplifying assumption, however, that the bank
trusts the ATM to access and manipulate the information in the database without signif-
icant security measures.]

Upon first approaching the ATM (assuming no one is currently using it), the user
should experience the following sequence of events (shown in Fig. 33.1):

1. The screen displays Welcome! and prompts the user to enter an account number.

2. The user enters a five-digit account number using the keypad.

3. The screen prompts the user to enter the PIN (personal identification number)
associated with the specified account number.

4. The user enters a five-digit PIN using the keypad.1

5. If the user enters a valid account number and the correct PIN for that account,
the screen displays the main menu (Fig. 33.2). If the user enters an invalid ac-
count number or an incorrect PIN, the screen displays an appropriate message,
then the ATM returns to Step 1 to restart the authentication process.

After the ATM authenticates the user, the main menu (Fig. 33.2) should contain a
numbered option for each of the three types of transactions: balance inquiry (option 1),
withdrawal (option 2) and deposit (option 3). It also should contain an option to allow
the user to exit the system (option 4). The user then chooses either to perform a transac-
tion (by entering 1, 2 or 3) or to exit the system (by entering 4).

1. In this simple, command-line, text-based ATM, as you type the PIN, it appears on the screen. This
is an obvious security breach—you would not want someone looking over your shoulder at an ATM
and seeing your PIN displayed on the screen.

Fig. 33.2 | ATM main menu.

Main menu
 1 - View my balance
 2 - Withdraw cash
 3 - Deposit funds
 4 - Exit
Enter a choice:

Insert deposit envelope hereInsert deposit envelope hereInsert deposit envelope here

Take cash hereTake cash hereTake cash here

jhtp_33_ATMPart1.fm Page 4 Tuesday, April 11, 2017 1:04 PM

33.2 Examining the Requirements Document 33_5

If the user enters 1 to make a balance inquiry, the screen displays the user’s account
balance. To do so, the ATM must retrieve the balance from the bank’s database. The fol-
lowing steps describe what occurs when the user enters 2 to make a withdrawal:

1. The screen displays a menu (Fig. 33.3) containing standard withdrawal amounts:
$20 (option 1), $40 (option 2), $60 (option 3), $100 (option 4) and $200 (op-
tion 5). The menu also contains an option to allow the user to cancel the trans-
action (option 6).

2. The user enters a menu selection using the keypad.

3. If the withdrawal amount chosen is greater than the user’s account balance, the
screen displays a message stating this and telling the user to choose a smaller
amount. The ATM then returns to Step 1. If the withdrawal amount chosen is
less than or equal to the user’s account balance (i.e., an acceptable amount), the
ATM proceeds to Step 4. If the user chooses to cancel the transaction (option 6),
the ATM displays the main menu and waits for user input.

4. If the cash dispenser contains enough cash, the ATM proceeds to Step 5. Other-
wise, the screen displays a message indicating the problem and telling the user to
choose a smaller withdrawal amount. The ATM then returns to Step 1.

5. The ATM debits the withdrawal amount from the user’s account in the bank’s
database (i.e., subtracts the withdrawal amount from the user’s account balance).

6. The cash dispenser dispenses the desired amount of money to the user.

7. The screen displays a message reminding the user to take the money.

The following steps describe the actions that occur when the user enters 3 (when
viewing the main menu of Fig. 33.2) to make a deposit:

Fig. 33.3 | ATM withdrawal menu.

Insert deposit envelope hereInsert deposit envelope hereInsert deposit envelope here

Take cash hereTake cash hereTake cash here

Withdrawal menu
 1 - $20 4 - $100
 2 - $40 5 - $200
 3 - $60 6 - Cancel transaction
Choose a withdrawal amount:

jhtp_33_ATMPart1.fm Page 5 Tuesday, April 11, 2017 1:04 PM

33_6 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

1. The screen prompts the user to enter a deposit amount or type 0 (zero) to cancel.

2. The user enters a deposit amount or 0 using the keypad. [Note: The keypad does
not contain a decimal point or a dollar sign, so the user cannot type a real dollar
amount (e.g., $27.25). Instead, the user must enter a deposit amount as a number
of cents (e.g., 2725). The ATM then divides this number by 100 to obtain a
number representing a dollar amount (e.g., 2725 ÷ 100 = 27.25).]

3. If the user specifies a deposit amount, the ATM proceeds to Step 4. If the user
chooses to cancel the transaction (by entering 0), the ATM displays the main
menu and waits for user input.

4. The screen displays a message telling the user to insert a deposit envelope.

5. If the deposit slot receives a deposit envelope within two minutes, the ATM cred-
its the deposit amount to the user’s account in the bank’s database (i.e., adds the
deposit amount to the user’s account balance). [Note: This money is not immedi-
ately available for withdrawal. The bank first must physically verify the amount
of cash in the deposit envelope, and any checks in the envelope must clear (i.e.,
money must be transferred from the check writer’s account to the check recipi-
ent’s account). When either of these events occurs, the bank appropriately up-
dates the user’s balance stored in its database. This occurs independently of the
ATM system.] If the deposit slot does not receive a deposit envelope within this
time period, the screen displays a message that the system has canceled the trans-
action due to inactivity. The ATM then displays the main menu and waits for
user input.

After the system successfully executes a transaction, it should return to the main menu
so that the user can perform additional transactions. If the user exits the system, the screen
should display a thank you message, then display the welcome message for the next user.

Analyzing the ATM System
The preceding statement is a simplified example of a requirements document. Typically,
such a document is the result of a detailed process of requirements gathering, which might
include interviews with possible users of the system and specialists in fields related to the
system. For example, a systems analyst who is hired to prepare a requirements document
for banking software (e.g., the ATM system described here) might interview banking ex-
perts to gain a better understanding of what the software must do. The analyst would use
the information gained to compile a list of system requirements to guide systems designers
as they design the system.

The process of requirements gathering is a key task of the first stage of the software
life cycle. The software life cycle specifies the stages through which software goes from the
time it’s first conceived to the time it’s retired from use. These stages typically include:
analysis, design, implementation, testing and debugging, deployment, maintenance and
retirement. Several software life-cycle models exist, each with its own preferences and spec-
ifications for when and how often software engineers should perform each of these stages.
Waterfall models perform each stage once in succession, whereas iterative models may
repeat one or more stages several times throughout a product’s life cycle.

The analysis stage focuses on defining the problem to be solved. When designing any
system, one must solve the problem right, but of equal importance, one must solve the right

jhtp_33_ATMPart1.fm Page 6 Tuesday, April 11, 2017 1:04 PM

33.2 Examining the Requirements Document 33_7

problem. Systems analysts collect the requirements that indicate the specific problem to solve.
Our requirements document describes the requirements of our ATM system in sufficient
detail that you need not go through an extensive analysis stage—it’s been done for you.

To capture what a proposed system should do, developers often employ a technique
known as use case modeling. This process identifies the use cases of the system, each rep-
resenting a different capability that the system provides to its clients. For example, ATMs
typically have several use cases, such as “View Account Balance,” “Withdraw Cash,”
“Deposit Funds,” “Transfer Funds Between Accounts” and “Buy Postage Stamps.” The
simplified ATM system we build in this case study allows only the first three.

Each use case describes a typical scenario for which the user uses the system. You’ve
already read descriptions of the ATM system’s use cases in the requirements document;
the lists of steps required to perform each transaction type (i.e., balance inquiry, with-
drawal and deposit) actually described the three use cases of our ATM—“View Account
Balance,” “Withdraw Cash” and “Deposit Funds,” respectively.

Use Case Diagrams
We now introduce the first of several UML diagrams in the case study. We create a use
case diagram to model the interactions between a system’s clients (in this case study, bank
customers) and its use cases. The goal is to show the kinds of interactions users have with
a system without providing the details—these are provided in other UML diagrams
(which we present throughout this case study). Use case diagrams are often accompanied
by informal text that gives more detail—like the text that appears in the requirements doc-
ument. Use case diagrams are produced during the analysis stage of the software life cycle.
In larger systems, use case diagrams are indispensable tools that help system designers re-
main focused on satisfying the users’ needs.

Figure 33.4 shows the use case diagram for our ATM system. The stick figure rep-
resents an actor, which defines the roles that an external entity—such as a person or
another system—plays when interacting with the system. For our automated teller
machine, the actor is a User who can view an account balance, withdraw cash and deposit
funds from the ATM. The User is not an actual person, but instead comprises the roles
that a real person—when playing the part of a User—can play while interacting with the
ATM. A use case diagram can include multiple actors. For example, the use case diagram
for a real bank’s ATM system might also include an actor named Administrator who refills
the cash dispenser each day.

Our requirements document supplies the actors—“ATM users should be able to view
their account balance, withdraw cash and deposit funds.” Therefore, the actor in each of
the three use cases is the user who interacts with the ATM. An external entity—a real
person—plays the part of the user to perform financial transactions. Figure 33.4 shows
one actor, whose name, User, appears below the actor in the diagram. The UML models
each use case as an oval connected to an actor with a solid line.

Software engineers (more precisely, systems designers) must analyze the requirements
document or a set of use cases and design the system before programmers implement it in
a particular programming language. During the analysis stage, systems designers focus on
understanding the requirements document to produce a high-level specification that
describes what the system is supposed to do. The output of the design stage—a design
specification—should specify clearly how the system should be constructed to satisfy these
requirements. In the next several sections, we perform the steps of a simple object-oriented

jhtp_33_ATMPart1.fm Page 7 Tuesday, April 11, 2017 1:04 PM

33_8 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

design (OOD) process on the ATM system to produce a design specification containing
a collection of UML diagrams and supporting text.

The UML is designed for use with any OOD process. Many such processes exist, the
best known of which is the Rational Unified Process™ (RUP) developed by Rational Soft-
ware Corporation, now part of IBM. RUP is a rich process intended for designing “industrial
strength” applications. For this case study, we present our own simplified design process.

Designing the ATM System
We now begin the design stage of our ATM system. A system is a set of components that
interact to solve a problem. For example, to perform the ATM system’s designated tasks,
our ATM system has a user interface (Fig. 33.1), and contains software that executes fi-
nancial transactions and interacts with a database of bank account information. System
structure describes the system’s objects and their interrelationships. System behavior de-
scribes how the system changes as its objects interact with one another.

Every system has both structure and behavior—designers must specify both. There
are several types of system structures and behaviors. For example, the interactions among
objects in the system differ from those between the user and the system, yet both constitute
a portion of the system behavior.

The UML 2 standard specifies 13 diagram types for documenting the system models.
Each models a distinct characteristic of a system’s structure or behavior—six diagrams
relate to system structure, the remaining seven to system behavior. We list here only the
six diagram types used in our case study—one models system structure; the other five
model system behavior.

1. Use case diagrams, such as the one in Fig. 33.4, model the interactions between
a system and its external entities (actors) in terms of use cases (system capabilities,
such as “View Account Balance,” “Withdraw Cash” and “Deposit Funds”).

2. Class diagrams, which you’ll study in Section 33.3, model the classes, or “build-
ing blocks,” used in a system. Each noun or “thing” described in the requirements
document is a candidate to be a class in the system (e.g., Account, Keypad). Class
diagrams help us specify the structural relationships between parts of the system.
For example, the ATM system class diagram will specify that the ATM is physi-
cally composed of a screen, a keypad, a cash dispenser and a deposit slot.

Fig. 33.4 | Use case diagram for the ATM system from the User’s perspective.

Deposit Funds

Withdraw Cash

View Account Balance

User

jhtp_33_ATMPart1.fm Page 8 Tuesday, April 11, 2017 1:04 PM

 Self-Review Exercises for Section 33.2 33_9

3. State machine diagrams, which you’ll study in Section 33.5, model the ways in
which an object changes state. An object’s state is indicated by the values of all its
attributes at a given time. When an object changes state, it may behave differently
in the system. For example, after validating a user’s PIN, the ATM transitions
from the “user not authenticated” state to the “user authenticated” state, at which
point it allows the user to perform financial transactions (e.g., view account bal-
ance, withdraw cash, deposit funds).

4. Activity diagrams, which you’ll also study in Section 33.5, model an object’s ac-
tivity—is workflow (sequence of events) during program execution. An activity
diagram models the actions the object performs and specifies the order in which it
performs them. For example, an activity diagram shows that the ATM must ob-
tain the balance of the user’s account (from the bank’s account information da-
tabase) before the screen can display the balance to the user.

5. Communication diagrams (called collaboration diagrams in earlier versions of
the UML) model the interactions among objects in a system, with an emphasis
on what interactions occur. You’ll learn in Section 33.7 that these diagrams show
which objects must interact to perform an ATM transaction. For example, the
ATM must communicate with the bank’s account information database to re-
trieve an account balance.

6. Sequence diagrams also model the interactions among the objects in a system,
but unlike communication diagrams, they emphasize when interactions occur.
You’ll learn in Section 33.7 that these diagrams help show the order in which in-
teractions occur in executing a financial transaction. For example, the screen
prompts the user to enter a withdrawal amount before cash is dispensed.

In Section 33.3, we continue designing our ATM system by identifying the classes
from the requirements document. We accomplish this by extracting key nouns and noun
phrases from the requirements document. Using these classes, we develop our first draft of
the class diagram that models the structure of our ATM system.

Web Resource
We’ve created an extensive UML Resource Center that contains many links to additional
information, including introductions, tutorials, blogs, books, certification, conferences,
developer tools, documentation, e-books, FAQs, forums, groups, UML in Java, podcasts,
security, tools, downloads, training courses, videos and more. Browse our UML Resource
Center at www.deitel.com/UML/.

Self-Review Exercises for Section 33.2
33.1 Suppose we enabled a user of our ATM system to transfer money between two bank ac-
counts. Modify the use case diagram of Fig. 33.4 to reflect this change.

33.2 model the interactions among objects in a system with an emphasis on when these
interactions occur.

a) Class diagrams
b) Sequence diagrams
c) Communication diagrams
d) Activity diagrams

jhtp_33_ATMPart1.fm Page 9 Tuesday, April 11, 2017 1:04 PM

33_10 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

33.3 Which of the following choices lists stages of a typical software life cycle in sequential order?
a) design, analysis, implementation, testing
b) design, analysis, testing, implementation
c) analysis, design, testing, implementation
d) analysis, design, implementation, testing

33.3 Identifying the Classes in a Requirements
Document
[Note: This section may be read after Chapter 3.]
Now we begin designing the ATM system. In this section, we identify the classes that are
needed to build the system by analyzing the nouns and noun phrases that appear in the re-
quirements document. We introduce UML class diagrams to model these classes. This is
an important first step in defining the system’s structure.

Identifying the Classes in a System
We begin our OOD process by identifying the classes required to build the ATM system.
We’ll eventually describe these classes using UML class diagrams and implement these
classes in Java. First, we review the requirements document of Section 33.2 and identify
key nouns and noun phrases to help us identify classes that comprise the ATM system. We
may decide that some of these are actually attributes of other classes in the system. We may
also conclude that some of the nouns do not correspond to parts of the system and thus
should not be modeled at all. Additional classes may become apparent to us as we proceed
through the design process.

Figure 33.5 lists the nouns and noun phrases found in the requirements document.
We list them from left to right in the order in which we first encounter them. We list only
the singular form of each.

We create classes only for the nouns and noun phrases that have significance in the
ATM system. We don’t model “bank” as a class, because the bank is not a part of the ATM
system—the bank simply wants us to build the ATM. “Customer” and “user” also repre-
sent outside entities—they’re important because they interact with our ATM system, but
we do not need to model them as classes in the ATM software. Recall that we modeled an
ATM user (i.e., a bank customer) as the actor in the use case diagram of Fig. 33.4.

We do not model “$20 bill” or “deposit envelope” as classes. These are physical
objects in the real world, but they’re not part of what is being automated. We can ade-

Nouns and noun phrases in the ATM requirements document

bank money / funds account number ATM

screen PIN user keypad

bank database customer cash dispenser balance inquiry

transaction $20 bill / cash withdrawal account

deposit slot deposit balance deposit envelope

Fig. 33.5 | Nouns and noun phrases in the ATM requirements document.

jhtp_33_ATMPart1.fm Page 10 Tuesday, April 11, 2017 1:04 PM

33.3 Identifying the Classes in a Requirements Document 33_11

quately represent the presence of bills in the system using an attribute of the class that
models the cash dispenser. (We assign attributes to the ATM system’s classes in
Section 33.4.) For example, the cash dispenser maintains a count of the number of bills it
contains. The requirements document does not say anything about what the system
should do with deposit envelopes after it receives them. We can assume that simply
acknowledging the receipt of an envelope—an operation performed by the class that
models the deposit slot—is sufficient to represent the presence of an envelope in the
system. We assign operations to the ATM system’s classes in Section 33.6.

In our simplified ATM system, representing various amounts of “money,” including
an account’s “balance,” as attributes of classes seems most appropriate. Likewise, the nouns
“account number” and “PIN” represent significant pieces of information in the ATM
system. They’re important attributes of a bank account. They do not, however, exhibit
behaviors. Thus, we can most appropriately model them as attributes of an account class.

Though the requirements document frequently describes a “transaction” in a general
sense, we do not model the broad notion of a financial transaction at this time. Instead,
we model the three types of transactions (i.e., “balance inquiry,” “withdrawal” and
“deposit”) as individual classes. These classes possess specific attributes needed for exe-
cuting the transactions they represent. For example, a withdrawal needs to know the
amount of the withdrawal. A balance inquiry, however, does not require any additional
data other than the account number. Furthermore, the three transaction classes exhibit
unique behaviors. A withdrawal includes dispensing cash to the user, whereas a deposit
involves receiving deposit envelopes from the user. In Section 34.3, we “factor out”
common features of all transactions into a general “transaction” class using the object-ori-
ented concept of inheritance.

We determine the classes for our system based on the remaining nouns and noun
phrases from Fig. 33.5. Each of these refers to one or more of the following:

• ATM

• screen

• keypad

• cash dispenser

• deposit slot

• account

• bank database

• balance inquiry

• withdrawal

• deposit

The elements of this list are likely to be classes that we’ll need to implement our system.
We can now model the classes in our system based on the list we’ve created. We cap-

italize class names in the design process—a UML convention—as we’ll do when we write
the actual Java code that implements our design. If the name of a class contains more than
one word, we run the words together and capitalize each word (e.g., MultipleWordName).
Using this convention, we create classes ATM, Screen, Keypad, CashDispenser, Deposit-
Slot, Account, BankDatabase, BalanceInquiry, Withdrawal and Deposit. We construct

jhtp_33_ATMPart1.fm Page 11 Tuesday, April 11, 2017 1:04 PM

33_12 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

our system using these classes as building blocks. Before we begin building the system,
however, we must gain a better understanding of how the classes relate to one another.

Modeling Classes
The UML enables us to model, via class diagrams, the classes in the ATM system and their
interrelationships. Figure 33.6 represents class ATM. Each class is modeled as a rectangle
with three compartments. The top one contains the name of the class centered horizon-
tally in boldface. The middle compartment contains the class’s attributes. (We discuss at-
tributes in Sections 33.4–33.5.) The bottom compartment contains the class’s operations
(discussed in Section 33.6). In Fig. 33.6, the middle and bottom compartments are empty
because we’ve not yet determined this class’s attributes and operations.

Class diagrams also show the relationships between the classes of the system.
Figure 33.7 shows how our classes ATM and Withdrawal relate to one another. For the
moment, for simplicity, we choose to model only this subset of classes. We present a more
complete class diagram later in this section. Notice that the rectangles representing classes
in this diagram are not subdivided into compartments. The UML allows the suppression
of class attributes and operations in this manner to create more readable diagrams, when
appropriate. Such a diagram is said to be an elided diagram—one in which some informa-
tion, such as the contents of the second and third compartments, is not modeled. We’ll
place information in these compartments in Sections 33.4–33.6.

In Fig. 33.7, the solid line that connects the two classes represents an association—a
relationship between classes. The numbers near each end of the line are multiplicity
values, which indicate how many objects of each class participate in the association. In this
case, following the line from left to right reveals that, at any given moment, one ATM object
participates in an association with either zero or one Withdrawal objects—zero if the cur-
rent user is not currently performing a transaction or has requested a different type of
transaction, and one if the user has requested a withdrawal. The UML can model many
types of multiplicity. Figure 33.8 lists and explains the multiplicity types.

An association can be named. For example, the word Executes above the line con-
necting classes ATM and Withdrawal in Fig. 33.7 indicates the name of that association.
This part of the diagram reads “one object of class ATM executes zero or one objects of class
Withdrawal.” Association names are directional, as indicated by the filled arrowhead—so

Fig. 33.6 | Representing a class in the UML using a class diagram.

Fig. 33.7 | Class diagram showing an association among classes.

ATM

Executes1

currentTransaction

0..1
WithdrawalATM

jhtp_33_ATMPart1.fm Page 12 Tuesday, April 11, 2017 1:04 PM

33.3 Identifying the Classes in a Requirements Document 33_13

it would be improper, for example, to read the preceding association from right to left as
“zero or one objects of class Withdrawal execute one object of class ATM.”

The word currentTransaction at the Withdrawal end of the association line in
Fig. 33.7 is a role name, identifying the role the Withdrawal object plays in its relationship
with the ATM. A role name adds meaning to an association between classes by identifying
the role a class plays in the context of an association. A class can play several roles in the
same system. For example, in a school personnel system, a person may play the role of
“professor” when relating to students. The same person may take on the role of “colleague”
when participating in an association with another professor, and “coach” when coaching
student athletes. In Fig. 33.7, the role name currentTransaction indicates that the With-
drawal object participating in the Executes association with an object of class ATM rep-
resents the transaction currently being processed by the ATM. In other contexts, a
Withdrawal object may take on other roles (e.g., the “previous transaction”). Notice that
we do not specify a role name for the ATM end of the Executes association. Role names in
class diagrams are often omitted when the meaning of an association is clear without them.

In addition to indicating simple relationships, associations can specify more complex
relationships, such as objects of one class being composed of objects of other classes. Con-
sider a real-world automated teller machine. What “pieces” does a manufacturer put
together to build a working ATM? Our requirements document tells us that the ATM is
composed of a screen, a keypad, a cash dispenser and a deposit slot.

In Fig. 33.9, the solid diamonds attached to the ATM class’s association lines indicate
that ATM has a composition relationship with classes Screen, Keypad, CashDispenser and
DepositSlot. Composition implies a whole/part relationship. The class that has the com-
position symbol (the solid diamond) on its end of the association line is the whole (in this
case, ATM), and the classes on the other end of the association lines are the parts—in this
case, Screen, Keypad, CashDispenser and DepositSlot. The compositions in Fig. 33.9
indicate that an object of class ATM is formed from one object of class Screen, one object
of class CashDispenser, one object of class Keypad and one object of class DepositSlot.
The ATM has a screen, a keypad, a cash dispenser and a deposit slot. (As we saw in
Chapter 9, the is-a relationship defines inheritance. We’ll see in Section 34.3 that there’s
a nice opportunity to use inheritance in the ATM system design.)

Symbol Meaning

0 None

1 One

m An integer value

0..1 Zero or one

m, n m or n

m..n At least m, but not more than n

* Any nonnegative integer (zero or more)

0..* Zero or more (identical to *)

1..* One or more

Fig. 33.8 | Multiplicity types.

jhtp_33_ATMPart1.fm Page 13 Tuesday, April 11, 2017 1:04 PM

33_14 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

According to the UML specification (www.omg.org/technology/documents/
formal/uml.htm), composition relationships have the following properties:

1. Only one class in the relationship can represent the whole (i.e., the diamond can
be placed on only one end of the association line). For example, either the screen
is part of the ATM or the ATM is part of the screen, but the screen and the ATM
cannot both represent the whole in the relationship.

2. The parts in the composition relationship exist only as long as the whole does, and
the whole is responsible for the creation and destruction of its parts. For example,
the act of constructing an ATM includes manufacturing its parts. Also, if the
ATM is destroyed, its screen, keypad, cash dispenser and deposit slot are also de-
stroyed.

3. A part may belong to only one whole at a time, although it may be removed and
attached to another whole, which then assumes responsibility for the part.

The solid diamonds in our class diagrams indicate composition relationships that ful-
fill these properties. If a has-a relationship does not satisfy one or more of these criteria,
the UML specifies that hollow diamonds be attached to the ends of association lines to
indicate aggregation—a weaker form of composition. For example, a personal computer
and a computer monitor participate in an aggregation relationship—the computer has a
monitor, but the two parts can exist independently, and the same monitor can be attached
to multiple computers at once, thus violating composition’s second and third properties.

Figure 33.10 shows a class diagram for the ATM system. This diagram models most
of the classes that we’ve identified, as well as the associations between them that we can
infer from the requirements document. Classes BalanceInquiry and Deposit participate
in associations similar to those of class Withdrawal, so we’ve chosen to omit them from
this diagram to keep it simple. In Section 34.3, we expand our class diagram to include all
the classes in the ATM system.

Figure 33.10 presents a graphical model of ATM system’s structure. It includes classes
BankDatabase and Account, and several associations that were not present in either
Fig. 33.7 or Fig. 33.9. It shows that class ATM has a one-to-one relationship with class
BankDatabase—one ATM object authenticates users against one BankDatabase object. In

Fig. 33.9 | Class diagram showing composition relationships.

1 1 1 1

1

1

1

1

Screen

ATM

Keypad

DepositSlot CashDispenser

jhtp_33_ATMPart1.fm Page 14 Tuesday, April 11, 2017 1:04 PM

33.3 Identifying the Classes in a Requirements Document 33_15

Fig. 33.10, we also model the fact that the bank’s database contains information about
many accounts—one BankDatabase object participates in a composition relationship with
zero or more Account objects. The multiplicity value 0..* at the Account end of the asso-
ciation between class BankDatabase and class Account indicates that zero or more objects
of class Account take part in the association. Class BankDatabase has a one-to-many rela-
tionship with class Account—the BankDatabase can contain many Accounts. Similarly,
class Account has a many-to-one relationship with class BankDatabase—there can be
many Accounts stored in the BankDatabase. Recall from Fig. 33.8 that the multiplicity
value * is identical to 0..*. We include 0..* in our class diagrams for clarity.

Figure 33.10 also indicates that at any given time 0 or 1 Withdrawal objects can exist.
If the user is performing a withdrawal, “one object of class Withdrawal accesses/modifies
an account balance through one object of class BankDatabase.” We could have created an
association directly between class Withdrawal and class Account. The requirements docu-
ment, however, states that the “ATM must interact with the bank’s account information
database” to perform transactions. A bank account contains sensitive information, and sys-
tems engineers must always consider the security of personal data when designing a system.
Thus, only the BankDatabase can access and manipulate an account directly. All other
parts of the system must interact with the database to retrieve or update account informa-
tion (e.g., an account balance).

The class diagram in Fig. 33.10 also models associations between class Withdrawal
and classes Screen, CashDispenser and Keypad. A withdrawal transaction includes
prompting the user to choose a withdrawal amount, and receiving numeric input. These

Fig. 33.10 | Class diagram for the ATM system model.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1 1 1 1

1

0..*

0..1
0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Withdrawal

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

1

1

jhtp_33_ATMPart1.fm Page 15 Tuesday, April 11, 2017 1:04 PM

33_16 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

actions require the use of the screen and the keypad, respectively. Furthermore, dispensing
cash to the user requires access to the cash dispenser.

Classes BalanceInquiry and Deposit, though not shown in Fig. 33.10, take part in
several associations with the other classes of the ATM system. Like class Withdrawal, each
of these classes associates with classes ATM and BankDatabase. An object of class Balance-
Inquiry also associates with an object of class Screen to display the balance of an account
to the user. Class Deposit associates with classes Screen, Keypad and DepositSlot. Like
withdrawals, deposit transactions require use of the screen and the keypad to display
prompts and receive input, respectively. To receive deposit envelopes, an object of class
Deposit accesses the deposit slot.

We’ve now identified the initial classes in our ATM system—we may discover others
as we proceed with the design and implementation. In Section 33.4 we determine the
attributes for each of these classes, and in Section 33.5 we use these attributes to examine
how the system changes over time.

Self-Review Exercises for Section 33.3
33.4 Suppose we have a class Car that represents a car. Think of some of the different pieces that
a manufacturer would put together to produce a whole car. Create a class diagram (similar to
Fig. 33.9) that models some of the composition relationships of class Car.

33.5 Suppose we have a class File that represents an electronic document in a standalone, non-
networked computer represented by class Computer. What sort of association exists between class
Computer and class File?

a) Class Computer has a one-to-one relationship with class File.
b) Class Computer has a many-to-one relationship with class File.
c) Class Computer has a one-to-many relationship with class File.
d) Class Computer has a many-to-many relationship with class File.

33.6 State whether the following statement is true or false, and if false, explain why: A UML dia-
gram in which a class’s second and third compartments are not modeled is said to be an elided diagram.

33.7 Modify the class diagram of Fig. 33.10 to include class Deposit instead of class Withdrawal.

33.4 Identifying Class Attributes
[Note: This section may be read after Chapter 4.]
Classes have attributes (data) and operations (behaviors). Class attributes are implemented
as fields, and class operations are implemented as methods. In this section, we determine
many of the attributes needed in the ATM system. In Section 33.5 we examine how these
attributes represent an object’s state. In Section 33.6 we determine class operations.

Identifying Attributes
Consider the attributes of some real-world objects: A person’s attributes include height,
weight and whether the person is left-handed, right-handed or ambidextrous. A radio’s at-
tributes include its station, volume and AM or FM settings. A car’s attributes include its
speedometer and odometer readings, the amount of gas in its tank and what gear it’s in. A
personal computer’s attributes include its manufacturer (e.g., Dell, Sun, Apple or IBM),
type of screen (e.g., LCD or CRT), main memory size and hard disk size.

We can identify many attributes of the classes in our system by looking for descriptive
words and phrases in the requirements document. For each such word and phrase we find

jhtp_33_ATMPart1.fm Page 16 Tuesday, April 11, 2017 1:04 PM

33.4 Identifying Class Attributes 33_17

that plays a significant role in the ATM system, we create an attribute and assign it to one or
more of the classes identified in Section 33.3. We also create attributes to represent any addi-
tional data that a class may need, as such needs become clear throughout the design process.

Figure 33.11 lists the words or phrases from the requirements document that describe
each class. We formed this list by reading the requirements document and identifying any
words or phrases that refer to characteristics of the classes in the system. For example, the
requirements document describes the steps taken to obtain a “withdrawal amount,” so we
list “amount” next to class Withdrawal.

Figure 33.11 leads us to create one attribute of class ATM. Class ATM maintains informa-
tion about the state of the ATM. The phrase “user is authenticated” describes a state of the
ATM (we introduce states in Section 33.5), so we include userAuthenticated as a Boolean
attribute (i.e., an attribute that has a value of either true or false) in class ATM. The Boolean
attribute type in the UML is equivalent to the boolean type in Java. This attribute indicates
whether the ATM has successfully authenticated the current user—userAuthenticated

must be true for the system to allow the user to perform transactions and access account
information. This attribute helps ensure the security of the data in the system.

Classes BalanceInquiry, Withdrawal and Deposit share one attribute. Each transac-
tion involves an “account number” that corresponds to the account of the user making the
transaction. We assign an integer attribute accountNumber to each transaction class to
identify the account to which an object of the class applies.

Descriptive words and phrases in the requirements document also suggest some dif-
ferences in the attributes required by each transaction class. The requirements document
indicates that to withdraw cash or deposit funds, users must input a specific “amount” of
money to be withdrawn or deposited, respectively. Thus, we assign to classes Withdrawal

Class Descriptive words and phrases

ATM user is authenticated
BalanceInquiry account number
Withdrawal account number

amount
Deposit account number

amount
BankDatabase [no descriptive words or phrases]
Account account number

PIN
balance

Screen [no descriptive words or phrases]
Keypad [no descriptive words or phrases]
CashDispenser begins each day loaded with 500 $20 bills
DepositSlot [no descriptive words or phrases]

Fig. 33.11 | Descriptive words and phrases from the ATM requirements document.

jhtp_33_ATMPart1.fm Page 17 Tuesday, April 11, 2017 1:04 PM

33_18 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

and Deposit an attribute amount to store the value supplied by the user. The amounts of
money related to a withdrawal and a deposit are defining characteristics of these transac-
tions that the system requires for these transactions to take place. Class BalanceInquiry,
however, needs no additional data to perform its task—it requires only an account number
to indicate the account whose balance should be retrieved.

Class Account has several attributes. The requirements document states that each
bank account has an “account number” and “PIN,” which the system uses for identifying
accounts and authenticating users. We assign to class Account two integer attributes:
accountNumber and pin. The requirements document also specifies that an account main-
tains a “balance” of the amount of money in the account and that money the user deposits
does not become available for a withdrawal until the bank verifies the amount of cash in
the deposit envelope, and any checks in the envelope clear. An account must still record
the amount of money that a user deposits, however. Therefore, we decide that an account
should represent a balance using two attributes: availableBalance and totalBalance.
Attribute availableBalance tracks the amount of money that a user can withdraw from
the account. Attribute totalBalance refers to the total amount of money that the user has
“on deposit” (i.e., the amount of money available, plus the amount waiting to be verified
or cleared). For example, suppose an ATM user deposits $50.00 into an empty account.
The totalBalance attribute would increase to $50.00 to record the deposit, but the
availableBalance would remain at $0. [Note: We assume that the bank updates the
availableBalance attribute of an Account some length of time after the ATM transaction
occurs, in response to confirming that $50 worth of cash or checks was found in the
deposit envelope. We assume that this update occurs through a transaction that a bank
employee performs using some piece of bank software other than the ATM. Thus, we do
not discuss this transaction in our case study.]

Class CashDispenser has one attribute. The requirements document states that the
cash dispenser “begins each day loaded with 500 $20 bills.” The cash dispenser must keep
track of the number of bills it contains to determine whether enough cash is on hand to
satisfy withdrawal requests. We assign to class CashDispenser an integer attribute count,
which is initially set to 500.

For real problems in industry, there’s no guarantee that requirements documents will
be precise enough for the object-oriented systems designer to determine all the attributes
or even all the classes. The need for additional classes, attributes and behaviors may
become clear as the design process proceeds. As we progress through this case study, we
will continue to add, modify and delete information about the classes in our system.

Modeling Attributes
The class diagram in Fig. 33.12 lists some of the attributes for the classes in our system—
the descriptive words and phrases in Fig. 33.11 lead us to identify these attributes. For
simplicity, Fig. 33.12 does not show the associations among classes—we showed these in
Fig. 33.10. This is a common practice of systems designers when designs are being devel-
oped. Recall from Section 33.3 that in the UML, a class’s attributes are placed in the mid-
dle compartment of the class’s rectangle. We list each attribute’s name and type separated
by a colon (:), followed in some cases by an equal sign (=) and an initial value.

Consider the userAuthenticated attribute of class ATM:

userAuthenticated : Boolean = false

jhtp_33_ATMPart1.fm Page 18 Tuesday, April 11, 2017 1:04 PM

33.4 Identifying Class Attributes 33_19

This attribute declaration contains three pieces of information about the attribute. The at-
tribute name is userAuthenticated. The attribute type is Boolean. In Java, an attribute
can be represented by a primitive type, such as boolean, int or double, or a reference type
like a class. We’ve chosen to model only primitive-type attributes in Fig. 33.12—we dis-
cuss the reasoning behind this decision shortly. The attribute types in Fig. 33.12 are in
UML notation. We’ll associate the types Boolean, Integer and Double in the UML dia-
gram with the primitive types boolean, int and double in Java, respectively.

We can also indicate an initial value for an attribute. The userAuthenticated attri-
bute in class ATM has an initial value of false. This indicates that the system initially does
not consider the user to be authenticated. If an attribute has no initial value specified, only
its name and type (separated by a colon) are shown. For example, the accountNumber attri-
bute of class BalanceInquiry is an integer. Here we show no initial value, because the
value of this attribute is a number that we do not yet know. This number will be deter-
mined at execution time based on the account number entered by the current ATM user.

Figure 33.12 does not include attributes for classes Screen, Keypad and DepositSlot.
These are important components of our system, for which our design process has not yet
revealed any attributes. We may discover some, however, in the remaining phases of design
or when we implement these classes in Java. This is perfectly normal.

Fig. 33.12 | Classes with attributes.

ATM

userAuthenticated : Boolean = false

BalanceInquiry

accountNumber : Integer

CashDispenser

count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

accountNumber : Integer
amount : Double

BankDatabase

Deposit

accountNumber : Integer
amount : Double

Account

accountNumber : Integer
pin : Integer
availableBalance : Double
totalBalance : Double

jhtp_33_ATMPart1.fm Page 19 Tuesday, April 11, 2017 1:04 PM

33_20 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

Figure 33.12 also does not include attributes for class BankDatabase. Recall that attri-
butes in Java can be represented by either primitive types or reference types. We’ve chosen
to include only primitive-type attributes in the class diagram in Fig. 33.12 (and in similar
class diagrams throughout the case study). A reference-type attribute is modeled more
clearly as an association between the class holding the reference and the class of the object
to which the reference points. For example, the class diagram in Fig. 33.10 indicates that
class BankDatabase participates in a composition relationship with zero or more Account
objects. From this composition, we can determine that when we implement the ATM
system in Java, we’ll be required to create an attribute of class BankDatabase to hold ref-
erences to zero or more Account objects. Similarly, we can determine reference-type attri-
butes of class ATM that correspond to its composition relationships with classes Screen,
Keypad, CashDispenser and DepositSlot. These composition-based attributes would be
redundant if modeled in Fig. 33.12, because the compositions modeled in Fig. 33.10
already convey the fact that the database contains information about zero or more
accounts and that an ATM is composed of a screen, keypad, cash dispenser and deposit
slot. Software developers typically model these whole/part relationships as compositions
rather than as attributes required to implement the relationships.

The class diagram in Fig. 33.12 provides a solid basis for the structure of our model,
but the diagram is not complete. In Section 33.5 we identify the states and activities of the
objects in the model, and in Section 33.6 we identify the operations that the objects per-
form. As we present more of the UML and object-oriented design, we’ll continue to
strengthen the structure of our model.

Self-Review Exercises for Section 33.4
33.8 We typically identify the attributes of the classes in our system by analyzing the in
the requirements document.

a) nouns and noun phrases
b) descriptive words and phrases
c) verbs and verb phrases
d) All of the above.

33.9 Which of the following is not an attribute of an airplane?
a) length
b) wingspan
c) fly
d) number of seats

33.10 Describe the meaning of the following attribute declaration of class CashDispenser in the
class diagram in Fig. 33.12:

count : Integer = 500

Software Engineering Observation 33.1
At early stages in the design process, classes often lack attributes (and operations). Such
classes should not be eliminated, however, because attributes (and operations) may become
evident in the later phases of design and implementation.

jhtp_33_ATMPart1.fm Page 20 Tuesday, April 11, 2017 1:04 PM

33.5 Identifying Objects’ States and Activities 33_21

33.5 Identifying Objects’ States and Activities
[Note: This section may be read after Chapter 5.]
In Section 33.4, we identified many of the class attributes needed to implement the ATM
system and added them to the class diagram in Fig. 33.12. We now show how these attri-
butes represent an object’s state. We identify some key states that our objects may occupy
and discuss how objects change state in response to various events occurring in the system.
We also discuss the workflow, or activities, that objects perform in the ATM system, and
we present the activities of BalanceInquiry and Withdrawal transaction objects.

State Machine Diagrams
Each object in a system goes through a series of states. An object’s state is indicated by the
values of its attributes at a given time. State machine diagrams (commonly called state di-
agrams) model several states of an object and show under what circumstances the object
changes state. Unlike the class diagrams presented in earlier case study sections, which fo-
cused primarily on the system’s structure, state diagrams model some of the system’s
behavior.

Figure 33.13 is a simple state diagram that models some of the states of an object of
class ATM. The UML represents each state in a state diagram as a rounded rectangle with
the name of the state placed inside it. A solid circle with an attached stick () arrowhead
designates the initial state. Recall that we modeled this state information as the Boolean
attribute userAuthenticated in the class diagram of Fig. 33.12. This attribute is initial-
ized to false, or the “User not authenticated” state, according to the state diagram.

 The arrows with stick () arrowhead indicate transitions between states. An object
can transition from one state to another in response to various events that occur in the
system. The name or description of the event that causes a transition is written near the
line that corresponds to the transition. For example, the ATM object changes from the “User
not authenticated” to the “User authenticated” state after the database authenticates the
user. Recall from the requirements document that the database authenticates a user by
comparing the account number and PIN entered by the user with those of an account in
the database. If the user has entered a valid account number and the correct PIN, the ATM
object transitions to the “User authenticated” state and changes its userAuthenticated
attribute to a value of true. When the user exits the system by choosing the “exit” option
from the main menu, the ATM object returns to the “User not authenticated” state.

Fig. 33.13 | State diagram for the ATM object.

Software Engineering Observation 33.2
Software designers do not generally create state diagrams showing every possible state and
state transition for all attributes—there are simply too many of them. State diagrams
typically show only key states and state transitions.

User not authenticated User authenticated

bank database authenticates user

user exits system

jhtp_33_ATMPart1.fm Page 21 Tuesday, April 11, 2017 1:04 PM

33_22 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

Activity Diagrams
Like a state diagram, an activity diagram models aspects of system behavior. Unlike a state
diagram, an activity diagram models an object’s workflow (sequence of events) during
program execution. An activity diagram models the actions the object will perform and in
what order. The activity diagram in Fig. 33.14 models the actions involved in executing a
balance-inquiry transaction. We assume that a BalanceInquiry object has already been
initialized and assigned a valid account number (that of the current user), so the object
knows which balance to retrieve. The diagram includes the actions that occur after the user
selects a balance inquiry from the main menu and before the ATM returns the user to the
main menu—a BalanceInquiry object does not perform or initiate these actions, so we
do not model them here. The diagram begins with retrieving the balance of the account
from the database. Next, the BalanceInquiry displays the balance on the screen. This ac-
tion completes the execution of the transaction. Recall that we’ve chosen to represent an
account balance as both the availableBalance and totalBalance attributes of class Ac-
count, so the actions modeled in Fig. 33.14 refer to the retrieval and display of both bal-
ance attributes.

The UML represents an action in an activity diagram as an action state modeled by a
rectangle with its left and right sides replaced by arcs curving outward. Each action state
contains an action expression—for example, “get balance of account from database”—that
specifies an action to be performed. An arrow with a stick () arrowhead connects two
action states, indicating the order in which the actions represented by the action states
occur. The solid circle (at the top of Fig. 33.14) represents the activity’s initial state—the
beginning of the workflow before the object performs the modeled actions. In this case,
the transaction first executes the “get balance of account from database” action expression.
The transaction then displays both balances on the screen. The solid circle enclosed in an
open circle (at the bottom of Fig. 33.14) represents the final state—the end of the work-
flow after the object performs the modeled actions. We used UML activity diagrams to
illustrate the flow of control for the control statements presented in Chapters 4–5.

Figure 33.15 shows an activity diagram for a withdrawal transaction. We assume that
a Withdrawal object has been assigned a valid account number. We do not model the user
selecting a withdrawal from the main menu or the ATM returning the user to the main

Fig. 33.14 | Activity diagram for a BalanceInquiry object.

get balance of account from database

display balance on screen

jhtp_33_ATMPart1.fm Page 22 Tuesday, April 11, 2017 1:04 PM

33.5 Identifying Objects’ States and Activities 33_23

menu because these are not actions performed by a Withdrawal object. The transaction
first displays a menu of standard withdrawal amounts (shown in Fig. 33.3) and an option
to cancel the transaction. The transaction then receives a menu selection from the user.
The activity flow now arrives at a decision (a fork indicated by the small diamond symbol).

Fig. 33.15 | Activity diagram for a withdrawal transaction.

[user canceled transaction]

[user selected an amount]

[amount > available balance]

[amount <= available balance]

[sufficient cash available]

[insufficient cash available]

display menu of withdrawal amounts and option to cancel

input the menu selection

interact with database to debit amount from user’s account

dispense cash

instruct user to take cash

set amount attribute

display appropriate error message

test whether sufficient cash is available in cash dispenser

get available balance of user’s account from database

jhtp_33_ATMPart1.fm Page 23 Tuesday, April 11, 2017 1:04 PM

33_24 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

This point determines the next action based on the associated guard condition (in square
brackets next to the transition), which states that the transition occurs if this guard condi-
tion is met. If the user cancels the transaction by choosing the “cancel” option from the
menu, the activity flow immediately skips to the final state. Note the merge (indicated by
the small diamond symbol) where the cancellation flow of activity joins the main flow of
activity before reaching the activity’s final state. If the user selects a withdrawal amount
from the menu, Withdrawal sets amount (an attribute originally modeled in Fig. 33.12) to
the value chosen by the user.

 After setting the withdrawal amount, the transaction retrieves the available balance of
the user’s account (i.e., the availableBalance attribute of the user’s Account object) from
the database. The activity flow then arrives at another decision. If the requested withdrawal
amount exceeds the user’s available balance, the system displays an appropriate error message
informing the user of the problem, then returns to the beginning of the activity diagram and
prompts the user to input a new amount. If the requested withdrawal amount is less than or
equal to the user’s available balance, the transaction proceeds. The transaction next tests
whether the cash dispenser has enough cash remaining to satisfy the withdrawal request. If it
does not, the transaction displays an appropriate error message, then returns to the beginning
of the activity diagram and prompts the user to choose a new amount. If sufficient cash is
available, the transaction interacts with the database to debit the withdrawal amount from
the user’s account (i.e., subtract the amount from both the availableBalance and total-
Balance attributes of the user’s Account object). The transaction then dispenses the desired
amount of cash and instructs the user to take it. Finally, the main flow of activity merges with
the cancellation flow of activity before reaching the final state.

We’ve taken the first steps in modeling the ATM software system’s behavior and have
shown how an object’s attributes participate in performing the object’s activities. In
Section 33.6, we investigate the behaviors for all classes to give a more accurate interpretation
of the system behavior by filling in the third compartments of the classes in our class diagram.

Self-Review Exercises for Section 33.5
33.11 State whether the following statement is true or false, and if false, explain why: State dia-
grams model structural aspects of a system.

33.12 An activity diagram models the that an object performs and the order in which
it performs them.

a) actions
b) attributes
c) states
d) state transitions

33.13 Based on the requirements document, create an activity diagram for a deposit transaction.

33.6 Identifying Class Operations
[Note: This section may be read after Chapter 6.]
In this section, we determine some of the class operations (or behaviors) needed to imple-
ment the ATM system. An operation is a service that objects of a class provide to clients
(users) of the class. Consider the operations of some real-world objects. A radio’s opera-
tions include setting its station and volume (typically invoked by a person’s adjusting the

jhtp_33_ATMPart1.fm Page 24 Tuesday, April 11, 2017 1:04 PM

33.6 Identifying Class Operations 33_25

radio’s controls). A car’s operations include accelerating (invoked by the driver’s pressing
the accelerator pedal), decelerating (invoked by the driver’s pressing the brake pedal or re-
leasing the gas pedal), turning and shifting gears. Software objects can offer operations as
well—for example, a software graphics object might offer operations for drawing a circle,
drawing a line, drawing a square and the like. A spreadsheet software object might offer
operations like printing the spreadsheet, totaling the elements in a row or column and
graphing information in the spreadsheet as a bar chart or pie chart.

We can derive many of the class operations by examining the key verbs and verb phrases
in the requirements document. We then relate these verbs and verb phrases to classes in
our system (Fig. 33.16). The verb phrases in Fig. 33.16 help us determine the operations
of each class.

Modeling Operations
To identify operations, we examine the verb phrases listed for each class in Fig. 33.16. The
“executes financial transactions” phrase associated with class ATM implies that class ATM in-
structs transactions to execute. Therefore, classes BalanceInquiry, Withdrawal and
Deposit each need an operation to provide this service to the ATM. We place this opera-
tion (which we’ve named execute) in the third compartment of the three transaction
classes in the updated class diagram of Fig. 33.17. During an ATM session, the ATM object
will invoke these transaction operations as necessary.

The UML represents operations (that is, methods) by listing the operation name, fol-
lowed by a comma-separated list of parameters in parentheses, a colon and the return type:

Each parameter in the comma-separated parameter list consists of a parameter name, fol-
lowed by a colon and the parameter type:

Class Verbs and verb phrases

ATM executes financial transactions
BalanceInquiry [none in the requirements document]
Withdrawal [none in the requirements document]
Deposit [none in the requirements document]
BankDatabase authenticates a user, retrieves an account balance, credits a deposit

amount to an account, debits a withdrawal amount from an account
Account retrieves an account balance, credits a deposit amount to an account,

debits a withdrawal amount from an account
Screen displays a message to the user
Keypad receives numeric input from the user
CashDispenser dispenses cash, indicates whether it contains enough cash to satisfy a

withdrawal request
DepositSlot receives a deposit envelope

Fig. 33.16 | Verbs and verb phrases for each class in the ATM system.

operationName(parameter1, parameter2, …, parameterN) : return type

parameterName : parameterType

jhtp_33_ATMPart1.fm Page 25 Tuesday, April 11, 2017 1:04 PM

33_26 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

For the moment, we do not list the parameters of our operations—we’ll identify and
model some of them shortly. For some of the operations, we do not yet know the return
types, so we also omit them from the diagram. These omissions are perfectly normal at this
point. As our design and implementation proceed, we’ll add the remaining return types.

Authenticating a User
Figure 33.16 lists the phrase “authenticates a user” next to class BankDatabase—the data-
base is the object that contains the account information necessary to determine whether
the account number and PIN entered by a user match those of an account held at the
bank. Therefore, class BankDatabase needs an operation that provides an authentication
service to the ATM. We place the operation authenticateUser in the third compartment
of class BankDatabase (Fig. 33.17). However, an object of class Account, not class Bank-
Database, stores the account number and PIN that must be accessed to authenticate a us-
er, so class Account must provide a service to validate a PIN obtained through user input
against a PIN stored in an Account object. Therefore, we add a validatePIN operation to

Fig. 33.17 | Classes in the ATM system with attributes and operations.

ATM

userAuthenticated : Boolean = false

BalanceInquiry

accountNumber : Integer

CashDispenser

count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

accountNumber : Integer
amount : Double

BankDatabase

Deposit

accountNumber : Integer
amount : Double

authenticateUser() : Boolean
getAvailableBalance() : Double
getTotalBalance() : Double
credit()
debit()

Account

accountNumber : Integer
pin : Integer
availableBalance : Double
totalBalance : Double

validatePIN() : Boolean
getAvailableBalance() : Double
getTotalBalance() : Double
credit()
debit()

execute()

execute()
displayMessage()

dispenseCash()
isSufficientCashAvailable() : Boolean

getInput() : Integerexecute()

isEnvelopeReceived() : Boolean

jhtp_33_ATMPart1.fm Page 26 Tuesday, April 11, 2017 1:04 PM

33.6 Identifying Class Operations 33_27

class Account. We specify a return type of Boolean for the authenticateUser and vali-
datePIN operations. Each operation returns a value indicating either that the operation
was successful in performing its task (i.e., a return value of true) or that it was not (i.e., a
return value of false).

Other BankDatabase and Account Operations
Figure 33.16 lists several additional verb phrases for class BankDatabase: “retrieves an ac-
count balance,” “credits a deposit amount to an account” and “debits a withdrawal
amount from an account.” Like “authenticates a user,” these remaining phrases refer to
services that the database must provide to the ATM, because the database holds all the ac-
count data used to authenticate a user and perform ATM transactions. However, objects
of class Account actually perform the operations to which these phrases refer. Thus, we as-
sign an operation to both class BankDatabase and class Account to correspond to each of
these phrases. Recall from Section 33.3 that, because a bank account contains sensitive in-
formation, we do not allow the ATM to access accounts directly. The database acts as an
intermediary between the ATM and the account data, thus preventing unauthorized ac-
cess. As we’ll see in Section 33.7, class ATM invokes the operations of class BankDatabase,
each of which in turn invokes the operation with the same name in class Account.

Getting the Balances
The phrase “retrieves an account balance” suggests that classes BankDatabase and Account
each need a getBalance operation. However, recall that we created two attributes in class
Account to represent a balance—availableBalance and totalBalance. A balance inqui-
ry requires access to both balance attributes so that it can display them to the user, but a
withdrawal needs to check only the value of availableBalance. To allow objects in the
system to obtain each balance attribute individually, we add operations getAvailable-
Balance and getTotalBalance to the third compartment of classes BankDatabase and
Account (Fig. 33.17). We specify a return type of Double for these operations because the
balance attributes they retrieve are of type Double.

Crediting and Debiting an Account
The phrases “credits a deposit amount to an account” and “debits a withdrawal amount
from an account” indicate that classes BankDatabase and Account must perform opera-
tions to update an account during a deposit and withdrawal, respectively. We therefore as-
sign credit and debit operations to classes BankDatabase and Account. You may recall
that crediting an account (as in a deposit) adds an amount only to the totalBalance at-
tribute. Debiting an account (as in a withdrawal), on the other hand, subtracts the amount
from both balance attributes. We hide these implementation details inside class Account.
This is a good example of encapsulation and information hiding.

Deposit Confirmations Performed by Another Banking System
If this were a real ATM system, classes BankDatabase and Account would also provide a
set of operations to allow another banking system to update a user’s account balance after
either confirming or rejecting all or part of a deposit. Operation confirmDepositAmount,
for example, would add an amount to the availableBalance attribute, thus making de-
posited funds available for withdrawal. Operation rejectDepositAmount would subtract
an amount from the totalBalance attribute to indicate that a specified amount, which

jhtp_33_ATMPart1.fm Page 27 Tuesday, April 11, 2017 1:04 PM

33_28 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

had recently been deposited through the ATM and added to the totalBalance, was not
found in the deposit envelope. The bank would invoke this operation after determining
either that the user failed to include the correct amount of cash or that any checks did not
clear (i.e., they “bounced”). While adding these operations would make our system more
complete, we do not include them in our class diagrams or our implementation because
they’re beyond the scope of the case study.

Displaying Messages
Class Screen “displays a message to the user” at various times in an ATM session. All visual
output occurs through the screen of the ATM. The requirements document describes
many types of messages (e.g., a welcome message, an error message, a thank you message)
that the screen displays to the user. The requirements document also indicates that the
screen displays prompts and menus to the user. However, a prompt is really just a message
describing what the user should input next, and a menu is essentially a type of prompt con-
sisting of a series of messages (i.e., menu options) displayed consecutively. Therefore, rath-
er than assign class Screen an individual operation to display each type of message, prompt
and menu, we simply create one operation that can display any message specified by a pa-
rameter. We place this operation (displayMessage) in the third compartment of class
Screen in our class diagram (Fig. 33.17). We do not worry about the parameter of this
operation at this time—we model it later in this section.

Keyboard Input
From the phrase “receives numeric input from the user” listed by class Keypad in
Fig. 33.16, we conclude that class Keypad should perform a getInput operation. Because
the ATM’s keypad, unlike a computer keyboard, contains only the numbers 0–9, we spec-
ify that this operation returns an integer value. Recall from the requirements document
that in different situations the user may be required to enter a different type of number
(e.g., an account number, a PIN, the number of a menu option, a deposit amount as a
number of cents). Class Keypad simply obtains a numeric value for a client of the class—
it does not determine whether the value meets any specific criteria. Any class that uses this
operation must verify that the user entered an appropriate number in a given situation,
then respond accordingly (i.e., display an error message via class Screen). [Note: When we
implement the system, we simulate the ATM’s keypad with a computer keyboard, and for
simplicity we assume that the user does not enter nonnumeric input using keys on the
computer keyboard that do not appear on the ATM’s keypad.]

Dispensing Cash
Figure 33.16 lists “dispenses cash” for class CashDispenser. Therefore, we create opera-
tion dispenseCash and list it under class CashDispenser in Fig. 33.17. Class CashDis-
penser also “indicates whether it contains enough cash to satisfy a withdrawal request.”
Thus, we include isSufficientCashAvailable, an operation that returns a value of UML
type Boolean, in class CashDispenser.

Figure 33.16 also lists “receives a deposit envelope” for class DepositSlot. The
deposit slot must indicate whether it received an envelope, so we place an operation
isEnvelopeReceived, which returns a Boolean value, in the third compartment of class
DepositSlot. [Note: A real hardware deposit slot would most likely send the ATM a signal
to indicate that an envelope was received. We simulate this behavior, however, with an

jhtp_33_ATMPart1.fm Page 28 Tuesday, April 11, 2017 1:04 PM

33.6 Identifying Class Operations 33_29

operation in class DepositSlot that class ATM can invoke to find out whether the deposit
slot received an envelope.]

Class ATM
We do not list any operations for class ATM at this time. We’re not yet aware of any services
that class ATM provides to other classes in the system. When we implement the system with
Java code, however, operations of this class, and additional operations of the other classes
in the system, may emerge.

Identifying and Modeling Operation Parameters for Class BankDatabase
So far, we’ve not been concerned with the parameters of our operations—we’ve attempted
to gain only a basic understanding of the operations of each class. Let’s now take a closer
look at some operation parameters. We identify an operation’s parameters by examining
what data the operation requires to perform its assigned task.

Consider BankDatabase’s authenticateUser operation. To authenticate a user, this
operation must know the account number and PIN supplied by the user. So we specify
that authenticateUser takes integer parameters userAccountNumber and userPIN, which
the operation must compare to an Account object’s account number and PIN in the data-
base. We prefix these parameter names with “user” to avoid confusion between the oper-
ation’s parameter names and class Account’s attribute names. We list these parameters in
the class diagram in Fig. 33.18 that models only class BankDatabase. [Note: It’s perfectly
normal to model only one class. In this case, we’re examining the parameters of this one
class, so we omit the other classes. In class diagrams later in the case study, in which param-
eters are no longer the focus of our attention, we omit these parameters to save space.
Remember, however, that the operations listed in these diagrams still have parameters.]

Recall that the UML models each parameter in an operation’s comma-separated
parameter list by listing the parameter name, followed by a colon and the parameter type
(in UML notation). Figure 33.18 thus specifies that operation authenticateUser takes
two parameters—userAccountNumber and userPIN, both of type Integer. When we
implement the system in Java, we’ll represent these parameters with int values.

Class BankDatabase operations getAvailableBalance, getTotalBalance, credit
and debit also each require a userAccountNumber parameter to identify the account to
which the database must apply the operations, so we include these parameters in the class
diagram of Fig. 33.18. In addition, operations credit and debit each require a Double
parameter amount to specify the amount of money to be credited or debited, respectively.

Fig. 33.18 | Class BankDatabase with operation parameters.

BankDatabase

authenticateUser(userAccountNumber : Integer, userPIN : Integer) : Boolean
getAvailableBalance(userAccountNumber : Integer) : Double
getTotalBalance(userAccountNumber : Integer) : Double
credit(userAccountNumber : Integer, amount : Double)
debit(userAccountNumber : Integer, amount : Double)

jhtp_33_ATMPart1.fm Page 29 Tuesday, April 11, 2017 1:04 PM

33_30 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

Identifying and Modeling Operation Parameters for Class Account
Figure 33.19 models class Account’s operation parameters. Operation validatePIN re-
quires only a userPIN parameter, which contains the user-specified PIN to be compared
with the account’s PIN. Like their BankDatabase counterparts, operations credit and
debit in class Account each require a Double parameter amount that indicates the amount
of money involved in the operation. Operations getAvailableBalance and getTotal-
Balance in class Account require no additional data to perform their tasks. Class Account’s
operations do not require an account-number parameter to distinguish between Accounts,
because these operations can be invoked only on a specific Account object.

Identifying and Modeling Operation Parameters for Class Screen
Figure 33.20 models class Screen with a parameter specified for operation display-
Message. This operation requires only a String parameter message that indicates the text
to be displayed. Recall that the parameter types listed in our class diagrams are in UML
notation, so the String type listed in Fig. 33.20 refers to the UML type. When we imple-
ment the system in Java, we’ll use the Java class String to represent this parameter.

Identifying and Modeling Operation Parameters for Class CashDispenser
Figure 33.21 specifies that operation dispenseCash of class CashDispenser takes a Double
parameter amount to indicate the amount of cash (in dollars) to be dispensed. Operation
isSufficientCashAvailable also takes a Double parameter amount to indicate the
amount of cash in question.

Identifying and Modeling Operation Parameters for Other Classes
We do not discuss parameters for operation execute of classes BalanceInquiry, With-
drawal and Deposit, operation getInput of class Keypad and operation isEnvelope-

Fig. 33.19 | Class Account with operation parameters.

Fig. 33.20 | Class Screen with operation parameters.

Account

accountNumber : Integer
pin : Integer
availableBalance : Double
totalBalance : Double

validatePIN(userPIN: Integer) : Boolean
getAvailableBalance() : Double
getTotalBalance() : Double
credit(amount : Double)
debit(amount : Double)

Screen

displayMessage(message : String)

jhtp_33_ATMPart1.fm Page 30 Tuesday, April 11, 2017 1:04 PM

 Self-Review Exercises for Section 33.6 33_31

Received of class DepositSlot. At this point in our design process, we cannot determine
whether these operations require additional data, so we leave their parameter lists empty.
Later, we may decide to add parameters.

In this section, we’ve determined many of the operations performed by the classes in
the ATM system. We’ve identified the parameters and return types of some of the opera-
tions. As we continue our design process, the number of operations belonging to each class
may vary—we might find that new operations are needed or that some current operations
are unnecessary. We also might determine that some of our class operations need addi-
tional parameters and different return types, or that some parameters are unnecessary or
require different types.

Self-Review Exercises for Section 33.6
33.14 Which of the following is not a behavior?

a) reading data from a file
b) printing output
c) text output
d) obtaining input from the user

33.15 If you were to add to the ATM system an operation that returns the amount attribute of class
Withdrawal, how and where would you specify this operation in the class diagram of Fig. 33.17?

33.16 Describe the meaning of the following operation listing that might appear in a class diagram
for an object-oriented design of a calculator:

add(x : Integer, y : Integer) : Integer

33.7 Indicating Collaboration Among Objects
[Note: This section may be read after Chapter 7.]
In this section, we concentrate on the collaborations (interactions) among objects. When
two objects communicate with each other to accomplish a task, they’re said to collabo-
rate—objects do this by invoking one another’s operations. A collaboration consists of an
object of one class sending a message to an object of another class. Messages are sent in
Java via method calls.

In Section 33.6, we determined many of the operations of the system’s classes. Now, we
concentrate on the messages that invoke these operations. To identify the collaborations in
the system, we return to the requirements document in Section 33.2. Recall that this docu-
ment specifies the range of activities that occur during an ATM session (e.g., authenticating
a user, performing transactions). The steps used to describe how the system must perform
each of these tasks are our first indication of the collaborations in our system. As we proceed
through this section and Chapter 34, we may discover additional collaborations.

Fig. 33.21 | Class CashDispenser with operation parameters.

CashDispenser

dispenseCash(amount : Double)
isSufficientCashAvailable(amount : Double) : Boolean

count : Integer = 500

jhtp_33_ATMPart1.fm Page 31 Tuesday, April 11, 2017 1:04 PM

33_32 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

Identifying the Collaborations in a System
We identify the collaborations in the system by carefully reading the sections of the re-
quirements document that specify what the ATM should do to authenticate a user and to
perform each transaction type. For each action or step described, we decide which objects
in our system must interact to achieve the desired result. We identify one object as the
sending object and another as the receiving object. We then select one of the receiving ob-
ject’s operations (identified in Section 33.6) that must be invoked by the sending object
to produce the proper behavior. For example, the ATM displays a welcome message when
idle. We know that an object of class Screen displays a message to the user via its display-
Message operation. Thus, we decide that the system can display a welcome message by em-
ploying a collaboration between the ATM and the Screen in which the ATM sends a
displayMessage message to the Screen by invoking the displayMessage operation of
class Screen. [Note: To avoid repeating the phrase “an object of class…,” we refer to an
object by using its class name preceded by an article (e.g., “a,” “an” or “the”)—for exam-
ple, “the ATM” refers to an object of class ATM.]

Figure 33.22 lists the collaborations that can be derived from the requirements docu-
ment. For each sending object, we list the collaborations in the order in which they first
occur during an ATM session (i.e., the order in which they’re discussed in the require-
ments document). We list each collaboration involving a unique sender, message and
recipient only once, even though the collaborations may occur at several different times
throughout an ATM session. For example, the first row in Fig. 33.22 indicates that the
ATM collaborates with the Screen whenever the ATM needs to display a message to the user.

Let’s consider the collaborations in Fig. 33.22. Before allowing a user to perform any
transactions, the ATM must prompt the user to enter an account number, then to enter a
PIN. It accomplishes these tasks by sending a displayMessage message to the Screen.
Both actions refer to the same collaboration between the ATM and the Screen, which is
already listed in Fig. 33.22. The ATM obtains input in response to a prompt by sending a
getInput message to the Keypad. Next, the ATM must determine whether the user-spec-
ified account number and PIN match those of an account in the database. It does so by
sending an authenticateUser message to the BankDatabase. Recall that the BankData-
base cannot authenticate a user directly—only the user’s Account (i.e., the Account that
contains the account number specified by the user) can access the user’s PIN on record to
authenticate the user. Figure 33.22 therefore lists a collaboration in which the BankData-
base sends a validatePIN message to an Account.

After the user is authenticated, the ATM displays the main menu by sending a series of
displayMessage messages to the Screen and obtains input containing a menu selection
by sending a getInput message to the Keypad. We’ve already accounted for these collab-
orations, so we do not add anything to Fig. 33.22. After the user chooses a type of trans-
action to perform, the ATM executes the transaction by sending an execute message to an
object of the appropriate transaction class (i.e., a BalanceInquiry, a Withdrawal or a
Deposit). For example, if the user chooses to perform a balance inquiry, the ATM sends an
execute message to a BalanceInquiry.

Further examination of the requirements document reveals the collaborations
involved in executing each transaction type. A BalanceInquiry retrieves the amount of
money available in the user’s account by sending a getAvailableBalance message to the
BankDatabase, which responds by sending a getAvailableBalance message to the user’s

jhtp_33_ATMPart1.fm Page 32 Tuesday, April 11, 2017 1:04 PM

33.7 Indicating Collaboration Among Objects 33_33

Account. Similarly, the BalanceInquiry retrieves the amount of money on deposit by
sending a getTotalBalance message to the BankDatabase, which sends the same message
to the user’s Account. To display both parts of the user’s account balance at the same time,
the BalanceInquiry sends a displayMessage message to the Screen.

A Withdrawal responds to an execute message by sending displayMessage messages
to the Screen to display a menu of standard withdrawal amounts (i.e., $20, $40, $60, $100,
$200). The Withdrawal sends a getInput message to the Keypad to obtain the user’s selec-
tion. Next, the Withdrawal determines whether the requested amount is less than or equal
to the user’s account balance. The Withdrawal can obtain the amount of money available
by sending a getAvailableBalance message to the BankDatabase. The Withdrawal then
tests whether the cash dispenser contains enough cash by sending an isSufficientCash-
Available message to the CashDispenser. A Withdrawal sends a debit message to the
BankDatabase to decrease the user’s account balance. The BankDatabase in turn sends the
same message to the appropriate Account, which decreases both the totalBalance and the
availableBalance. To dispense the requested amount of cash, the Withdrawal sends a
dispenseCash message to the CashDispenser. Finally, the Withdrawal sends a display-
Message message to the Screen, instructing the user to take the cash.

A Deposit responds to an execute message first by sending a displayMessage mes-
sage to the Screen to prompt the user for a deposit amount. The Deposit sends a get-
Input message to the Keypad to obtain the user’s input. The Deposit then sends a
displayMessage message to the Screen to tell the user to insert a deposit envelope. To
determine whether the deposit slot received an incoming deposit envelope, the Deposit
sends an isEnvelopeReceived message to the DepositSlot. The Deposit updates the

An object of class… sends the message…
to an object of
class…

ATM displayMessage
getInput
authenticateUser
execute
execute
execute

Screen
Keypad
BankDatabase
BalanceInquiry
Withdrawal
Deposit

BalanceInquiry getAvailableBalance
getTotalBalance
displayMessage

BankDatabase
BankDatabase
Screen

Withdrawal displayMessage
getInput
getAvailableBalance
isSufficientCashAvailable
debit
dispenseCash

Screen
Keypad
BankDatabase
CashDispenser
BankDatabase
CashDispenser

Deposit displayMessage
getInput
isEnvelopeReceived
credit

Screen
Keypad
DepositSlot
BankDatabase

BankDatabase validatePIN
getAvailableBalance
getTotalBalance
debit
credit

Account
Account
Account
Account
Account

Fig. 33.22 | Collaborations in the ATM system.

jhtp_33_ATMPart1.fm Page 33 Tuesday, April 11, 2017 1:04 PM

33_34 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

user’s account by sending a credit message to the BankDatabase, which subsequently
sends a credit message to the user’s Account. Recall that crediting funds to an Account
increases the totalBalance but not the availableBalance.

Interaction Diagrams
Now that we’ve identified possible collaborations between our ATM system’s objects, let’s
graphically model these interactions using the UML. The UML provides several types of
interaction diagrams that model the behavior of a system by modeling how objects inter-
act. The communication diagram emphasizes which objects participate in collaborations.
Like the communication diagram, the sequence diagram shows collaborations among ob-
jects, but it emphasizes when messages are sent between objects over time.

Communication Diagrams
Figure 33.23 shows a communication diagram that models the ATM executing a Balance-
Inquiry. Objects are modeled in the UML as rectangles containing names in the form
objectName : ClassName. In this example, which involves only one object of each type, we
disregard the object name and list only a colon followed by the class name. [Note: Specify-
ing each object’s name in a communication diagram is recommended when modeling mul-
tiple objects of the same type.] Communicating objects are connected with solid lines, and
messages are passed between objects along these lines in the direction shown by arrows.
The name of the message, which appears next to the arrow, is the name of an operation
(i.e., a method in Java) belonging to the receiving object—think of the name as a “service”
that the receiving object provides to sending objects (its clients).

The solid filled arrow represents a message—or synchronous call—in the UML and a
method call in Java. This arrow indicates that the flow of control is from the sending object
(the ATM) to the receiving object (a BalanceInquiry). Since this is a synchronous call, the
sending object can’t send another message, or do anything at all, until the receiving object
processes the message and returns control to the sending object. The sender just waits. In
Fig. 33.23, the ATM calls BalanceInquiry method execute and can’t send another message
until execute has finished and returns control to the ATM. [Note: If this were an asynchro-
nous call, represented by a stick () arrowhead, the sending object would not have to wait
for the receiving object to return control—it would continue sending additional messages
immediately following the asynchronous call. Asynchronous calls are implemented in Java
using a technique called multithreading, which is discussed in Chapter 23.]

Sequence of Messages in a Communication Diagram
Figure 33.24 shows a communication diagram that models the interactions among system
objects when an object of class BalanceInquiry executes. We assume that the object’s
accountNumber attribute contains the account number of the current user. The collabora-
tions in Fig. 33.24 begin after the ATM sends an execute message to a BalanceInquiry

Fig. 33.23 | Communication diagram of the ATM executing a balance inquiry.

: ATM : BalanceInquiry

execute()

jhtp_33_ATMPart1.fm Page 34 Tuesday, April 11, 2017 1:04 PM

33.7 Indicating Collaboration Among Objects 33_35

(i.e., the interaction modeled in Fig. 33.23). The number to the left of a message name
indicates the order in which the message is passed. The sequence of messages in a com-
munication diagram progresses in numerical order from least to greatest. In this diagram,
the numbering starts with message 1 and ends with message 3. The BalanceInquiry first
sends a getAvailableBalance message to the BankDatabase (message 1), then sends a
getTotalBalance message to the BankDatabase (message 2). Within the parentheses fol-
lowing a message name, we can specify a comma-separated list of the names of the param-
eters sent with the message (i.e., arguments in a Java method call)—the BalanceInquiry
passes attribute accountNumber with its messages to the BankDatabase to indicate which
Account’s balance information to retrieve. Recall from Fig. 33.18 that operations ge-
tAvailableBalance and getTotalBalance of class BankDatabase each require a parame-
ter to identify an account. The BalanceInquiry next displays the availableBalance and
the totalBalance to the user by passing a displayMessage message to the Screen (mes-
sage 3) that includes a parameter indicating the message to be displayed.

Figure 33.24 models two additional messages passing from the BankDatabase to an
Account (message 1.1 and message 2.1). To provide the ATM with the two balances of the
user’s Account (as requested by messages 1 and 2), the BankDatabase must pass a
getAvailableBalance and a getTotalBalance message to the user’s Account. Such mes-
sages passed within the handling of another message are called nested messages. The UML
recommends using a decimal numbering scheme to indicate nested messages. For
example, message 1.1 is the first message nested in message 1—the BankDatabase passes
a getAvailableBalance message during BankDatabase’s processing of a message by the
same name. [Note: If the BankDatabase needed to pass a second nested message while pro-
cessing message 1, the second message would be numbered 1.2.] A message may be passed
only when all the nested messages from the previous message have been passed. For
example, the BalanceInquiry passes message 3 only after messages 2 and 2.1 have been
passed, in that order.

Fig. 33.24 | Communication diagram for executing a balance inquiry.

: BalanceInquiry

: Screen

: BankDatabase : Account

3: displayMessage(message)

1: getAvailableBalance(accountNumber)
2: getTotalBalance(accountNumber)

1.1: getAvailableBalance()
2.1: getTotalBalance()

jhtp_33_ATMPart1.fm Page 35 Tuesday, April 11, 2017 1:04 PM

33_36 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

The nested numbering scheme used in communication diagrams helps clarify pre-
cisely when and in what context each message is passed. For example, if we numbered the
messages in Fig. 33.24 using a flat numbering scheme (i.e., 1, 2, 3, 4, 5), someone looking
at the diagram might not be able to determine that BankDatabase passes the
getAvailableBalance message (message 1.1) to an Account during the BankDatabase’s
processing of message 1, as opposed to after completing the processing of message 1. The
nested decimal numbers make it clear that the second getAvailableBalance message
(message 1.1) is passed to an Account within the handling of the first getAvailableBal-
ance message (message 1) by the BankDatabase.

Sequence Diagrams
Communication diagrams emphasize the participants in collaborations, but model their
timing a bit awkwardly. A sequence diagram helps model the timing of collaborations
more clearly. Figure 33.25 shows a sequence diagram modeling the sequence of interac-
tions that occur when a Withdrawal executes. The dotted line extending down from an
object’s rectangle is that object’s lifeline, which represents the progression of time. Actions
occur along an object’s lifeline in chronological order from top to bottom—an action near
the top happens before one near the bottom.

 Message passing in sequence diagrams is similar to message passing in communica-
tion diagrams. A solid arrow with a filled arrowhead extending from the sending object to
the receiving object represents a message between two objects. The arrowhead points to an
activation on the receiving object’s lifeline. An activation, shown as a thin vertical rect-
angle, indicates that an object is executing. When an object returns control, a return mes-
sage, represented as a dashed line with a stick () arrowhead, extends from the activation
of the object returning control to the activation of the object that initially sent the message.
To eliminate clutter, we omit the return-message arrows—the UML allows this practice
to make diagrams more readable. Like communication diagrams, sequence diagrams can
indicate message parameters between the parentheses following a message name.

The sequence of messages in Fig. 33.25 begins when a Withdrawal prompts the user
to choose a withdrawal amount by sending a displayMessage message to the Screen. The
Withdrawal then sends a getInput message to the Keypad, which obtains input from the
user. We’ve already modeled the control logic involved in a Withdrawal in the activity dia-
gram of Fig. 33.15, so we do not show this logic in the sequence diagram of Fig. 33.25.
Instead, we model the best-case scenario in which the balance of the user’s account is
greater than or equal to the chosen withdrawal amount, and the cash dispenser contains a
sufficient amount of cash to satisfy the request. You can model control logic in a sequence
diagram with UML frames (which are not covered in this case study). For a quick overview
of UML frames, visit www.agilemodeling.com/style/frame.htm.

After obtaining a withdrawal amount, the Withdrawal sends a getAvailableBalance
message to the BankDatabase, which in turn sends a getAvailableBalance message to the
user’s Account. Assuming that the user’s account has enough money available to permit
the transaction, the Withdrawal next sends an isSufficientCashAvailable message to
the CashDispenser. Assuming that there’s enough cash available, the Withdrawal
decreases the balance of the user’s account (i.e., both the totalBalance and the avail-
ableBalance) by sending a debit message to the BankDatabase. The BankDatabase
responds by sending a debit message to the user’s Account. Finally, the Withdrawal sends

jhtp_33_ATMPart1.fm Page 36 Tuesday, April 11, 2017 1:04 PM

 Self-Review Exercises for Section 33.7 33_37

a dispenseCash message to the CashDispenser and a displayMessage message to the
Screen, telling the user to remove the cash from the machine.

We’ve identified the collaborations among objects in the ATM system and modeled
some of them using UML interaction diagrams—both communication diagrams and
sequence diagrams. In Section 34.2, we enhance the structure of our model to complete a
preliminary object-oriented design, then we begin implementing the ATM system in Java.

Self-Review Exercises for Section 33.7
33.17 A(n) consists of an object of one class sending a message to an object of another class.

Fig. 33.25 | Sequence diagram that models a Withdrawal executing.

a) association b) aggregation
c) collaboration d) composition

getAvailableBalance()
getAvailableBalance(accountNumber)

dispenseCash(amount)

: CashDispenser: BankDatabase: Screen

: Account: Keypad: Withdrawal

debit(amount)

isSufficientCashAvailable(amount)

debit(accountNumber, amount)

displayMessage(message)

getInput()

displayMessage(message)

jhtp_33_ATMPart1.fm Page 37 Tuesday, April 11, 2017 1:04 PM

33_38 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

33.18 Which form of interaction diagram emphasizes what collaborations occur? Which form em-
phasizes when collaborations occur?

33.19 Create a sequence diagram that models the interactions among objects in the ATM system
that occur when a Deposit executes successfully, and explain the sequence of messages modeled by
the diagram.

33.8 Wrap-Up
In this chapter, you learned how to work from a detailed requirements document to de-
velop an object-oriented design. You worked with six popular types of UML diagrams to
graphically model an object-oriented automated teller machine software system. In
Chapter 34, we tune the design using inheritance, then completely implement the design
as a Java application.

Answers to Self-Review Exercises
33.1 Figure 33.26 contains a use case diagram for a modified version of our ATM system
that also allows users to transfer money between accounts.

33.2 b.

33.3 d.

33.4 [Note: Answers may vary.] Figure 33.27 presents a class diagram that shows some of the
composition relationships of a class Car.

Fig. 33.26 | Use case diagram for a modified version of our ATM system that also allows
users to transfer money between accounts.

Transfer Funds
Between Accounts

Deposit Funds

Withdraw Cash

View Account Balance

User

jhtp_33_ATMPart1.fm Page 38 Tuesday, April 11, 2017 1:04 PM

 Answers to Self-Review Exercises 33_39

33.5 c. [Note: In a computer network, this relationship could be many-to-many.]

33.6 True.

33.7 Figure 33.28 presents a class diagram for the ATM including class Deposit instead of class
Withdrawal (as in Fig. 33.10). Deposit does not access CashDispenser, but does access DepositSlot.

33.8 b.

33.9 c. Fly is an operation or behavior of an airplane, not an attribute.

Fig. 33.27 | Class diagram showing composition relationships of a class Car.

Fig. 33.28 | Class diagram for the ATM system model including class Deposit.

Car

Wheel

Windshield

SeatBeltSteeringWheel
11 5

2

1

1

4

1

Accesses/modifies an
account balance through

Executes

1

1

1

1

1

1

1

1

1 1 1 1

1

0..*

0..1
0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Deposit

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

jhtp_33_ATMPart1.fm Page 39 Tuesday, April 11, 2017 1:04 PM

33_40 Chapter 33 ATM Case Study, Part 1: Object-Oriented Design with the UML

33.10 This indicates that count is an Integer with an initial value of 500. This attribute keeps
track of the number of bills available in the CashDispenser at any given time.

33.11 False. State diagrams model some of the behavior of a system.

33.12 a.

33.13 Figure 33.29 models the actions that occur after the user chooses the deposit option from
the main menu and before the ATM returns the user to the main menu. Recall that part of receiving
a deposit amount from the user involves converting an integer number of cents to a dollar amount.
Also recall that crediting a deposit amount to an account increases only the totalBalance attribute
of the user’s Account object. The bank updates the availableBalance attribute of the user’s Account
object only after confirming the amount of cash in the deposit envelope and after the enclosed
checks clear—this occurs independently of the ATM system.

33.14 c.

Fig. 33.29 | Activity diagram for a deposit transaction.

[user canceled transaction]

[user entered an amount]

[deposit envelope received]

[deposit envelope
not received]

prompt user to enter a deposit amount or cancel

receive input from user

attempt to receive deposit envelope

interact with database to credit amount to user’s account

display message

set amount attribute

instruct user to insert deposit envelope

jhtp_33_ATMPart1.fm Page 40 Tuesday, April 11, 2017 1:04 PM

 Answers to Self-Review Exercises 33_41

33.15 To specify an operation that retrieves the amount attribute of class Withdrawal, the following
operation listing would be placed in the operation (i.e., third) compartment of class Withdrawal:

getAmount() : Double

33.16 This operation listing indicates an operation named add that takes integers x and y as pa-
rameters and returns an integer value.

33.17 c.

33.18 Communication diagrams emphasize what collaborations occur. Sequence diagrams em-
phasize when collaborations occur.

33.19 Figure 33.30 presents a sequence diagram that models the interactions between objects in
the ATM system that occur when a Deposit executes successfully. A Deposit first sends a display-
Message message to the Screen to ask the user to enter a deposit amount. Next the Deposit sends a
getInput message to the Keypad to receive input from the user. The Deposit then instructs the user
to enter a deposit envelope by sending a displayMessage message to the Screen. The Deposit next
sends an isEnvelopeReceived message to the DepositSlot to confirm that the deposit envelope has
been received by the ATM. Finally, the Deposit increases the totalBalance attribute (but not the
availableBalance attribute) of the user’s Account by sending a credit message to the BankData-
base. The BankDatabase responds by sending the same message to the user’s Account.

Fig. 33.30 | Sequence diagram that models a Deposit executing.

: Account: DepositSlot: Screen

: BankDatabase: Keypad: Deposit

isEnvelopeReceived()

credit(accountNumber, amount)

getinput()

displayMessage(message)

displayMessage(message)

credit(amount)

jhtp_33_ATMPart1.fm Page 41 Tuesday, April 11, 2017 1:04 PM

