
34ATM Case Study Part 2:
Implementing the Design

O b j e c t i v e s
In this chapter you’ll:
■ Incorporate inheritance into

the design of the ATM.
■ Incorporate polymorphism

into the design of the ATM.
■ Fully implement in Java the

UML-based object-oriented
design of the ATM software.

■ Study a detailed code
walkthrough of the ATM
software system that explains
the implementation issues.

jhtp_34_ATMPart2.fm Page 1 Tuesday, April 11, 2017 1:05 PM

34_2 Chapter 34 ATM Case Study Part 2: Implementing the Design

34.1 Introduction
In Chapter 33, we developed an object-oriented design for our ATM system. We now im-
plement our object-oriented design in Java. In Section 34.2, we show how to convert class
diagrams to Java code. In Section 34.3, we tune the design with inheritance and polymor-
phism. Then we present a full Java code implementation of the ATM software in
Section 34.4. The code is carefully commented and the discussions of the implementation
are thorough and precise. Studying this application provides the opportunity for you to
see a more substantial application of the kind you’re likely to encounter in industry.

34.2 Starting to Program the Classes of the ATM System
[Note: This section may be read after Chapter 8.]

Visibility
We now apply access modifiers to the members of our classes. We’ve introduced access
modifiers public and private. Access modifiers determine the visibility or accessibility of
an object’s attributes and methods to other objects. Before we can begin implementing our
design, we must consider which attributes and methods of our classes should be public
and which should be private.

We’ve observed that attributes normally should be private and that methods
invoked by clients of a given class should be public. Methods that are called as “utility
methods” only by other methods of the same class normally should be private. The UML
employs visibility markers for modeling the visibility of attributes and operations. Public
visibility is indicated by placing a plus sign (+) before an operation or an attribute, whereas
a minus sign (–) indicates private visibility. Figure 34.1 shows our updated class diagram
with visibility markers included. [Note: We do not include any operation parameters in
Fig. 34.1—this is perfectly normal. Adding visibility markers does not affect the parame-
ters already modeled in the class diagrams of Figs. 33.17–33.21.]

Navigability
Before we begin implementing our design in Java, we introduce an additional UML nota-
tion. The class diagram in Fig. 34.2 further refines the relationships among classes in the
ATM system by adding navigability arrows to the association lines. Navigability arrows

34.1 Introduction
34.2 Starting to Program the Classes of the

ATM System
34.3 Incorporating Inheritance and

Polymorphism into the ATM System
34.4 ATM Case Study Implementation

34.4.1 Class ATM
34.4.2 Class Screen
34.4.3 Class Keypad

34.4.4 Class CashDispenser
34.4.5 Class DepositSlot
34.4.6 Class Account
34.4.7 Class BankDatabase
34.4.8 Class Transaction
34.4.9 Class BalanceInquiry

34.4.10 Class Withdrawal
34.4.11 Class Deposit
34.4.12 Class ATMCaseStudy

34.5 Wrap-Up

Answers to Self-Review Exercises

jhtp_34_ATMPart2.fm Page 2 Tuesday, April 11, 2017 1:05 PM

34.2 Starting to Program the Classes of the ATM System 34_3

(represented as arrows with stick () arrowheads in the class diagram) indicate the
direction in which an association can be traversed. When implementing a system designed
using the UML, you use navigability arrows to determine which objects need references to
other objects. For example, the navigability arrow pointing from class ATM to class Bank-
Database indicates that we can navigate from the former to the latter, thereby enabling
the ATM to invoke the BankDatabase’s operations. However, since Fig. 34.2 does not con-
tain a navigability arrow pointing from class BankDatabase to class ATM, the BankDatabase
cannot access the ATM’s operations. Associations in a class diagram that have navigability
arrows at both ends or have none at all indicate bidirectional navigability—navigation can
proceed in either direction across the association.

Like the class diagram of Fig. 33.10, that of Fig. 34.2 omits classes BalanceInquiry
and Deposit for simplicity. The navigability of the associations in which these classes par-
ticipate closely parallels that of class Withdrawal. Recall from Section 33.3 that Balance-
Inquiry has an association with class Screen. We can navigate from class BalanceInquiry
to class Screen along this association, but we cannot navigate from class Screen to class

Fig. 34.1 | Class diagram with visibility markers.

ATM

– userAuthenticated : Boolean = false

BalanceInquiry

– accountNumber : Integer

CashDispenser

– count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

– accountNumber : Integer
– amount : Double

BankDatabase

Deposit

– accountNumber : Integer
– amount : Double

+ authenticateUser() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

Account

– accountNumber : Integer
– pin : Integer
– availableBalance : Double
– totalBalance : Double

+ validatePIN() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

+ execute()

+ execute()
+ displayMessage()

+ dispenseCash()
+ isSufficientCashAvailable() : Boolean

+ getinput() : Integer+ execute()

+ isEnvelopeReceived() : Boolean

jhtp_34_ATMPart2.fm Page 3 Tuesday, April 11, 2017 1:05 PM

34_4 Chapter 34 ATM Case Study Part 2: Implementing the Design

BalanceInquiry. Thus, if we were to model class BalanceInquiry in Fig. 34.2, we would
place a navigability arrow at class Screen’s end of this association. Also recall that class
Deposit associates with classes Screen, Keypad and DepositSlot. We can navigate from
class Deposit to each of these classes, but not vice versa. We therefore would place naviga-
bility arrows at the Screen, Keypad and DepositSlot ends of these associations. [Note: We
model these additional classes and associations in our final class diagram in Section 34.3,
after we’ve simplified the structure of our system by incorporating the object-oriented con-
cept of inheritance.]

Implementing the ATM System from Its UML Design
We’re now ready to begin implementing the ATM system. We first convert the classes in
the diagrams of Fig. 34.1 and Fig. 34.2 into Java code. The code will represent the “skel-
eton” of the system. In Section 34.3, we modify the code to incorporate inheritance. In
Section 34.4, we present the complete working Java code for our model.

As an example, we develop the code from our design of class Withdrawal in Fig. 34.1.
We use this figure to determine the attributes and operations of the class. We use the UML
model in Fig. 34.2 to determine the associations among classes. We follow the following
four guidelines for each class:

1. Use the name located in the first compartment to declare the class as a public
class with an empty no-argument constructor. We include this constructor sim-
ply as a placeholder to remind us that most classes will indeed need custom construc-

Fig. 34.2 | Class diagram with navigability arrows.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

1

0..*

0..11
0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Withdrawal

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

jhtp_34_ATMPart2.fm Page 4 Tuesday, April 11, 2017 1:05 PM

34.2 Starting to Program the Classes of the ATM System 34_5

tors. In Section 34.4, when we complete a working version of this class, we’ll add
arguments and code the body of the constructor as needed. For example, class
Withdrawal yields the code in Fig. 34.3. If we find that the class’s instance vari-
ables require only default initialization, then we’ll remove the empty no-argu-
ment constructor because it’s unnecessary.

2. Use the attributes located in the second compartment to declare the instance vari-
ables. For example, the private attributes accountNumber and amount of class
Withdrawal yield the code in Fig. 34.4. [Note: The constructor of the complete
working version of this class will assign values to these attributes.]

3. Use the associations described in the class diagram to declare the references to
other objects. For example, according to Fig. 34.2, Withdrawal can access one
object of class Screen, one object of class Keypad, one object of class CashDis-
penser and one object of class BankDatabase. This yields the code in Fig. 34.5.
[Note: The constructor of the complete working version of this class will initialize
these instance variables with references to actual objects.]

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal {
3 // no-argument constructor
4 public Withdrawal() { }
5 }

Fig. 34.3 | Java code for class Withdrawal based on Figs. 34.1–34.2.

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal {
3 // attributes
4 private int accountNumber; // account to withdraw funds from
5 private double amount; // amount to withdraw
6
7 // no-argument constructor
8 public Withdrawal() { }
9 }

Fig. 34.4 | Java code for class Withdrawal based on Figs. 34.1–34.2.

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal {
3 // attributes
4 private int accountNumber; // account to withdraw funds from
5 private double amount; // amount to withdraw
6
7 // references to associated objects
8 private Screen screen; // ATM’s screen
9 private Keypad keypad; // ATM’s keypad

Fig. 34.5 | Java code for class Withdrawal based on Figs. 34.1–34.2. (Part 1 of 2.)

jhtp_34_ATMPart2.fm Page 5 Tuesday, April 11, 2017 1:05 PM

34_6 Chapter 34 ATM Case Study Part 2: Implementing the Design

4. Use the operations located in the third compartment of Fig. 34.1 to declare the
shells of the methods. If we have not yet specified a return type for an operation,
we declare the method with return type void. Refer to the class diagrams of
Figs. 33.17–33.21 to declare any necessary parameters. For example, adding the
public operation execute in class Withdrawal, which has an empty parameter
list, yields the code in Fig. 34.6. [Note: We code the bodies of methods when we
implement the complete system in Section 34.4.]

This concludes our discussion of the basics of generating classes from UML diagrams.

Self-Review Exercises for Section 34.2
34.1 State whether the following statement is true or false, and if false, explain why: If an attribute
of a class is marked with a minus sign (-) in a class diagram, the attribute is not directly accessible
outside the class.

34.2 In Fig. 34.2, the association between the ATM and the Screen indicates that:
a) we can navigate from the Screen to the ATM
b) we can navigate from the ATM to the Screen
c) Both (a) and (b); the association is bidirectional
d) None of the above

34.3 Write Java code to begin implementing the design for class Keypad.

10 private CashDispenser cashDispenser; // ATM’s cash dispenser
11 private BankDatabase bankDatabase; // account info database
12
13 // no-argument constructor
14 public Withdrawal() { }
15 }

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal {
3 // attributes
4 private int accountNumber; // account to withdraw funds from
5 private double amount; // amount to withdraw
6
7 // references to associated objects
8 private Screen screen; // ATM’s screen
9 private Keypad keypad; // ATM’s keypad

10 private CashDispenser cashDispenser; // ATM’s cash dispenser
11 private BankDatabase bankDatabase; // account info database
12
13 // no-argument constructor
14 public Withdrawal() { }
15
16 // operations
17 public void execute() { }
18 }

Fig. 34.6 | Java code for class Withdrawal based on Figs. 34.1–34.2.

Fig. 34.5 | Java code for class Withdrawal based on Figs. 34.1–34.2. (Part 2 of 2.)

jhtp_34_ATMPart2.fm Page 6 Tuesday, April 11, 2017 1:05 PM

34.3 Incorporating Inheritance and Polymorphism into the ATM System 34_7

34.3 Incorporating Inheritance and Polymorphism into
the ATM System
[Note: This section may be read after Chapter 10.]
We now revisit our ATM system design to see how it might benefit from inheritance. To
apply inheritance, we first look for commonality among classes in the system. We create an
inheritance hierarchy to model similar (yet not identical) classes in a more elegant and ef-
ficient manner. We then modify our class diagram to incorporate the new inheritance re-
lationships. Finally, we demonstrate how our updated design is translated into Java code.

In Section 33.3, we encountered the problem of representing a financial transaction
in the system. Rather than create one class to represent all transaction types, we decided to
create three individual transaction classes—BalanceInquiry, Withdrawal and Deposit—
to represent the transactions that the ATM system can perform. Figure 34.7 shows the
attributes and operations of classes BalanceInquiry, Withdrawal and Deposit. These
classes have one attribute (accountNumber) and one operation (execute) in common.
Each class requires attribute accountNumber to specify the account to which the transac-
tion applies. Each class contains operation execute, which the ATM invokes to perform the
transaction. Clearly, BalanceInquiry, Withdrawal and Deposit represent types of transac-
tions. Figure 34.7 reveals commonality among the transaction classes, so using inheritance
to factor out the common features seems appropriate for designing classes BalanceIn-
quiry, Withdrawal and Deposit. We place the common functionality in a superclass,
Transaction, that classes BalanceInquiry, Withdrawal and Deposit extend.

Generalization
The UML specifies a relationship called a generalization to model inheritance.
Figure 34.8 is the class diagram that models the generalization of superclass Transaction
and subclasses BalanceInquiry, Withdrawal and Deposit. The arrows with triangular
hollow arrowheads indicate that classes BalanceInquiry, Withdrawal and Deposit extend
class Transaction. Class Transaction is said to be a generalization of classes BalanceIn-
quiry, Withdrawal and Deposit. Class BalanceInquiry, Withdrawal and Deposit are
said to be specializations of class Transaction.

 Classes BalanceInquiry, Withdrawal and Deposit share integer attribute account-
Number, so we factor out this common attribute and place it in superclass Transaction. We
no longer list accountNumber in the second compartment of each subclass, because the

Fig. 34.7 | Attributes and operations of BalanceInquiry, Withdrawal and Deposit.

BalanceInquiry

- accountNumber : Integer

Withdrawal

- accountNumber : Integer
- amount : Double

Deposit

- accountNumber : Integer
- amount : Double

+ execute()

+ execute() + execute()

jhtp_34_ATMPart2.fm Page 7 Tuesday, April 11, 2017 1:05 PM

34_8 Chapter 34 ATM Case Study Part 2: Implementing the Design

three subclasses inherit this attribute from Transaction. Recall, however, that subclasses
cannot directly access private attributes of a superclass. We therefore include public
method getAccountNumber in class Transaction. Each subclass will inherit this method,
enabling the subclass to access its accountNumber as needed to execute a transaction.

According to Fig. 34.7, classes BalanceInquiry, Withdrawal and Deposit also share
operation execute, so we placed public method execute in superclass Transaction.
However, it does not make sense to implement execute in class Transaction, because the
functionality that this method provides depends on the type of the actual transaction. We
therefore declare method execute as abstract in superclass Transaction. Any class that
contains at least one abstract method must also be declared abstract. This forces any sub-
class of Transaction that must be a concrete class (i.e., BalanceInquiry, Withdrawal and
Deposit) to implement method execute. The UML requires that we place abstract class
names (and abstract methods) in italics, so Transaction and its method execute appear
in italics in Fig. 34.8. Method execute is not italicized in subclasses BalanceInquiry,
Withdrawal and Deposit. Each subclass overrides superclass Transaction’s execute
method with a concrete implementation that performs the steps appropriate for com-
pleting that type of transaction. Figure 34.8 includes operation execute in the third com-
partment of classes BalanceInquiry, Withdrawal and Deposit, because each class has a
different concrete implementation of the overridden method.

Processing Transactions Polymorphically
Polymorphism provides the ATM with an elegant way to execute all transactions “in the gen-
eral.” For example, suppose a user chooses to perform a balance inquiry. The ATM sets a
Transaction reference to a new BalanceInquiry object. When the ATM uses its Transac-
tion reference to invoke method execute, BalanceInquiry’s version of execute is called.

This polymorphic approach also makes the system easily extensible. Should we wish to
create a new transaction type (e.g., funds transfer or bill payment), we would just create
an additional Transaction subclass that overrides the execute method with a version of
the method appropriate for executing the new transaction type. We would need to make
only minimal changes to the system code to allow users to choose the new transaction type
from the main menu and for the ATM to instantiate and execute objects of the new subclass.

Fig. 34.8 | Class diagram modeling generalization of superclass Transaction and
subclasses BalanceInquiry, Withdrawal and Deposit. Abstract class names (e.g.,
Transaction) and method names (e.g., execute in class Transaction) appear in italics.

Transaction

– accountNumber : Integer

+ getAccountNumber()
+ execute()

BalanceInquiry

+ execute()

Withdrawal

+ execute()

– amount : Double

Deposit

+ execute()

– amount : Double

jhtp_34_ATMPart2.fm Page 8 Tuesday, April 11, 2017 1:05 PM

34.3 Incorporating Inheritance and Polymorphism into the ATM System 34_9

The ATM could execute transactions of the new type using the current code, because it exe-
cutes all transactions polymorphically using a general Transaction reference.

Recall that an abstract class like Transaction is one for which you never intend to
instantiate objects. An abstract class simply declares common attributes and behaviors of
its subclasses in an inheritance hierarchy. Class Transaction defines the concept of what
it means to be a transaction that has an account number and executes. You may wonder
why we bother to include abstract method execute in class Transaction if it lacks a con-
crete implementation. Conceptually, we include it because it corresponds to the defining
behavior of all transactions—executing. Technically, we must include method execute in
superclass Transaction so that the ATM (or any other class) can polymorphically invoke
each subclass’s overridden version of this method through a Transaction reference. Also,
from a software engineering perspective, including an abstract method in a superclass
forces the implementor of the subclasses to override that method with concrete implemen-
tations in the subclasses, or else the subclasses, too, will be abstract, preventing objects of
those subclasses from being instantiated.

Additional Attribute of Classes Withdrawal and Deposit
Subclasses BalanceInquiry, Withdrawal and Deposit inherit attribute accountNumber
from superclass Transaction, but classes Withdrawal and Deposit contain the additional
attribute amount that distinguishes them from class BalanceInquiry. Classes Withdrawal
and Deposit require this additional attribute to store the amount of money that the user
wishes to withdraw or deposit. Class BalanceInquiry has no need for such an attribute
and requires only an account number to execute. Even though two of the three Transac-
tion subclasses share this attribute, we do not place it in superclass Transaction—we
place only features common to all the subclasses in the superclass, otherwise subclasses
could inherit attributes (and methods) that they do not need and should not have.

Class Diagram with Transaction Hierarchy Incorporated
Figure 34.9 presents an updated class diagram of our model that incorporates inheritance
and introduces class Transaction. We model an association between class ATM and class
Transaction to show that the ATM, at any given moment, either is executing a transaction
or is not (i.e., zero or one objects of type Transaction exist in the system at a time). Be-
cause a Withdrawal is a type of Transaction, we no longer draw an association line direct-
ly between class ATM and class Withdrawal. Subclass Withdrawal inherits superclass
Transaction’s association with class ATM. Subclasses BalanceInquiry and Deposit inherit
this association, too, so the previously omitted associations between ATM and classes Bal-
anceInquiry and Deposit no longer exist either.

 We also add an association between class Transaction and the BankDatabase
(Fig. 34.9). All Transactions require a reference to the BankDatabase so they can access
and modify account information. Because each Transaction subclass inherits this refer-
ence, we no longer model the association between class Withdrawal and the BankData-
base. Similarly, the previously omitted associations between the BankDatabase and classes
BalanceInquiry and Deposit no longer exist.

We show an association between class Transaction and the Screen. All Transac-
tions display output to the user via the Screen. Thus, we no longer include the association
previously modeled between Withdrawal and the Screen, although Withdrawal still par-
ticipates in associations with the CashDispenser and the Keypad. Our class diagram incor-

jhtp_34_ATMPart2.fm Page 9 Tuesday, April 11, 2017 1:05 PM

34_10 Chapter 34 ATM Case Study Part 2: Implementing the Design

porating inheritance also models Deposit and BalanceInquiry. We show associations
between Deposit and both the DepositSlot and the Keypad. Class BalanceInquiry takes
part in no associations other than those inherited from class Transaction—a
BalanceInquiry needs to interact only with the BankDatabase and with the Screen.

Figure 34.1 showed attributes and operations with visibility markers. Now in
Fig. 34.10 we present a modified class diagram that incorporates inheritance. This abbre-
viated diagram does not show inheritance relationships, but instead shows the attributes
and methods after we’ve employed inheritance in our system. To save space, as we did in
Fig. 33.12, we do not include those attributes shown by associations in Fig. 34.9—we do,
however, include them in the Java implementation in Section 34.4. We also omit all oper-
ation parameters, as we did in Fig. 34.1—incorporating inheritance does not affect the
parameters already modeled in Figs. 33.17–33.21.

Fig. 34.9 | Class diagram of the ATM system (incorporating inheritance). The abstract class
name Transaction appears in italics.

Software Engineering Observation 34.1
A complete class diagram shows all the associations among classes and all the attributes
and operations for each class. When the number of class attributes, methods and
associations is substantial (as in Figs. 34.9 and 34.10), a good practice that promotes
readability is to divide this information between two class diagrams—one focusing on
associations and the other on attributes and methods.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

11

1

0..*

0..11
0..1

0..1 0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Transaction

BalanceInquiry

Withdrawal
DepositSlot

ATM

CashDispenser

Screen

Deposit

Account

BankDatabase

jhtp_34_ATMPart2.fm Page 10 Tuesday, April 11, 2017 1:05 PM

34.3 Incorporating Inheritance and Polymorphism into the ATM System 34_11

Implementing the ATM System Design (Incorporating Inheritance)
In Section 34.2, we began implementing the ATM system design in Java code. We now
incorporate inheritance, using class Withdrawal as an example.

1. If a class A is a generalization of class B, then class B extends class A in the class
declaration. For example, abstract superclass Transaction is a generalization of
class Withdrawal. Figure 34.11 shows the declaration of class Withdrawal.

Fig. 34.10 | Class diagram with attributes and operations (incorporating inheritance). The
abstract class name Transaction and the abstract method name execute in class
Transaction appear in italics.

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal extends Transaction {
3 }

Fig. 34.11 | Java code for shell of class Withdrawal.

ATM

– userAuthenticated : Boolean = false

BalanceInquiry

CashDispenser

– count : Integer = 500

DepositSlot

Screen

Keypad
Withdrawal

– amount : Double

BankDatabase

Deposit

– amount : Double

+ authenticateUser() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

Account

– accountNumber : Integer
– pin : Integer
– availableBalance : Double
– totalBalance : Double

+ validatePIN() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

+ execute()

Transaction

– accountNumber : Integer

+ getAccountNumber()
+ execute()

+ execute()

+ displayMessage()

+ dispenseCash()
+ isSufficientCashAvailable() : Boolean

+ getinput() : Integer

+ execute()

+ isEnvelopeReceived() : Boolean

jhtp_34_ATMPart2.fm Page 11 Tuesday, April 11, 2017 1:05 PM

34_12 Chapter 34 ATM Case Study Part 2: Implementing the Design

2. If class A is an abstract class and class B is a subclass of class A, then class B must im-
plement the abstract methods of class A if class B is to be a concrete class. For example,
class Transaction contains abstract method execute, so class Withdrawal must
implement this method if we want to instantiate a Withdrawal object.
Figure 34.12 is the Java code for class Withdrawal from Fig. 34.9 and Fig. 34.10.
Class Withdrawal inherits field accountNumber from superclass Transaction, so
Withdrawal does not need to declare this field. Class Withdrawal also inherits ref-
erences to the Screen and the BankDatabase from its superclass Transaction, so
we do not include these references in our code. Figure 34.10 specifies attribute
amount and operation execute for class Withdrawal. Line 5 of Fig. 34.12 declares
a field for attribute amount. Lines 13–14 declare the shell of a method for operation
execute. Recall that subclass Withdrawal must provide a concrete implementation
of the abstract method execute in superclass Transaction. The keypad and
cashDispenser references (lines 6–7) are fields derived from Withdrawal’s associ-
ations in Fig. 34.9. The constructor in the complete working version of this class
will initialize these references to actual objects.

Congratulations on completing the case study’s design portion! We implement the
ATM system in Java code in Section 34.4. We recommend that you carefully read the
code and its description. The code is abundantly commented and precisely follows the
design with which you’re now familiar. The accompanying description is carefully written
to guide your understanding of the implementation based on the UML design. Mastering
this code is a wonderful culminating accomplishment after studying Sections 33.2–33.7
and 34.2–34.3.

Software Engineering Observation 34.2
Several UML modeling tools can convert UML-based designs into Java code, speeding the
implementation process considerably. For more information on these tools, visit our UML
Resource Center at www.deitel.com/UML/.

1 // Withdrawal.java
2 // Generated using the class diagrams in Fig. 34.9 and Fig. 34.10
3 public class Withdrawal extends Transaction {
4 // attributes
5 private double amount; // amount to withdraw
6 private Keypad keypad; // reference to keypad
7 private CashDispenser cashDispenser; // reference to cash dispenser
8
9 // no-argument constructor

10 public Withdrawal() { }
11
12 // method overriding execute
13 @Override
14 public void execute() { }
15 }

Fig. 34.12 | Java code for class Withdrawal based on Figs. 34.9 and 34.10.

jhtp_34_ATMPart2.fm Page 12 Tuesday, April 11, 2017 1:05 PM

 Self-Review Exercises for Section 34.3 34_13

Self-Review Exercises for Section 34.3
34.4 The UML uses an arrow with a to indicate a generalization relationship.

a) solid filled arrowhead
b) triangular hollow arrowhead
c) diamond-shaped hollow arrowhead
d) stick arrowhead

34.5 State whether the following statement is true or false, and if false, explain why: The UML
requires that we underline abstract class names and method names.

34.6 Write Java code to begin implementing the design for class Transaction specified in
Figs. 34.9 and 34.10. Be sure to include private reference-type attributes based on class Transac-
tion’s associations. Also be sure to include public get methods that provide access to any of these
private attributes that the subclasses require to perform their tasks.

34.4 ATM Case Study Implementation
This section contains the complete implementation of the ATM system. We consider the
classes in the order in which we identified them in Section 33.3—ATM, Screen, Keypad,
CashDispenser, DepositSlot, Account, BankDatabase, Transaction, BalanceInquiry,
Withdrawal and Deposit.

We apply the guidelines from Sections 34.2–34.3 to code these classes based on their
UML class diagrams of Figs. 34.9 and 34.10. To develop the bodies of methods, we refer
to the activity diagrams in Section 33.5 and the communication and sequence diagrams
presented in Section 33.7. Our ATM design does not specify all the program logic and
may not specify all the attributes and operations required to complete the ATM imple-
mentation. This is a normal part of the object-oriented design process. As we implement
the system, we complete the program logic and add attributes and behaviors as necessary
to construct the ATM system specified by the requirements document in Section 33.2.

We conclude the discussion by presenting a Java application (ATMCaseStudy) that
starts the ATM and puts the other classes in the system in use. Recall that we’re developing
a first version of the ATM system that runs on a personal computer and uses the com-
puter’s keyboard and monitor to approximate the ATM’s keypad and screen. We also sim-
ulate only the actions of the ATM’s cash dispenser and deposit slot. We attempt to
implement the system, however, so that real hardware versions of these devices could be
integrated without significant changes in the code.

34.4.1 Class ATM
Class ATM (Fig. 34.13) represents the ATM as a whole. Lines 5–11 implement the class’s
attributes. We determine all but one of these attributes from the UML class diagrams of
Figs. 34.9 and 34.10. We implement the UML Boolean attribute userAuthenticated in
Fig. 34.10 as a boolean in Java (line 5). Line 6 declares an attribute not found in our UML
design—an int attribute currentAccountNumber that keeps track of the account number
of the current authenticated user. We’ll soon see how the class uses this attribute. Lines 7–
11 declare reference-type attributes corresponding to the ATM class’s associations modeled
in the class diagram of Fig. 34.9. These attributes allow the ATM to access its parts (i.e.,
its Screen, Keypad, CashDispenser and DepositSlot) and interact with the bank’s ac-
count-information database (i.e., a BankDatabase object).

jhtp_34_ATMPart2.fm Page 13 Tuesday, April 11, 2017 1:05 PM

34_14 Chapter 34 ATM Case Study Part 2: Implementing the Design

1 // ATM.java
2 // Represents an automated teller machine
3
4 public class ATM {
5 private boolean userAuthenticated; // whether user is authenticated
6 private int currentAccountNumber; // current user's account number
7 private Screen screen; // ATM's screen
8 private Keypad keypad; // ATM's keypad
9 private CashDispenser cashDispenser; // ATM's cash dispenser

10 private DepositSlot depositSlot; // ATM's deposit slot
11 private BankDatabase bankDatabase; // account information database
12
13 // constants corresponding to main menu options
14 private static final int BALANCE_INQUIRY = 1;
15 private static final int WITHDRAWAL = 2;
16 private static final int DEPOSIT = 3;
17 private static final int EXIT = 4;
18
19 // no-argument ATM constructor initializes instance variables
20 public ATM() {
21 userAuthenticated = false; // user is not authenticated to start
22 currentAccountNumber = 0; // no current account number to start
23 screen = new Screen(); // create screen
24 keypad = new Keypad(); // create keypad
25 cashDispenser = new CashDispenser(); // create cash dispenser
26 depositSlot = new DepositSlot(); // create deposit slot
27 bankDatabase = new BankDatabase(); // create acct info database
28 }
29
30 // start ATM
31 public void run() {
32 // welcome and authenticate user; perform transactions
33 while (true) {
34 // loop while user is not yet authenticated
35 while (!userAuthenticated) {
36 screen.displayMessageLine("\nWelcome!");
37 authenticateUser(); // authenticate user
38 }
39
40 performTransactions(); // user is now authenticated
41 userAuthenticated = false; // reset before next ATM session
42 currentAccountNumber = 0; // reset before next ATM session
43 screen.displayMessageLine("\nThank you! Goodbye!");
44 }
45 }
46
47 // attempts to authenticate user against database
48 private void authenticateUser() {
49 screen.displayMessage("\nPlease enter your account number: ");
50 int accountNumber = keypad.getInput(); // input account number
51 screen.displayMessage("\nEnter your PIN: "); // prompt for PIN
52 int pin = keypad.getInput(); // input PIN
53

Fig. 34.13 | Class ATM represents the ATM. (Part 1 of 3.)

jhtp_34_ATMPart2.fm Page 14 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_15

54 // set userAuthenticated to boolean value returned by database
55 userAuthenticated =
56 bankDatabase.authenticateUser(accountNumber, pin);
57
58 // check whether authentication succeeded
59 if (userAuthenticated) {
60 currentAccountNumber = accountNumber; // save user's account #
61 }
62 else {
63 screen.displayMessageLine(
64 "Invalid account number or PIN. Please try again.");
65 }
66 }
67
68 // display the main menu and perform transactions
69 private void performTransactions() {
70 // local variable to store transaction currently being processed
71 Transaction currentTransaction = null;
72
73 boolean userExited = false; // user has not chosen to exit
74
75 // loop while user has not chosen option to exit system
76 while (!userExited) {
77 // show main menu and get user selection
78 int mainMenuSelection = displayMainMenu();
79
80 // decide how to proceed based on user's menu selection
81 switch (mainMenuSelection) {
82 // user chose to perform one of three transaction types
83 case BALANCE_INQUIRY:
84 case WITHDRAWAL:
85 case DEPOSIT:
86
87 // initialize as new object of chosen type
88 currentTransaction =
89 createTransaction(mainMenuSelection);
90
91 currentTransaction.execute(); // execute transaction
92 break;
93 case EXIT: // user chose to terminate session
94 screen.displayMessageLine("\nExiting the system...");
95 userExited = true; // this ATM session should end
96 break;
97 default: // user did not enter an integer from 1-4
98 screen.displayMessageLine(
99 "\nYou did not enter a valid selection. Try again.");
100 break;
101 }
102 }
103 }
104

Fig. 34.13 | Class ATM represents the ATM. (Part 2 of 3.)

jhtp_34_ATMPart2.fm Page 15 Tuesday, April 11, 2017 1:05 PM

34_16 Chapter 34 ATM Case Study Part 2: Implementing the Design

Lines 14–17 declare integer constants that correspond to the four options in the
ATM’s main menu (i.e., balance inquiry, withdrawal, deposit and exit). Lines 20–28
declare the constructor, which initializes the class’s attributes. When an ATM object is first
created, no user is authenticated, so line 21 initializes userAuthenticated to false. Like-
wise, line 22 initializes currentAccountNumber to 0 because there’s no current user yet.
Lines 23–26 instantiate new objects to represent the ATM’s parts. Recall that class ATM has
composition relationships with classes Screen, Keypad, CashDispenser and DepositSlot,
so class ATM is responsible for their creation. Line 27 creates a new BankDatabase. [Note:
If this were a real ATM system, the ATM class would receive a reference to an existing data-
base object created by the bank. However, in this implementation we’re only simulating
the bank’s database, so class ATM creates the BankDatabase object with which it interacts.]

ATM Method run
The class diagram of Fig. 34.10 does not list any operations for class ATM. We now imple-
ment one operation (i.e., public method) in class ATM that allows an external client of the

105 // display the main menu and return an input selection
106 private int displayMainMenu() {
107 screen.displayMessageLine("\nMain menu:");
108 screen.displayMessageLine("1 - View my balance");
109 screen.displayMessageLine("2 - Withdraw cash");
110 screen.displayMessageLine("3 - Deposit funds");
111 screen.displayMessageLine("4 - Exit\n");
112 screen.displayMessage("Enter a choice: ");
113 return keypad.getInput(); // return user's selection
114 }
115
116 // return object of specified Transaction subclass
117 private Transaction createTransaction(int type) {
118 Transaction temp = null; // temporary Transaction variable
119
120 // determine which type of Transaction to create
121 switch (type) {
122 case BALANCE_INQUIRY: // create new BalanceInquiry transaction
123 temp = new BalanceInquiry(
124 currentAccountNumber, screen, bankDatabase);
125 break;
126 case WITHDRAWAL: // create new Withdrawal transaction
127 temp = new Withdrawal(currentAccountNumber, screen,
128 bankDatabase, keypad, cashDispenser);
129 break;
130 case DEPOSIT: // create new Deposit transaction
131 temp = new Deposit(currentAccountNumber, screen,
132 bankDatabase, keypad, depositSlot);
133 break;
134 }
135
136 return temp; // return the newly created object
137 }
138 }

Fig. 34.13 | Class ATM represents the ATM. (Part 3 of 3.)

jhtp_34_ATMPart2.fm Page 16 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_17

class (i.e., class ATMCaseStudy) to tell the ATM to run. ATM method run (lines 31–45) uses
an infinite loop to repeatedly welcome a user, attempt to authenticate the user and, if au-
thentication succeeds, allow the user to perform transactions. After an authenticated user
performs the desired transactions and chooses to exit, the ATM resets itself, displays a
goodbye message to the user and restarts the process. We use an infinite loop here to sim-
ulate the fact that an ATM appears to run continuously until the bank turns it off (an ac-
tion beyond the user’s control). An ATM user has the option to exit the system but not
the ability to turn off the ATM completely.

Authenticating a User
In method run’s infinite loop, lines 35–38 cause the ATM to repeatedly welcome and at-
tempt to authenticate the user as long as the user has not been authenticated (i.e., !user-
Authenticated is true). Line 36 invokes method displayMessageLine of the ATM’s
screen to display a welcome message. Like Screen method displayMessage designed in
the case study, method displayMessageLine (declared in lines 11–13 of Fig. 34.14) dis-
plays a message to the user, but this method also outputs a newline after the message.
We’ve added this method during implementation to give class Screen’s clients more con-
trol over the placement of displayed messages. Line 37 invokes class ATM’s private utility
method authenticateUser (declared in lines 48–66) to attempt to authenticate the user.

We refer to the requirements document to determine the steps necessary to authenti-
cate the user before allowing transactions to occur. Line 49 of method authenticateUser
invokes method displayMessage of the screen to prompt the user to enter an account
number. Line 50 invokes method getInput of the keypad to obtain the user’s input, then
stores the integer value entered by the user in a local variable accountNumber. Method
authenticateUser next prompts the user to enter a PIN (line 51), and stores the PIN
input by the user in a local variable pin (line 52). Next, lines 55–56 attempt to authenti-
cate the user by passing the accountNumber and pin entered by the user to the bankData-
base’s authenticateUser method. Class ATM sets its userAuthenticated attribute to the
boolean value returned by this method—userAuthenticated becomes true if authenti-
cation succeeds (i.e., accountNumber and pin match those of an existing Account in bank-
Database) and remains false otherwise. If userAuthenticated is true, line 60 saves the
account number entered by the user (i.e., accountNumber) in the ATM attribute current-
AccountNumber. The other ATM methods use this variable whenever an ATM session
requires access to the user’s account number. If userAuthenticated is false, lines 63–64
use the screen’s displayMessageLine method to indicate that an invalid account number
and/or PIN was entered and the user must try again. We set currentAccountNumber only
after authenticating the user’s account number and the associated PIN—if the database
could not authenticate the user, currentAccountNumber remains 0.

After method run attempts to authenticate the user (line 37), if userAuthenticated
is still false, the while loop in lines 35–38 executes again. If userAuthenticated is now
true, the loop terminates and control continues with line 40, which calls class ATM’s utility
method performTransactions.

Performing Transactions
Method performTransactions (lines 69–103) carries out an ATM session for an authen-
ticated user. Line 71 declares a local Transaction variable to which we’ll assign a Balance-

jhtp_34_ATMPart2.fm Page 17 Tuesday, April 11, 2017 1:05 PM

34_18 Chapter 34 ATM Case Study Part 2: Implementing the Design

Inquiry, Withdrawal or Deposit object representing the ATM transaction the user
selected. We use a Transaction variable here to allow us to take advantage of polymor-
phism. Also, we name this variable after the role name included in the class diagram of
Fig. 33.7—currentTransaction. Line 73 declares another local variable—a boolean
called userExited that keeps track of whether the user has chosen to exit. This variable
controls a while loop (lines 76–102) that allows the user to execute an unlimited number
of transactions before choosing to exit. Within this loop, line 78 displays the main menu
and obtains the user’s menu selection by calling an ATM utility method displayMainMenu
(declared in lines 106–114). This method displays the main menu by invoking methods
of the ATM’s screen and returns a menu selection obtained from the user through the ATM’s
keypad. Line 78 stores the user’s selection returned by displayMainMenu in local variable
mainMenuSelection.

After obtaining a main menu selection, method performTransactions uses a switch
statement (lines 81–101) to respond to the selection appropriately. If mainMenuSelection
is equal to any of the three integer constants representing transaction types (i.e., if the user
chose to perform a transaction), lines 88–89 call utility method createTransaction
(declared in lines 117–137) to return a newly instantiated object of the type that corre-
sponds to the selected transaction. Variable currentTransaction is assigned the reference
returned by createTransaction, then line 91 invokes method execute of this transaction
to execute it. We’ll discuss Transaction method execute and the three Transaction sub-
classes shortly. We assign the Transaction variable currentTransaction an object of one
of the three Transaction subclasses so that we can execute transactions polymorphically.
For example, if the user chooses to perform a balance inquiry, mainMenuSelection equals
BALANCE_INQUIRY, leading createTransaction to return a BalanceInquiry object. Thus,
currentTransaction refers to a BalanceInquiry, and invoking currentTransac-
tion.execute() results in BalanceInquiry’s version of execute being called.

Creating a Transaction
Method createTransaction (lines 117–137) uses a switch statement to instantiate a new
Transaction subclass object of the type indicated by the parameter type. Recall that
method performTransactions passes mainMenuSelection to this method only when
mainMenuSelection contains a value corresponding to one of the three transaction types.
Therefore type is BALANCE_INQUIRY, WITHDRAWAL or DEPOSIT. Each case in the switch
statement instantiates a new object by calling the appropriate Transaction subclass con-
structor. Each constructor has a unique parameter list, based on the specific data required
to initialize the subclass object. A BalanceInquiry requires only the account number of
the current user and references to the ATM’s screen and the bankDatabase. In addition to
these parameters, a Withdrawal requires references to the ATM’s keypad and cashDispens-
er, and a Deposit requires references to the ATM’s keypad and depositSlot. We discuss
the transaction classes in more detail in Sections 34.4.8–34.4.11.

Exiting the Main Menu and Processing Invalid Selections
After executing a transaction (line 91 in performTransactions), userExited remains
false and lines 76–102 repeat, returning the user to the main menu. However, if a user
does not perform a transaction and instead selects the main menu option to exit, line 95
sets userExited to true, causing the condition of the while loop (!userExited) to be-

jhtp_34_ATMPart2.fm Page 18 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_19

come false. This while is the final statement of method performTransactions, so con-
trol returns to the calling method run. If the user enters an invalid main menu selection
(i.e., not an integer from 1–4), lines 98–99 display an appropriate error message, userEx-
ited remains false and the user returns to the main menu to try again.

Awaiting the Next ATM User
When performTransactions returns control to method run, the user has chosen to exit
the system, so lines 41–42 reset the ATM’s attributes userAuthenticated and current-
AccountNumber to prepare for the next ATM user. Line 43 displays a goodbye message be-
fore the ATM starts over and welcomes the next user.

34.4.2 Class Screen
Class Screen (Fig. 34.14) represents the screen of the ATM and encapsulates all aspects of
displaying output to the user. Class Screen approximates a real ATM’s screen with a com-
puter monitor and outputs text messages using standard console output methods
System.out.print, System.out.println and System.out.printf. In this case study, we
designed class Screen to have one operation—displayMessage. For greater flexibility in
displaying messages to the Screen, we now declare three Screen methods—displayMes-

sage, displayMessageLine and displayDollarAmount.

Method displayMessage (lines 6–8) takes a String argument and prints it to the
console. The cursor stays on the same line, making this method appropriate for displaying
prompts to the user. Method displayMessageLine (lines 11–13) does the same using
System.out.println, which outputs a newline to move the cursor to the next line.
Finally, method displayDollarAmount (lines 16–18) outputs a properly formatted dollar
amount (e.g., $1,234.56). Line 17 uses System.out.printf to output a double value for-
matted with commas to increase readability and two decimal places.

1 // Screen.java
2 // Represents the screen of the ATM
3
4 public class Screen {
5 // display a message without a carriage return
6 public void displayMessage(String message) {
7 System.out.print(message);
8 }
9

10 // display a message with a carriage return
11 public void displayMessageLine(String message) {
12 System.out.println(message);
13 }
14
15 // displays a dollar amount
16 public void displayDollarAmount(double amount) {
17 System.out.printf("$%,.2f", amount);
18 }
19 }

Fig. 34.14 | Class Screen represents the screen of the ATM.

jhtp_34_ATMPart2.fm Page 19 Tuesday, April 11, 2017 1:05 PM

34_20 Chapter 34 ATM Case Study Part 2: Implementing the Design

34.4.3 Class Keypad
Class Keypad (Fig. 34.15) represents the keypad of the ATM and is responsible for receiv-
ing all user input. Recall that we’re simulating this hardware, so we use the computer’s key-
board to approximate the keypad. We use class Scanner to obtain console input from the
user. A computer keyboard contains many keys not found on the ATM’s keypad. Howev-
er, we assume that the user presses only the keys on the computer keyboard that also appear
on the keypad—the keys numbered 0–9 and the Enter key.

Line 6 declares Scanner variable input as an instance variable. Line 10 in the con-
structor creates a new Scanner object that reads input from the standard input stream
(System.in) and assigns the object’s reference to variable input. Method getInput (lines
14–16) invokes Scanner method nextInt (line 15) to return the next integer input by the
user. [Note: Method nextInt can throw an InputMismatchException if the user enters
non-integer input. Because the real ATM’s keypad permits only integer input, we assume
that no exception will occur and do not attempt to fix this problem. See Chapter 11,
Exception Handling: A Deeper Look, for information on catching exceptions.] Recall that
nextInt obtains all the input used by the ATM. Keypad’s getInput method simply
returns the integer input by the user. If a client of class Keypad requires input that satisfies
some criteria (i.e., a number corresponding to a valid menu option), the client must per-
form the error checking.

34.4.4 Class CashDispenser
Class CashDispenser (Fig. 34.16) represents the cash dispenser of the ATM. Line 6 de-
clares constant INITIAL_COUNT, which indicates the initial count of bills in the cash dis-
penser when the ATM starts (i.e., 500). Line 7 implements attribute count (modeled in
Fig. 34.10), which keeps track of the number of bills remaining in the CashDispenser at
any time. The constructor (lines 10–12) sets count to the initial count. CashDispenser
has two public methods—dispenseCash (lines 15–18) and isSufficientCashAvail-

1 // Keypad.java
2 // Represents the keypad of the ATM
3 import java.util.Scanner; // program uses Scanner to obtain user input
4
5 public class Keypad {
6 private Scanner input; // reads data from the command line
7
8 // no-argument constructor initializes the Scanner
9 public Keypad() {

10 input = new Scanner(System.in);
11 }
12
13 // return an integer value entered by user
14 public int getInput() {
15 return input.nextInt(); // we assume that user enters an integer
16 }
17 }

Fig. 34.15 | Class Keypad represents the ATM’s keypad.

jhtp_34_ATMPart2.fm Page 20 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_21

able (lines 21–30). The class trusts that a client (i.e., Withdrawal) calls dispenseCash
only after establishing that sufficient cash is available by calling isSufficientCashAvail-
able. Thus, dispenseCash simply simulates dispensing the requested amount without
checking whether sufficient cash is available.

Method isSufficientCashAvailable has a parameter amount that specifies the
amount of cash in question. Line 22 calculates the number of $20 bills required to dis-
pense the specified amount. The ATM allows the user to choose only withdrawal amounts
that are multiples of $20, so we divide amount by 20 to obtain the number of billsRe-
quired. Lines 24–29 return true if the CashDispenser’s count is greater than or equal to
billsRequired (i.e., enough bills are available) and false otherwise (i.e., not enough
bills). For example, if a user wishes to withdraw $80 (i.e., billsRequired is 4), but only
three bills remain (i.e., count is 3), the method returns false.

Method dispenseCash (lines 15–18) simulates cash dispensing. If our system were
hooked up to a real hardware cash dispenser, this method would interact with the device
to physically dispense cash. Our version of the method simply decreases the count of bills
remaining by the number required to dispense the specified amount. It’s the responsibility

1 // CashDispenser.java
2 // Represents the cash dispenser of the ATM
3
4 public class CashDispenser {
5 // the default initial number of bills in the cash dispenser
6 private final static int INITIAL_COUNT = 500;
7 private int count; // number of $20 bills remaining
8
9 // no-argument CashDispenser constructor initializes count to default

10 public CashDispenser() {
11 count = INITIAL_COUNT; // set count attribute to default
12 }
13
14 // simulates dispensing of specified amount of cash
15 public void dispenseCash(int amount) {
16 int billsRequired = amount / 20; // number of $20 bills required
17 count -= billsRequired; // update the count of bills
18 }
19
20 // indicates whether cash dispenser can dispense desired amount
21 public boolean isSufficientCashAvailable(int amount) {
22 int billsRequired = amount / 20; // number of $20 bills required
23
24 if (count >= billsRequired) {
25 return true; // enough bills available
26 }
27 else {
28 return false; // not enough bills available
29 }
30 }
31 }

Fig. 34.16 | Class CashDispenser represents the ATM’s cash dispenser.

jhtp_34_ATMPart2.fm Page 21 Tuesday, April 11, 2017 1:05 PM

34_22 Chapter 34 ATM Case Study Part 2: Implementing the Design

of the client of the class (i.e., Withdrawal) to inform the user that cash has been dis-
pensed—CashDispenser cannot interact directly with Screen.

34.4.5 Class DepositSlot
Class DepositSlot (Fig. 34.17) represents the ATM’s deposit slot. Like class CashDis-
penser, class DepositSlot merely simulates the functionality of a real hardware deposit
slot. DepositSlot has no attributes and only one method—isEnvelopeReceived—which
indicates whether a deposit envelope was received.

Recall from the requirements document that the ATM allows the user up to two min-
utes to insert an envelope. The current version of method isEnvelopeReceived simply
returns true immediately (line 8), because this is only a software simulation, and we
assume that the user has inserted an envelope within the required time frame. If an actual
hardware deposit slot were connected to our system, method isEnvelopeReceived might
be implemented to wait for a maximum of two minutes to receive a signal from the hard-
ware deposit slot indicating that the user has indeed inserted a deposit envelope. If
isEnvelopeReceived were to receive such a signal within two minutes, the method would
return true. If two minutes elapsed and the method still had not received a signal, then
the method would return false.

34.4.6 Class Account
Class Account (Fig. 34.18) represents a bank account. Each Account has four attributes
(modeled in Fig. 34.10)—accountNumber, pin, availableBalance and totalBalance.
Lines 5–8 implement these attributes as private fields. Variable availableBalance rep-
resents the amount of funds available for withdrawal. Variable totalBalance represents
the amount of funds available, plus the amount of deposited funds still pending confirma-
tion or clearance.

1 // DepositSlot.java
2 // Represents the deposit slot of the ATM
3
4 public class DepositSlot {
5 // indicates whether envelope was received (always returns true,
6 // because this is only a software simulation of a real deposit slot)
7 public boolean isEnvelopeReceived() {
8 return true; // deposit envelope was received
9 }

10 }

Fig. 34.17 | Class DepositSlot represents the ATM’s deposit slot.

1 // Account.java
2 // Represents a bank account
3
4 public class Account {
5 private int accountNumber; // account number

Fig. 34.18 | Class Account represents a bank account. (Part 1 of 2.)

jhtp_34_ATMPart2.fm Page 22 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_23

The Account class has a constructor (lines 11–17) that takes an account number, the
PIN established for the account, the account’s initial available balance and the account’s

6 private int pin; // PIN for authentication
7 private double availableBalance; // funds available for withdrawal
8 private double totalBalance; // funds available + pending deposits
9

10 // Account constructor initializes attributes
11 public Account(int theAccountNumber, int thePIN,
12 double theAvailableBalance, double theTotalBalance) {
13 accountNumber = theAccountNumber;
14 pin = thePIN;
15 availableBalance = theAvailableBalance;
16 totalBalance = theTotalBalance;
17 }
18
19 // determines whether a user-specified PIN matches PIN in Account
20 public boolean validatePIN(int userPIN) {
21 if (userPIN == pin) {
22 return true;
23 }
24 else {
25 return false;
26 }
27 }
28
29 // returns available balance
30 public double getAvailableBalance() {
31 return availableBalance;
32 }
33
34 // returns the total balance
35 public double getTotalBalance() {
36 return totalBalance;
37 }
38
39 // credits an amount to the account
40 public void credit(double amount) {
41 totalBalance += amount; // add to total balance
42 }
43
44 // debits an amount from the account
45 public void debit(double amount) {
46 availableBalance -= amount; // subtract from available balance
47 totalBalance -= amount; // subtract from total balance
48 }
49
50 // returns account number
51 public int getAccountNumber() {
52 return accountNumber;
53 }
54 }

Fig. 34.18 | Class Account represents a bank account. (Part 2 of 2.)

jhtp_34_ATMPart2.fm Page 23 Tuesday, April 11, 2017 1:05 PM

34_24 Chapter 34 ATM Case Study Part 2: Implementing the Design

initial total balance as arguments. Lines 13–16 assign these values to the class’s attributes
(i.e., fields).

Method validatePIN (lines 20–27) determines whether a user-specified PIN (i.e.,
parameter userPIN) matches the PIN associated with the account (i.e., attribute pin).
Recall that we modeled this method’s parameter userPIN in Fig. 33.19. If the two PINs
match, the method returns true; otherwise, it returns false.

Methods getAvailableBalance (lines 30–32) and getTotalBalance (lines 35–37)
return the values of double attributes availableBalance and totalBalance, respectively.

Method credit (lines 40–42) adds an amount of money (i.e., parameter amount) to
an Account as part of a deposit transaction. This method adds the amount only to attribute
totalBalance. The money credited to an account during a deposit does not become avail-
able immediately, so we modify only the total balance. We assume that the bank updates
the available balance appropriately at a later time. Our implementation of class Account
includes only methods required for carrying out ATM transactions. Therefore, we omit
the methods that some other bank system would invoke to add to attribute available-
Balance (to confirm a deposit) or subtract from attribute totalBalance (to reject a
deposit).

Method debit (lines 45–48) subtracts an amount of money (i.e., parameter amount)
from an Account as part of a withdrawal transaction. This method subtracts the amount
from both attribute availableBalance and attribute totalBalance, because a withdrawal
affects both measures of an account balance.

Method getAccountNumber (lines 51–53) provides access to an Account’s account-
Number. We include this method in our implementation so that a client of the class (i.e.,
BankDatabase) can identify a particular Account. For example, BankDatabase contains
many Account objects, and it can invoke this method on each of its Account objects to
locate the one with a specific account number.

34.4.7 Class BankDatabase
Class BankDatabase (Fig. 34.19) models the bank’s database with which the ATM inter-
acts to access and modify a user’s account information. We study database access in
Chapter 24. For now we model the database as an array. An exercise in Chapter 24 asks
you to reimplement this portion of the ATM using an actual database.

1 // BankDatabase.java
2 // Represents the bank account information database
3
4 public class BankDatabase {
5 private Account[] accounts; // array of Accounts
6
7 // no-argument BankDatabase constructor initializes accounts
8 public BankDatabase() {
9 accounts = new Account[2]; // just 2 accounts for testing

10 accounts[0] = new Account(12345, 54321, 1000.0, 1200.0);
11 accounts[1] = new Account(98765, 56789, 200.0, 200.0);
12 }
13

Fig. 34.19 | Class BankDatabase represents the bank’s account information database. (Part 1 of 2.)

jhtp_34_ATMPart2.fm Page 24 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_25

We determine one reference-type attribute for class BankDatabase based on its compo-
sition relationship with class Account. Recall from Fig. 34.9 that a BankDatabase is com-
posed of zero or more objects of class Account. Line 5 implements attribute accounts—an

14 // retrieve Account object containing specified account number
15 private Account getAccount(int accountNumber) {
16 // loop through accounts searching for matching account number
17 for (Account currentAccount : accounts) {
18 // return current account if match found
19 if (currentAccount.getAccountNumber() == accountNumber) {
20 return currentAccount;
21 }
22 }
23
24 return null; // if no matching account was found, return null
25 }
26
27 // determine whether user-specified account number and PIN match
28 // those of an account in the database
29 public boolean authenticateUser(int userAccountNumber, int userPIN) {
30 // attempt to retrieve the account with the account number
31 Account userAccount = getAccount(userAccountNumber);
32
33 // if account exists, return result of Account method validatePIN
34 if (userAccount != null) {
35 return userAccount.validatePIN(userPIN);
36 }
37 else {
38 return false; // account number not found, so return false
39 }
40 }
41
42 // return available balance of Account with specified account number
43 public double getAvailableBalance(int userAccountNumber) {
44 return getAccount(userAccountNumber).getAvailableBalance();
45 }
46
47 // return total balance of Account with specified account number
48 public double getTotalBalance(int userAccountNumber) {
49 return getAccount(userAccountNumber).getTotalBalance();
50 }
51
52 // credit an amount to Account with specified account number
53 public void credit(int userAccountNumber, double amount) {
54 getAccount(userAccountNumber).credit(amount);
55 }
56
57 // debit an amount from Account with specified account number
58 public void debit(int userAccountNumber, double amount) {
59 getAccount(userAccountNumber).debit(amount);
60 }
61 }

Fig. 34.19 | Class BankDatabase represents the bank’s account information database. (Part 2 of 2.)

jhtp_34_ATMPart2.fm Page 25 Tuesday, April 11, 2017 1:05 PM

34_26 Chapter 34 ATM Case Study Part 2: Implementing the Design

array of Account objects—to implement this composition relationship. Class BankData-
base’s no-argument constructor (lines 8–12) initializes accounts with new Account objects.
For the sake of testing the system, we declare accounts to hold just two array elements,
which we instantiate as new Account objects with test data. The Account constructor has
four parameters—the account number, the PIN assigned to the account, the initial available
balance and the initial total balance. Recall that class BankDatabase serves as an intermediary
between class ATM and the actual Account objects that contain a user’s account information.
Thus, the methods of class BankDatabase do nothing more than invoke the corresponding
methods of the Account object belonging to the current ATM user.

We include private utility method getAccount (lines 15–25) to allow the Bank-
Database to obtain a reference to a particular Account within array accounts. To locate
the user’s Account, the BankDatabase compares the value returned by method get-
AccountNumber for each element of accounts to a specified account number until it finds
a match. Lines 17–22 traverse the accounts array. If the account number of currentAc-
count equals the value of parameter accountNumber, the method immediately returns the
currentAccount. If no account has the given account number, then line 24 returns null.

Method authenticateUser (lines 29–40) proves or disproves the identity of an ATM
user. This method takes a user-specified account number and PIN as arguments and indi-
cates whether they match the account number and PIN of an Account in the database.
Line 31 calls method getAccount, which returns either an Account with userAccount-
Number as its account number or null to indicate that userAccountNumber is invalid. If
getAccount returns an Account object, line 35 returns the boolean value returned by that
object’s validatePIN method. BankDatabase’s authenticateUser method does not per-
form the PIN comparison itself—rather, it forwards userPIN to the Account object’s val-
idatePIN method to do so. The value returned by Account method validatePIN indicates
whether the user-specified PIN matches the PIN of the user’s Account, so method authen-
ticateUser simply returns this value to the class’s client (i.e., ATM).

BankDatabase trusts the ATM to invoke method authenticateUser and receive a
return value of true before allowing the user to perform transactions. BankDatabase also
trusts that each Transaction object created by the ATM contains the valid account number
of the current authenticated user and that this is the account number passed to the
remaining BankDatabase methods as argument userAccountNumber. Methods getAvail-
ableBalance (lines 43–45), getTotalBalance (lines 48–50), credit (lines 53–55) and
debit (lines 58–60) therefore simply retrieve the user’s Account object with utility method
getAccount, then invoke the appropriate Account method on that object. We know that
the calls to getAccount from these methods will never return null, because userAccount-
Number must refer to an existing Account. Methods getAvailableBalance and getTotal-
Balance return the values returned by the corresponding Account methods. Also, credit
and debit simply redirect parameter amount to the Account methods they invoke.

34.4.8 Class Transaction
Class Transaction (Fig. 34.20) is an abstract superclass that represents the notion of an
ATM transaction. It contains the common features of subclasses BalanceInquiry, With-
drawal and Deposit. This class expands upon the “skeleton” code first developed in
Section 34.3. Line 4 declares this class to be abstract. Lines 5–7 declare the class’s pri-
vate attributes. Recall from the class diagram of Fig. 34.10 that class Transaction con-

jhtp_34_ATMPart2.fm Page 26 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_27

tains an attribute accountNumber (line 5) that indicates the account involved in the
Transaction. We derive attributes screen (line 6) and bankDatabase (line 7) from class
Transaction’s associations modeled in Fig. 34.9—all transactions require access to the
ATM’s screen and the bank’s database.

Class Transaction’s constructor (lines 10–16) takes as arguments the current user’s
account number and references to the ATM’s screen and the bank’s database. Because
Transaction is an abstract class, this constructor will be called only by the constructors of
the Transaction subclasses.

The class has three public get methods—getAccountNumber (lines 19–21), get-
Screen (lines 24–26) and getBankDatabase (lines 29–31). These are inherited by Trans-
action subclasses and used to gain access to class Transaction’s private attributes.

Class Transaction also declares abstract method execute (line 34). It does not
make sense to provide this method’s implementation, because a generic transaction cannot

1 // Transaction.java
2 // Abstract superclass Transaction represents an ATM transaction
3
4 public abstract class Transaction {
5 private int accountNumber; // indicates account involved
6 private Screen screen; // ATM's screen
7 private BankDatabase bankDatabase; // account info database
8
9 // Transaction constructor invoked by subclasses using super()

10 public Transaction(int userAccountNumber, Screen atmScreen,
11 BankDatabase atmBankDatabase) {
12
13 accountNumber = userAccountNumber;
14 screen = atmScreen;
15 bankDatabase = atmBankDatabase;
16 }
17
18 // return account number
19 public int getAccountNumber() {
20 return accountNumber;
21 }
22
23 // return reference to screen
24 public Screen getScreen() {
25 return screen;
26 }
27
28 // return reference to bank database
29 public BankDatabase getBankDatabase() {
30 return bankDatabase;
31 }
32
33 // perform the transaction (overridden by each subclass)
34 abstract public void execute();
35 }

Fig. 34.20 | Abstract superclass Transaction represents an ATM transaction.

jhtp_34_ATMPart2.fm Page 27 Tuesday, April 11, 2017 1:05 PM

34_28 Chapter 34 ATM Case Study Part 2: Implementing the Design

be executed. So, we declare this method abstract and force each Transaction subclass to
provide a concrete implementation that executes that particular type of transaction.

34.4.9 Class BalanceInquiry
Class BalanceInquiry (Fig. 34.21) extends Transaction and represents a balance-inquiry
ATM transaction. BalanceInquiry does not have any attributes of its own, but it inherits
Transaction attributes accountNumber, screen and bankDatabase, which are accessible
through Transaction’s public get methods. The BalanceInquiry constructor takes argu-
ments corresponding to these attributes and simply forwards them to Transaction’s con-
structor using super (line 9).

Class BalanceInquiry overrides Transaction’s abstract method execute to provide
a concrete implementation (lines 13–34) that performs the steps involved in a balance

1 // BalanceInquiry.java
2 // Represents a balance inquiry ATM transaction
3
4 public class BalanceInquiry extends Transaction {
5 // BalanceInquiry constructor
6 public BalanceInquiry(int userAccountNumber, Screen atmScreen,
7 BankDatabase atmBankDatabase) {
8
9 super(userAccountNumber, atmScreen, atmBankDatabase);

10 }
11
12 // performs the transaction
13 @Override
14 public void execute() {
15 // get references to bank database and screen
16 BankDatabase bankDatabase = getBankDatabase();
17 Screen screen = getScreen();
18
19 // get the available balance for the account involved
20 double availableBalance =
21 bankDatabase.getAvailableBalance(getAccountNumber());
22
23 // get the total balance for the account involved
24 double totalBalance =
25 bankDatabase.getTotalBalance(getAccountNumber());
26
27 // display the balance information on the screen
28 screen.displayMessageLine("\nBalance Information:");
29 screen.displayMessage(" - Available balance: ");
30 screen.displayDollarAmount(availableBalance);
31 screen.displayMessage("\n - Total balance: ");
32 screen.displayDollarAmount(totalBalance);
33 screen.displayMessageLine("");
34 }
35 }

Fig. 34.21 | Class BalanceInquiry represents a balance-inquiry ATM transaction.

jhtp_34_ATMPart2.fm Page 28 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_29

inquiry. Lines 16–17 get references to the bank database and the ATM’s screen by
invoking methods inherited from superclass Transaction. Lines 20–21 retrieve the avail-
able balance of the account involved by invoking method getAvailableBalance of bank-
Database. Line 21 uses inherited method getAccountNumber to get the account number
of the current user, which it then passes to getAvailableBalance. Lines 24–25 retrieve
the total balance of the current user’s account. Lines 28–33 display the balance informa-
tion on the ATM’s screen. Recall that displayDollarAmount takes a double argument and
outputs it to the screen formatted as a dollar amount. For example, if a user’s available-
Balance is 1000.5, line 30 outputs $1,000.50. Line 33 inserts a blank line of output to
separate the balance information from subsequent output (i.e., the main menu repeated
by class ATM after executing the BalanceInquiry).

34.4.10 Class Withdrawal
Class Withdrawal (Fig. 34.22) extends Transaction and represents a withdrawal ATM
transaction. This class expands upon the “skeleton” code for this class developed in
Fig. 34.12. Recall from the class diagram of Fig. 34.10 that class Withdrawal has one at-
tribute, amount, which line 5 implements as an int field. Figure 34.9 models associations
between class Withdrawal and classes Keypad and CashDispenser, for which lines 6–7 im-
plement reference-type attributes keypad and cashDispenser, respectively. Line 10 de-
clares a constant corresponding to the cancel menu option. We’ll soon discuss how the
class uses this constant.

1 // Withdrawal.java
2 // Represents a withdrawal ATM transaction
3
4 public class Withdrawal extends Transaction {
5 private int amount; // amount to withdraw
6 private Keypad keypad; // reference to keypad
7 private CashDispenser cashDispenser; // reference to cash dispenser
8
9 // constant corresponding to menu option to cancel

10 private final static int CANCELED = 6;
11
12 // Withdrawal constructor
13 public Withdrawal(int userAccountNumber, Screen atmScreen,
14 BankDatabase atmBankDatabase, Keypad atmKeypad,
15 CashDispenser atmCashDispenser) {
16
17 // initialize superclass variables
18 super(userAccountNumber, atmScreen, atmBankDatabase);
19
20 // initialize references to keypad and cash dispenser
21 keypad = atmKeypad;
22 cashDispenser = atmCashDispenser;
23 }
24

Fig. 34.22 | Class Withdrawal represents a withdrawal ATM transaction. (Part 1 of 3.)

jhtp_34_ATMPart2.fm Page 29 Tuesday, April 11, 2017 1:05 PM

34_30 Chapter 34 ATM Case Study Part 2: Implementing the Design

25 // perform transaction
26 @Override
27 public void execute() {
28 boolean cashDispensed = false; // cash was not dispensed yet
29 double availableBalance; // amount available for withdrawal
30
31 // get references to bank database and screen
32 BankDatabase bankDatabase = getBankDatabase();
33 Screen screen = getScreen();
34
35 // loop until cash is dispensed or the user cancels
36 do {
37 // obtain a chosen withdrawal amount from the user
38 amount = displayMenuOfAmounts();
39
40 // check whether user chose a withdrawal amount or canceled
41 if (amount != CANCELED) {
42 // get available balance of account involved
43 availableBalance =
44 bankDatabase.getAvailableBalance(getAccountNumber());
45
46 // check whether the user has enough money in the account
47 if (amount <= availableBalance) {
48 // check whether the cash dispenser has enough money
49 if (cashDispenser.isSufficientCashAvailable(amount)) {
50 // update the account involved to reflect the withdrawal
51 bankDatabase.debit(getAccountNumber(), amount);
52
53 cashDispenser.dispenseCash(amount); // dispense cash
54 cashDispensed = true; // cash was dispensed
55
56 // instruct user to take cash
57 screen.displayMessageLine("\nYour cash has been" +
58 " dispensed. Please take your cash now.");
59 }
60 else { // cash dispenser does not have enough cash
61 screen.displayMessageLine(
62 "\nInsufficient cash available in the ATM." +
63 "\n\nPlease choose a smaller amount.");
64 }
65 }
66 else { // not enough money available in user's account
67 screen.displayMessageLine(
68 "\nInsufficient funds in your account." +
69 "\n\nPlease choose a smaller amount.");
70 }
71 }
72 else { // user chose cancel menu option
73 screen.displayMessageLine("\nCanceling transaction...");
74 return; // return to main menu because user canceled
75 }
76 } while (!cashDispensed);
77 }

Fig. 34.22 | Class Withdrawal represents a withdrawal ATM transaction. (Part 2 of 3.)

jhtp_34_ATMPart2.fm Page 30 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_31

Class Withdrawal’s constructor (lines 13–23) has five parameters. It uses super to
pass parameters userAccountNumber, atmScreen and atmBankDatabase to superclass
Transaction’s constructor to set the attributes that Withdrawal inherits from Transac-
tion. The constructor also takes references atmKeypad and atmCashDispenser as param-
eters and assigns them to reference-type attributes keypad and cashDispenser.

78
79 // display a menu of withdrawal amounts and the option to cancel;
80 // return the chosen amount or 0 if the user chooses to cancel
81 private int displayMenuOfAmounts() {
82 int userChoice = 0; // local variable to store return value
83
84 Screen screen = getScreen(); // get screen reference
85
86 // array of amounts to correspond to menu numbers
87 int[] amounts = {0, 20, 40, 60, 100, 200};
88
89 // loop while no valid choice has been made
90 while (userChoice == 0) {
91 // display the withdrawal menu
92 screen.displayMessageLine("\nWithdrawal Menu:");
93 screen.displayMessageLine("1 - $20");
94 screen.displayMessageLine("2 - $40");
95 screen.displayMessageLine("3 - $60");
96 screen.displayMessageLine("4 - $100");
97 screen.displayMessageLine("5 - $200");
98 screen.displayMessageLine("6 - Cancel transaction");
99 screen.displayMessage("\nChoose a withdrawal amount: ");
100
101 int input = keypad.getInput(); // get user input through keypad
102
103 // determine how to proceed based on the input value
104 switch (input) {
105 case 1: // if the user chose a withdrawal amount
106 case 2: // (i.e., chose option 1, 2, 3, 4 or 5), return the
107 case 3: // corresponding amount from amounts array
108 case 4:
109 case 5:
110 userChoice = amounts[input]; // save user's choice
111 break;
112 case CANCELED: // the user chose to cancel
113 userChoice = CANCELED; // save user's choice
114 break;
115 default: // the user did not enter a value from 1-6
116 screen.displayMessageLine(
117 "\nInvalid selection. Try again.");
118 }
119 }
120
121 return userChoice; // return withdrawal amount or CANCELED
122 }
123 }

Fig. 34.22 | Class Withdrawal represents a withdrawal ATM transaction. (Part 3 of 3.)

jhtp_34_ATMPart2.fm Page 31 Tuesday, April 11, 2017 1:05 PM

34_32 Chapter 34 ATM Case Study Part 2: Implementing the Design

Class Withdrawal overrides Transaction method execute with a concrete imple-
mentation (lines 26–77) that performs the steps of a withdrawal. Line 28 declares and ini-
tializes a local boolean variable cashDispensed, which indicates whether cash has been
dispensed (i.e., whether the transaction has completed successfully) and is initially false.
Line 29 declares local double variable availableBalance, which will store the user’s avail-
able balance during a withdrawal transaction. Lines 32–33 get references to the bank data-
base and the ATM’s screen by invoking methods inherited from superclass Transaction.

Lines 36–76 execute until cash is dispensed (i.e., until cashDispensed becomes true)
or until the user chooses to cancel (in which case, the loop terminates). We use this loop
to continuously return the user to the start of the transaction if an error occurs (i.e., the
requested withdrawal amount is greater than the user’s available balance or greater than
the amount of cash in the cash dispenser). Line 38 displays a menu of withdrawal amounts
and obtains a user selection by calling private utility method displayMenuOfAmounts
(declared in lines 81–122). This method displays the menu of amounts and returns either
an int withdrawal amount or an int constant CANCELED to indicate that the user has
chosen to cancel the transaction.

Method displayMenuOfAmounts (lines 81–122) first declares local variable user-
Choice (initially 0) to store the value that the method will return (line 82). Line 84 gets a
reference to the screen by calling method getScreen inherited from superclass Transac-
tion. Line 87 declares an integer array of withdrawal amounts that correspond to the
amounts displayed in the withdrawal menu. We ignore the first element in the array (index
0) because the menu has no option 0. Lines 90–119 repeat until userChoice takes on a
value other than 0. We’ll see shortly that this occurs when the user makes a valid selection
from the menu. Lines 92–99 display the withdrawal menu on the screen and prompt the
user to enter a choice. Line 101 obtains integer input through the keypad. The switch
statement at lines 104–118 determines how to proceed based on the user’s input. If the
user selects a number between 1 and 5, line 110 sets userChoice to the value of the ele-
ment in amounts at index input. For example, if the user enters 3 to withdraw $60, line
110 sets userChoice to the value of amounts[3] (i.e., 60). Variable userChoice no longer
equals 0, so the loop terminates and line 121 returns userChoice. If the user selects the
cancel menu option, lines 113–114 execute, setting userChoice to CANCELED and causing
the method to return this value. If the user does not enter a valid menu selection, lines
116–117 display an error message and the user is returned to the withdrawal menu.

Line 41 in method execute determines whether the user has selected a withdrawal
amount or chosen to cancel. If the user cancels, lines 73–74 execute and display an appro-
priate message to the user before returning control to the calling method (i.e., ATM method
performTransactions). If the user has chosen a withdrawal amount, lines 43–44 retrieve
the available balance of the current user’s Account and store it in variable availableBal-
ance. Next, line 47 determines whether the selected amount is less than or equal to the
user’s available balance. If it’s not, lines 67–69 display an appropriate error message. Con-
trol then continues to the end of the do…while, and the loop repeats because cash-
Dispensed is still false. If the user’s balance is high enough, the if statement at line 49
determines whether the cash dispenser has enough money to satisfy the withdrawal request
by invoking the cashDispenser’s isSufficientCashAvailable method. If this method
returns false, lines 61–63 display an appropriate error message and the do…while

repeats. If sufficient cash is available, then the requirements for the withdrawal are satis-

jhtp_34_ATMPart2.fm Page 32 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_33

fied, and line 51 debits amount from the user’s account in the database. Lines 53–54 then
instruct the cash dispenser to dispense the cash to the user and set cashDispensed to true.
Finally, lines 57–58 display a message to the user that cash has been dispensed. Because
cashDispensed is now true, control continues after the do…while. No additional state-
ments appear below the loop, so the method returns.

34.4.11 Class Deposit
Class Deposit (Fig. 34.23) extends Transaction and represents a deposit transaction. Re-
call from Fig. 34.10 that class Deposit has one attribute amount, which line 5 implements
as an int field. Lines 6–7 create reference attributes keypad and depositSlot that imple-
ment the associations between class Deposit and classes Keypad and DepositSlot mod-
eled in Fig. 34.9. Line 8 declares a constant CANCELED that corresponds to the value a user
enters to cancel. We’ll soon discuss how the class uses this constant.

1 // Deposit.java
2 // Represents a deposit ATM transaction
3
4 public class Deposit extends Transaction {
5 private double amount; // amount to deposit
6 private Keypad keypad; // reference to keypad
7 private DepositSlot depositSlot; // reference to deposit slot
8 private final static int CANCELED = 0; // constant for cancel option
9

10 // Deposit constructor
11 public Deposit(int userAccountNumber, Screen atmScreen,
12 BankDatabase atmBankDatabase, Keypad atmKeypad,
13 DepositSlot atmDepositSlot) {
14
15 // initialize superclass variables
16 super(userAccountNumber, atmScreen, atmBankDatabase);
17
18 // initialize references to keypad and deposit slot
19 keypad = atmKeypad;
20 depositSlot = atmDepositSlot;
21 }
22
23 // perform transaction
24 @Override
25 public void execute() {
26 BankDatabase bankDatabase = getBankDatabase(); // get reference
27 Screen screen = getScreen(); // get reference
28
29 amount = promptForDepositAmount(); // get deposit amount from user
30
31 // check whether user entered a deposit amount or canceled
32 if (amount != CANCELED) {
33 // request deposit envelope containing specified amount
34 screen.displayMessage(
35 "\nPlease insert a deposit envelope containing ");

Fig. 34.23 | Class Deposit represents a deposit ATM transaction. (Part 1 of 2.)

jhtp_34_ATMPart2.fm Page 33 Tuesday, April 11, 2017 1:05 PM

34_34 Chapter 34 ATM Case Study Part 2: Implementing the Design

Like Withdrawal, class Deposit’s constructor (lines 11–21) passes three parameters to
superclass Transaction’s constructor. The constructor also has parameters atmKeypad and
atmDepositSlot, which it assigns to corresponding attributes.

Method execute (lines 24–60) overrides the abstract version in superclass Trans-
action with a concrete implementation that performs the steps required in a deposit trans-
action. Lines 26–27 get references to the database and the screen. Line 29 prompts the user

36 screen.displayDollarAmount(amount);
37 screen.displayMessageLine(".");
38
39 // receive deposit envelope
40 boolean envelopeReceived = depositSlot.isEnvelopeReceived();
41
42 // check whether deposit envelope was received
43 if (envelopeReceived) {
44 screen.displayMessageLine("\nYour envelope has been " +
45 "received.\nNOTE: The money just deposited will not " +
46 "be available until we verify the amount of any " +
47 "enclosed cash and your checks clear.");
48
49 // credit account to reflect the deposit
50 bankDatabase.credit(getAccountNumber(), amount);
51 }
52 else { // deposit envelope not received
53 screen.displayMessageLine("\nYou did not insert an " +
54 "envelope, so the ATM has canceled your transaction.");
55 }
56 }
57 else { // user canceled instead of entering amount
58 screen.displayMessageLine("\nCanceling transaction...");
59 }
60 }
61
62 // prompt user to enter a deposit amount in cents
63 private double promptForDepositAmount() {
64 Screen screen = getScreen(); // get reference to screen
65
66 // display the prompt
67 screen.displayMessage("\nPlease enter a deposit amount in " +
68 "CENTS (or 0 to cancel): ");
69 int input = keypad.getInput(); // receive input of deposit amount
70
71 // check whether the user canceled or entered a valid amount
72 if (input == CANCELED) {
73 return CANCELED;
74 }
75 else {
76 return (double) input / 100; // return dollar amount
77 }
78 }
79 }

Fig. 34.23 | Class Deposit represents a deposit ATM transaction. (Part 2 of 2.)

jhtp_34_ATMPart2.fm Page 34 Tuesday, April 11, 2017 1:05 PM

34.4 ATM Case Study Implementation 34_35

to enter a deposit amount by invoking private utility method promptForDepositAmount
(declared in lines 63–78) and sets attribute amount to the value returned. Method prompt-
ForDepositAmount asks the user to enter a deposit amount as an integer number of cents
(because the ATM’s keypad does not contain a decimal point; this is consistent with many
real ATMs) and returns the double value representing the dollar amount to be deposited.

Line 64 in method promptForDepositAmount gets a reference to the ATM’s screen.
Lines 67–68 display a message asking the user to input a deposit amount as a number of
cents or “0” to cancel the transaction. Line 69 receives the user’s input from the keypad.
Lines 72–77 determine whether the user has entered a real deposit amount or chosen to
cancel. If the latter, line 73 returns the constant CANCELED. Otherwise, line 76 returns the
deposit amount after converting from the number of cents to a dollar amount by casting
input to a double, then dividing by 100. For example, if the user enters 125 as the number
of cents, line 76 returns 125.0 divided by 100, or 1.25—125 cents is $1.25.

Line 32 in method execute determines whether the user has chosen to cancel the
transaction instead of entering a deposit amount. If so, line 58 displays an appropriate
message, and the method returns. If the user enters a deposit amount, lines 34–37 instruct
the user to insert a deposit envelope with the correct amount. Recall that Screen method
displayDollarAmount outputs a double formatted as a dollar amount.

Line 40 sets a local boolean variable to the value returned by depositSlot’s isEnvel-
opeReceived method, indicating whether a deposit envelope has been received. Recall that
we coded method isEnvelopeReceived (Fig. 34.17) to always return true, because we’re
simulating the functionality of the deposit slot and assume that the user always inserts an
envelope. However, we code method execute of class Deposit to test for the possibility
that the user does not insert an envelope—good software engineering demands that pro-
grams account for all possible return values. Thus, class Deposit is prepared for future ver-
sions of isEnvelopeReceived that could return false. Lines 44–50 execute if the deposit
slot receives an envelope. Lines 44–47 display an appropriate message to the user. Line 50
then credits the deposit amount to the user’s account in the database. Lines 53–54 will
execute if the deposit slot does not receive a deposit envelope. In this case, we display a
message to the user stating that the ATM has canceled the transaction. The method then
returns without modifying the user’s account.

34.4.12 Class ATMCaseStudy
Class ATMCaseStudy (Fig. 34.24) is a simple class that allows us to start, or “turn on,” the
ATM and test the implementation of our ATM system model. Class ATMCaseStudy’s main
method instantiates a new ATM object named theATM and invokes its run method to start
the ATM.

1 // ATMCaseStudy.java
2 // Driver program for the ATM case study
3
4 public class ATMCaseStudy {
5 // main method creates and runs the ATM
6 public static void main(String[] args) {

Fig. 34.24 | ATMCaseStudy.java starts the ATM.

jhtp_34_ATMPart2.fm Page 35 Tuesday, April 11, 2017 1:05 PM

34_36 Chapter 34 ATM Case Study Part 2: Implementing the Design

34.5 Wrap-Up
In this chapter, you used inheritance to tune the design of the ATM software system, and
you fully implemented the ATM in Java. Congratulations on completing the entire ATM
case study! We hope you found this experience to be valuable and that it reinforced many
of the object-oriented programming concepts that you’ve learned. In the next chapter, we
present the Java Platform Module System—Java 9’s most important new software-engi-
neering technology.

7 ATM theATM = new ATM();
8 theATM.run();
9 }

10 }

Fig. 34.24 | ATMCaseStudy.java starts the ATM.

Answers to Self-Review Exercises
34.1 True. The minus sign (–) indicates private visibility.

34.2 b.

34.3 The design for class Keypad yields the code in Fig. 34.25. Recall that class Keypad has no
attributes for the moment, but attributes may become apparent as we continue the implementation.
Also, if we were designing a real ATM, method getInput would need to interact with the ATM’s
keypad hardware. We’ll actually read input from the keyboard of a personal computer when we write
the complete Java code in Section 34.4.

34.4 b.

34.5 False. The UML requires that we italicize abstract class names and method names.

34.6 The design for class Transaction yields the code in Fig. 34.26. The bodies of the class con-
structor and methods are completed in Section 34.4. When fully implemented, methods getScreen
and getBankDatabase will return superclass Transaction’s private reference attributes screen and
bankDatabase, respectively. These methods allow the Transaction subclasses to access the ATM’s
screen and interact with the bank’s database.

1 // Class Keypad represents an ATM’s keypad
2 public class Keypad {
3 // no attributes have been specified yet
4
5 // no-argument constructor
6 public Keypad() { }
7
8 // operations
9 public int getInput() { }

10 }

Fig. 34.25 | Java code for class Keypad based on Figs. 34.1–34.2.

jhtp_34_ATMPart2.fm Page 36 Tuesday, April 11, 2017 1:05 PM

 Answers to Self-Review Exercises 34_37

1 // Abstract class Transaction represents an ATM transaction
2 public abstract class Transaction {
3 // attributes
4 private int accountNumber; // indicates account involved
5 private Screen screen; // ATM’s screen
6 private BankDatabase bankDatabase; // account info database
7
8 // no-argument constructor invoked by subclasses using super()
9 public Transaction() { }

10
11 // return account number
12 public int getAccountNumber() { }
13
14 // return reference to screen
15 public Screen getScreen() { }
16
17 // return reference to bank database
18 public BankDatabase getBankDatabase() { }
19
20 // abstract method overridden by subclasses
21 public abstract void execute();
22 }

Fig. 34.26 | Java code for class Transaction based on Figs. 34.9 and 34.10.

jhtp_34_ATMPart2.fm Page 37 Tuesday, April 11, 2017 1:05 PM

