
35Swing GUI Components:
Part 2

O b j e c t i v e s
In this chapter you’ll:

■ Create and manipulate
sliders, menus, pop-up
menus and windows.

■ Programatically change the
look-and-feel of a GUI, using
Swing’s pluggable look-and-
feel.

■ Create a multiple-document
interface with
JDesktopPane and
JInternalFrame.

■ Use additional layout
managers BoxLayout and
GridBagLayout.

jhtp_35_GUI2.fm Page 1 Monday, May 1, 2017 4:38 PM

35_2 Chapter 35 Swing GUI Components: Part 2

35.1 Introduction
[Note: JavaFX (Chapters 12, 13 and 22) is Java’s GUI, graphics and multimedia API of
the future. This chapter is provided as is for those still interested in Swing GUIs.]

In this chapter, we continue our study of Swing GUIs. We discuss additional compo-
nents and layout managers and lay the groundwork for building more complex GUIs. We
begin with sliders for selecting from a range of integer values, then discuss additional
details of windows. Next, you’ll use menus to organize an application’s commands.

The look-and-feel of a Swing GUI can be uniform across all platforms on which a Java
program executes, or the GUI can be customized by using Swing’s pluggable look-and-
feel (PLAF). We provide an example that illustrates how to change between Swing’s
default metal look-and-feel (which looks and behaves the same across platforms), the
Nimbus look-and-feel (introduced in Chapter 26), a look-and-feel that simulates Motif (a
UNIX look-and-feel) and one that simulates the Microsoft Windows look-and-feel.

Many of today’s applications use a multiple-document interface (MDI)—a main
window (often called the parent window) containing other windows (often called child
windows) to manage several open documents in parallel. For example, many e-mail pro-
grams allow you to have several e-mail windows open at the same time so that you can
compose or read multiple e-mail messages. We demonstrate Swing’s classes for creating
multiple-document interfaces. Finally, you’ll learn about additional layout managers for
organizing graphical user interfaces. We use several more Swing GUI components in later
chapters as they’re needed.

Swing is now considered a legacy technology. For GUIs, graphics and multimedia in
new Java apps, you should use the features presented in this book’s JavaFX chapters.

Java SE 8: Implementing Event Listeners with Lambdas
Throughout this chapter, we use anonymous inner classes and nested classes to implement
event handlers so that the examples can compile and execute with both Java SE 7 and Java
SE 8. In many of the examples, you could implement the functional event-listener inter-
faces with Java SE 8 lambdas (as demonstrated in Section 17.16).

35.2 JSlider
JSliders enable a user to select from a range of integer values. Class JSlider inherits from
JComponent. Figure 35.1 shows a horizontal JSlider with tick marks and the thumb that
allows a user to select a value. JSliders can be customized to display major tick marks,

35.1 Introduction
22.2 JSlider
35.3 Understanding Windows in Java
35.4 Using Menus with Frames
22.5 JPopupMenu
35.6 Pluggable Look-and-Feel

22.7 JDesktopPane and JInternalFrame
22.8 JTabbedPane
22.9 BoxLayout Layout Manager

22.10 GridBagLayout Layout Manager
35.11 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

jhtp_35_GUI2.fm Page 2 Monday, May 1, 2017 4:38 PM

35.2 JSlider 35_3

minor tick marks and labels for the tick marks. They also support snap-to ticks, which
cause the thumb, when positioned between two tick marks, to snap to the closest one.

Most Swing GUI components support mouse and keyboard interactions—e.g., if a
JSlider has the focus (i.e., it’s the currently selected GUI component in the user inter-
face), pressing the left arrow key or right arrow key causes the JSlider’s thumb to decrease
or increase by 1, respectively. The down arrow key and up arrow key also cause the thumb
to decrease or increase by 1 tick, respectively. The PgDn (page down) key and PgUp (page
up) key cause the thumb to decrease or increase by block increments of one-tenth of the
range of values, respectively. The Home key moves the thumb to the minimum value of the
JSlider, and the End key moves the thumb to the maximum value of the JSlider.

JSliders have either a horizontal or a vertical orientation. For a horizontal JSlider,
the minimum value is at the left end and the maximum is at the right end. For a vertical
JSlider, the minimum value is at the bottom and the maximum is at the top. The min-
imum and maximum value positions on a JSlider can be reversed by invoking JSlider
method setInverted with boolean argument true. The relative position of the thumb
indicates the current value of the JSlider.

The program in Figs. 35.2–35.4 allows the user to size a circle drawn on a subclass of
JPanel called OvalPanel (Fig. 35.2). The user specifies the circle’s diameter with a hori-
zontal JSlider. Class OvalPanel knows how to draw a circle on itself, using its own
instance variable diameter to determine the diameter of the circle—the diameter is used
as the width and height of the bounding box in which the circle is displayed. The diameter
value is set when the user interacts with the JSlider. The event handler calls method set-
Diameter in class OvalPanel to set the diameter and calls repaint to draw the new circle.
The repaint call results in a call to OvalPanel’s paintComponent method.

Fig. 35.1 | JSlider component with horizontal orientation.

1 // Fig. 22.2: OvalPanel.java
2 // A customized JPanel class.
3 import java.awt.Graphics;
4 import java.awt.Dimension;
5 import javax.swing.JPanel;
6
7 public class OvalPanel extends JPanel
8 {
9 private int diameter = 10; // default diameter

10
11 // draw an oval of the specified diameter
12 @Override
13 public void paintComponent(Graphics g)
14 {
15 super.paintComponent(g);

Fig. 35.2 | JPanel subclass for drawing circles of a specified diameter. (Part 1 of 2.)

Tick markThumb

jhtp_35_GUI2.fm Page 3 Monday, May 1, 2017 4:38 PM

35_4 Chapter 35 Swing GUI Components: Part 2

16 g.fillOval(10, 10, diameter, diameter);
17 }
18
19 // validate and set diameter, then repaint
20 public void setDiameter(int newDiameter)
21 {
22 // if diameter invalid, default to 10
23 diameter = (newDiameter >= 0 ? newDiameter : 10);
24 repaint(); // repaint panel
25 }
26
27 // used by layout manager to determine preferred size
28 public Dimension getPreferredSize()
29 {
30 return new Dimension(200, 200);
31 }
32
33
34
35
36
37
38 } // end class OvalPanel

1 // Fig. 22.3: SliderFrame.java
2 // Using JSliders to size an oval.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import javax.swing.JFrame;
6
7 import javax.swing.SwingConstants;
8
9

10
11 public class SliderFrame extends JFrame
12 {
13
14 private final OvalPanel myPanel; // panel to draw circle
15
16 // no-argument constructor
17 public SliderFrame()
18 {
19 super("Slider Demo");
20
21 myPanel = new OvalPanel(); // create panel to draw circle
22 myPanel.setBackground(Color.YELLOW);
23
24
25
26

Fig. 35.3 | JSlider value used to determine the diameter of a circle. (Part 1 of 2.)

Fig. 35.2 | JPanel subclass for drawing circles of a specified diameter. (Part 2 of 2.)

// used by layout manager to determine minimum size
public Dimension getMinimumSize()
{
 return getPreferredSize();
}

import javax.swing.JSlider;

import javax.swing.event.ChangeListener;
import javax.swing.event.ChangeEvent;

private final JSlider diameterJSlider; // slider to select diameter

// set up JSlider to control diameter value
diameterJSlider =
 new JSlider(SwingConstants.HORIZONTAL, 0, 200, 10);

jhtp_35_GUI2.fm Page 4 Monday, May 1, 2017 4:38 PM

35.2 JSlider 35_5

Class OvalPanel (Fig. 35.2) contains a paintComponent method (lines 12–17) that
draws a filled oval (a circle in this example), a setDiameter method (lines 20–25) that

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 add(diameterJSlider, BorderLayout.SOUTH);
44 add(myPanel, BorderLayout.CENTER);
45 }
46 } // end class SliderFrame

1 // Fig. 22.4: SliderDemo.java
2 // Testing SliderFrame.
3 import javax.swing.JFrame;
4
5 public class SliderDemo
6 {
7 public static void main(String[] args)
8 {
9 SliderFrame sliderFrame = new SliderFrame();

10 sliderFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 sliderFrame.setSize(220, 270);
12 sliderFrame.setVisible(true);
13 }
14 } // end class SliderDemo

Fig. 35.4 | Test class for SliderFrame.

Fig. 35.3 | JSlider value used to determine the diameter of a circle. (Part 2 of 2.)

diameterJSlider.setMajorTickSpacing(10); // create tick every 10
diameterJSlider.setPaintTicks(true); // paint ticks on slider

// register JSlider event listener
diameterJSlider.addChangeListener(
 new ChangeListener() // anonymous inner class
 {
 // handle change in slider value
 @Override
 public void stateChanged(ChangeEvent e)
 {
 myPanel.setDiameter(diameterJSlider.getValue());
 }
 }
);

a) Initial GUI with
default circle

b) GUI after the user
moves the

JSlider’s thumb to
the right

jhtp_35_GUI2.fm Page 5 Monday, May 1, 2017 4:38 PM

35_6 Chapter 35 Swing GUI Components: Part 2

changes the circle’s diameter and repaints the OvalPanel, a getPreferredSize method
(lines 28–31) that returns the preferred width and height of an OvalPanel and a getMin-
imumSize method (lines 34–37) that returns an OvalPanel’s minimum width and height.
Methods getPreferredSize and getMinimumSize are used by some layout managers to
determine the size of a component.

Class SliderFrame (Fig. 35.3) creates the JSlider that controls the diameter of the
circle. Class SliderFrame’s constructor (lines 17–45) creates OvalPanel object myPanel
(line 21) and sets its background color (line 22). Lines 25–26 create JSlider object diam-
eterJSlider to control the diameter of the circle drawn on the OvalPanel. The JSlider
constructor takes four arguments. The first specifies the orientation of diameterJSlider,
which is HORIZONTAL (a constant in interface SwingConstants). The second and third
arguments indicate the minimum and maximum integer values in the range of values for
this JSlider. The last argument indicates that the initial value of the JSlider (i.e., where
the thumb is displayed) should be 10.

Lines 27–28 customize the appearance of the JSlider. Method setMajorTick-
Spacing indicates that each major tick mark represents 10 values in the range of values
supported by the JSlider. Method setPaintTicks with a true argument indicates that
the tick marks should be displayed (they aren’t displayed by default). For other methods
that are used to customize a JSlider’s appearance, see the JSlider online documentation
(docs.oracle.com/javase/8/docs/api/javax/swing/JSlider.html).

JSliders generate ChangeEvents (package javax.swing.event) in response to user
interactions. An object of a class that implements interface ChangeListener (package
javax.swing.event) and declares method stateChanged can respond to ChangeEvents.
Lines 31–41 register a ChangeListener to handle diameterJSlider’s events. When
method stateChanged (lines 35–39) is called in response to a user interaction, line 38 calls
myPanel’s setDiameter method and passes the current value of the JSlider as an argu-
ment. JSlider method getValue returns the current thumb position.

35.3 Understanding Windows in Java
A JFrame is a window with a title bar and a border. Class JFrame is a subclass of Frame
(package java.awt), which is a subclass of Window (package java.awt). As such, JFrame is
one of the heavyweight Swing GUI components. When you display a window from a Java
program, the window is provided by the local platform’s windowing toolkit, and therefore
the window will look like every other window displayed on that platform. When a Java
application executes on a Macintosh and displays a window, the window’s title bar and
borders will look like those of other Macintosh applications. When a Java application ex-
ecutes on a Microsoft Windows system and displays a window, the window’s title bar and
borders will look like those of other Microsoft Windows applications. And when a Java
application executes on a UNIX platform and displays a window, the window’s title bar
and borders will look like those of other UNIX applications on that platform.

Returning Window Resources to the System
By default, when the user closes a JFrame window, it’s hidden (i.e., removed from the
screen), but you can control this with JFrame method setDefaultCloseOperation. Inter-
face WindowConstants (package javax.swing), which class JFrame implements, declares
three constants—DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE and HIDE_ON_CLOSE (the de-

jhtp_35_GUI2.fm Page 6 Monday, May 1, 2017 4:38 PM

35.4 Using Menus with Frames 35_7

fault)—for use with this method. Some platforms allow only a limited number of windows
to be displayed on the screen. Thus, a window is a valuable resource that should be given
back to the system when it’s no longer needed. Class Window (an indirect superclass of
JFrame) declares method dispose for this purpose. When a Window is no longer needed in
an application, you should explicitly dispose of it. This can be done by calling the Window’s
dispose method or by calling method setDefaultCloseOperation with the argument
WindowConstants.DISPOSE_ON_CLOSE. Terminating an application also returns window
resources to the system. Using DO_NOTHING_ON_CLOSE indicates that the program will de-
termine what to do when the user attempts to close the window. For example, the program
might want to ask whether to save a file’s changes before closing a window.

Displaying and Positioning Windows
By default, a window is not displayed on the screen until the program invokes the win-
dow’s setVisible method (inherited from class java.awt.Component) with a true argu-
ment. A window’s size should be set with a call to method setSize (inherited from class
java.awt.Component). The position of a window when it appears on the screen is speci-
fied with method setLocation (inherited from class java.awt.Component).

Window Events
When the user manipulates the window, this action generates window events. Event lis-
teners are registered for window events with Window method addWindowListener. The
WindowListener interface provides seven window-event-handling methods—window-

Activated (called when the user makes a window the active window), windowClosed
(called after the window is closed), windowClosing (called when the user initiates closing
of the window), windowDeactivated (called when the user makes another window the ac-
tive window), windowDeiconified (called when the user restores a minimized window),
windowIconified (called when the user minimizes a window) and windowOpened (called
when a program first displays a window on the screen).

35.4 Using Menus with Frames
Menus are an integral part of GUIs. They allow the user to perform actions without un-
necessarily cluttering a GUI with extra components. In Swing GUIs, menus can be at-
tached only to objects of the classes that provide method setJMenuBar. Two such classes
are JFrame and JApplet. The classes used to declare menus are JMenuBar, JMenu, JMenu-
Item, JCheckBoxMenuItem and class JRadioButtonMenuItem.

Overview of Several Menu-Related Components
Class JMenuBar (a subclass of JComponent) contains the methods necessary to manage a
menu bar, which is a container for menus. Class JMenu (a subclass of javax.swing.JMe-
nuItem) contains the methods necessary for managing menus. Menus contain menu items
and are added to menu bars or to other menus as submenus. When a menu is clicked, it
expands to show its list of menu items.

Look-and-Feel Observation 35.1
Menus simplify GUIs because components can be hidden within them. These components
will be visible only when the user looks for them by selecting the menu.

jhtp_35_GUI2.fm Page 7 Monday, May 1, 2017 4:38 PM

35_8 Chapter 35 Swing GUI Components: Part 2

Class JMenuItem (a subclass of javax.swing.AbstractButton) contains the methods
necessary to manage menu items. A menu item is a GUI component inside a menu that,
when selected, causes an action event. A menu item can be used to initiate an action, or it
can be a submenu that provides more menu items from which the user can select. Sub-
menus are useful for grouping related menu items in a menu.

Class JCheckBoxMenuItem (a subclass of javax.swing.JMenuItem) contains the
methods necessary to manage menu items that can be toggled on or off. When a JCheck-
BoxMenuItem is selected, a check appears to the left of the menu item. When the JCheck-
BoxMenuItem is selected again, the check is removed.

Class JRadioButtonMenuItem (a subclass of javax.swing.JMenuItem) contains the
methods necessary to manage menu items that can be toggled on or off like JCheckBox-
MenuItems. When multiple JRadioButtonMenuItems are maintained as part of a But-
tonGroup, only one item in the group can be selected at a given time. When a
JRadioButtonMenuItem is selected, a filled circle appears to the left of the menu item.
When another JRadioButtonMenuItem is selected, the filled circle of the previously
selected menu item is removed.

Using Menus in an Application
Figures 35.5–35.6 demonstrate various menu items and how to specify special characters
called mnemonics that can provide quick access to a menu or menu item from the key-
board. Mnemonics can be used with all subclasses of javax.swing.AbstractButton. Class
MenuFrame (Fig. 35.5) creates the GUI and handles the menu-item events. Most of the
code in this application appears in the class’s constructor (lines 34–151).

1 // Fig. 22.5: MenuFrame.java
2 // Demonstrating menus.
3 import java.awt.Color;
4 import java.awt.Font;
5 import java.awt.BorderLayout;
6 import java.awt.event.ActionListener;
7 import java.awt.event.ActionEvent;
8 import java.awt.event.ItemListener;
9 import java.awt.event.ItemEvent;

10 import javax.swing.JFrame;
11
12
13 import javax.swing.JOptionPane;
14 import javax.swing.JLabel;
15 import javax.swing.SwingConstants;
16 import javax.swing.ButtonGroup;
17
18
19
20
21 public class MenuFrame extends JFrame
22 {
23 private final Color[] colorValues =
24 {Color.BLACK, Color.BLUE, Color.RED, Color.GREEN};

Fig. 35.5 | JMenus and mnemonics. (Part 1 of 5.)

import javax.swing.JRadioButtonMenuItem;
import javax.swing.JCheckBoxMenuItem;

import javax.swing.JMenu;
import javax.swing.JMenuItem;
import javax.swing.JMenuBar;

jhtp_35_GUI2.fm Page 8 Monday, May 1, 2017 4:38 PM

35.4 Using Menus with Frames 35_9

25
26
27
28 private final JLabel displayJLabel; // displays sample text
29 private final ButtonGroup fontButtonGroup; // manages font menu items
30 private final ButtonGroup colorButtonGroup; // manages color menu items
31 private int style; // used to create style for font
32
33 // no-argument constructor set up GUI
34 public MenuFrame()
35 {
36 super("Using JMenus");
37
38
39
40
41 // create About... menu item
42
43
44
45 aboutItem.addActionListener(
46 new ActionListener() // anonymous inner class
47 {
48 // display message dialog when user selects About...
49 @Override
50 public void actionPerformed(ActionEvent event)
51 {
52 JOptionPane.showMessageDialog(MenuFrame.this,
53 "This is an example\nof using menus",
54 "About", JOptionPane.PLAIN_MESSAGE);
55 }
56 }
57);
58
59
60
61
62 exitItem.addActionListener(
63 new ActionListener() // anonymous inner class
64 {
65 // terminate application when user clicks exitItem
66 @Override
67 public void actionPerformed(ActionEvent event)
68 {
69 System.exit(0); // exit application
70 }
71 }
72);
73
74
75
76
77

Fig. 35.5 | JMenus and mnemonics. (Part 2 of 5.)

private final JRadioButtonMenuItem[] colorItems; // color menu items
private final JRadioButtonMenuItem[] fonts; // font menu items
private final JCheckBoxMenuItem[] styleItems; // font style menu items

JMenu fileMenu = new JMenu("File"); // create file menu
fileMenu.setMnemonic('F'); // set mnemonic to F

JMenuItem aboutItem = new JMenuItem("About...");
aboutItem.setMnemonic('A'); // set mnemonic to A
fileMenu.add(aboutItem); // add about item to file menu

JMenuItem exitItem = new JMenuItem("Exit"); // create exit item
exitItem.setMnemonic('x'); // set mnemonic to x
fileMenu.add(exitItem); // add exit item to file menu

JMenuBar bar = new JMenuBar(); // create menu bar
setJMenuBar(bar); // add menu bar to application
bar.add(fileMenu); // add file menu to menu bar

jhtp_35_GUI2.fm Page 9 Monday, May 1, 2017 4:38 PM

35_10 Chapter 35 Swing GUI Components: Part 2

78
79
80
81 // array listing string colors
82 String[] colors = { "Black", "Blue", "Red", "Green" };
83
84
85
86
87 // create radio button menu items for colors
88
89
90 ItemHandler itemHandler = new ItemHandler(); // handler for colors
91
92 // create color radio button menu items
93 for (int count = 0; count < colors.length; count++)
94 {
95
96
97
98
99 colorItems[count].addActionListener(itemHandler);
100 }
101
102
103
104
105
106
107 // array listing font names
108 String[] fontNames = { "Serif", "Monospaced", "SansSerif" };
109
110
111
112 // create radio button menu items for font names
113
114
115
116 // create Font radio button menu items
117 for (int count = 0; count < fonts.length; count++)
118 {
119
120
121
122 fonts[count].addActionListener(itemHandler); // add handler
123 }
124
125
126
127
128 String[] styleNames = { "Bold", "Italic" }; // names of styles
129
130 StyleHandler styleHandler = new StyleHandler(); // style handler

Fig. 35.5 | JMenus and mnemonics. (Part 3 of 5.)

JMenu formatMenu = new JMenu("Format"); // create format menu
formatMenu.setMnemonic('r'); // set mnemonic to r

JMenu colorMenu = new JMenu("Color"); // create color menu
colorMenu.setMnemonic('C'); // set mnemonic to C

colorItems = new JRadioButtonMenuItem[colors.length];
colorButtonGroup = new ButtonGroup(); // manages colors

colorItems[count] =
 new JRadioButtonMenuItem(colors[count]); // create item
colorMenu.add(colorItems[count]); // add item to color menu
colorButtonGroup.add(colorItems[count]); // add to group

colorItems[0].setSelected(true); // select first Color item

formatMenu.add(colorMenu); // add color menu to format menu
formatMenu.addSeparator(); // add separator in menu

JMenu fontMenu = new JMenu("Font"); // create font menu
fontMenu.setMnemonic('n'); // set mnemonic to n

fonts = new JRadioButtonMenuItem[fontNames.length];
fontButtonGroup = new ButtonGroup(); // manages font names

fonts[count] = new JRadioButtonMenuItem(fontNames[count]);
fontMenu.add(fonts[count]); // add font to font menu
fontButtonGroup.add(fonts[count]); // add to button group

fonts[0].setSelected(true); // select first Font menu item
fontMenu.addSeparator(); // add separator bar to font menu

styleItems = new JCheckBoxMenuItem[styleNames.length];

jhtp_35_GUI2.fm Page 10 Monday, May 1, 2017 4:38 PM

35.4 Using Menus with Frames 35_11

131
132 // create style checkbox menu items
133 for (int count = 0; count < styleNames.length; count++)
134 {
135
136
137
138 styleItems[count].addItemListener(styleHandler); // handler
139 }
140
141
142
143
144 // set up label to display text
145 displayJLabel = new JLabel("Sample Text", SwingConstants.CENTER);
146 displayJLabel.setForeground(colorValues[0]);
147 displayJLabel.setFont(new Font("Serif", Font.PLAIN, 72));
148
149 getContentPane().setBackground(Color.CYAN); // set background
150 add(displayJLabel, BorderLayout.CENTER); // add displayJLabel
151 } // end MenuFrame constructor
152
153 // inner class to handle action events from menu items
154 private class ItemHandler implements ActionListener
155 {
156 // process color and font selections
157 @Override
158 public void actionPerformed(ActionEvent event)
159 {
160 // process color selection
161 for (int count = 0; count < colorItems.length; count++)
162 {
163 if (colorItems[count].isSelected())
164 {
165 displayJLabel.setForeground(colorValues[count]);
166 break;
167 }
168 }
169
170 // process font selection
171 for (int count = 0; count < fonts.length; count++)
172 {
173 if (event.getSource() == fonts[count])
174 {
175 displayJLabel.setFont(
176 new Font(fonts[count].getText(), style, 72));
177 }
178 }
179
180 repaint(); // redraw application
181 }
182 } // end class ItemHandler
183

Fig. 35.5 | JMenus and mnemonics. (Part 4 of 5.)

styleItems[count] =
 new JCheckBoxMenuItem(styleNames[count]); // for style
fontMenu.add(styleItems[count]); // add to font menu

formatMenu.add(fontMenu); // add Font menu to Format menu
bar.add(formatMenu); // add Format menu to menu bar

jhtp_35_GUI2.fm Page 11 Monday, May 1, 2017 4:38 PM

35_12 Chapter 35 Swing GUI Components: Part 2

184 // inner class to handle item events from checkbox menu items
185 private class StyleHandler implements ItemListener
186 {
187 // process font style selections
188 @Override
189 public void itemStateChanged(ItemEvent e)
190 {
191 String name = displayJLabel.getFont().getName(); // current Font
192 Font font; // new font based on user selections
193
194 // determine which items are checked and create Font
195 if (styleItems[0].isSelected() &&
196 styleItems[1].isSelected())
197 font = new Font(name, Font.BOLD + Font.ITALIC, 72);
198 else if (styleItems[0].isSelected())
199 font = new Font(name, Font.BOLD, 72);
200 else if (styleItems[1].isSelected())
201 font = new Font(name, Font.ITALIC, 72);
202 else
203 font = new Font(name, Font.PLAIN, 72);
204
205 displayJLabel.setFont(font);
206 repaint(); // redraw application
207 }
208 }
209 } // end class MenuFrame

1 // Fig. 22.6: MenuTest.java
2 // Testing MenuFrame.
3 import javax.swing.JFrame;
4
5 public class MenuTest
6 {
7 public static void main(String[] args)
8 {
9 MenuFrame menuFrame = new MenuFrame();

10 menuFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 menuFrame.setSize(500, 200);
12 menuFrame.setVisible(true);
13 }
14 } // end class MenuTest

Fig. 35.6 | Test class for MenuFrame. (Part 1 of 2.)

Fig. 35.5 | JMenus and mnemonics. (Part 5 of 5.)

Menu barMnemonic
characters

Menu

jhtp_35_GUI2.fm Page 12 Monday, May 1, 2017 4:38 PM

35.4 Using Menus with Frames 35_13

Setting Up the File Menu
Lines 38–76 set up the File menu and attach it to the menu bar. The File menu contains
an About… menu item that displays a message dialog when the menu item is selected and
an Exit menu item that can be selected to terminate the application. Line 38 creates a
JMenu and passes to the constructor the string "File" as the name of the menu. Line 39
uses JMenu method setMnemonic (inherited from class AbstractButton) to indicate that F
is the mnemonic for this menu. Pressing the Alt key and the letter F opens the menu, just
as clicking the menu name with the mouse would. In the GUI, the mnemonic character
in the menu’s name is displayed with an underline. (See the screen captures in Fig. 35.6.)

Lines 42–43 create JMenuItem aboutItem with the text “About...” and set its mne-
monic to the letter A. This menu item is added to fileMenu at line 44 with JMenu method
add. To access the About... menu item through the keyboard, press the Alt key and letter
F to open the File menu, then press A to select the About... menu item. Lines 46–56 create
an ActionListener to process aboutItem’s action event. Lines 52–54 display a message
dialog box. In most prior uses of showMessageDialog, the first argument was null. The
purpose of the first argument is to specify the parent window that helps determine where
the dialog box will be displayed. If the parent window is specified as null, the dialog box
appears in the center of the screen. Otherwise, it appears centered over the specified parent
window. In this example, the program specifies the parent window with Menu-
Frame.this—the this reference of the MenuFrame object. When using the this reference
in an inner class, specifying this by itself refers to the inner-class object. To reference the
outer-class object’s this reference, qualify this with the outer-class name and a dot (.).

Recall that dialog boxes are typically modal. A modal dialog box does not allow any
other window in the application to be accessed until the dialog box is dismissed. The dia-
logs displayed with class JOptionPane are modal dialogs. Class JDialog can be used to
create your own modal or nonmodal dialogs.

Look-and-Feel Observation 35.2
Mnemonics provide quick access to menu commands and button commands through the
keyboard.

Look-and-Feel Observation 35.3
Different mnemonics should be used for each button or menu item. Normally, the first letter
in the label on the menu item or button is used as the mnemonic. If several buttons or menu
items start with the same letter, choose the next most prominent letter in the name (e.g., x is
commonly chosen for an Exit button or menu item). Mnemonics are case insensitive.

Fig. 35.6 | Test class for MenuFrame. (Part 2 of 2.)

Expanded
submenu

Separator
line

Menu items

jhtp_35_GUI2.fm Page 13 Monday, May 1, 2017 4:38 PM

35_14 Chapter 35 Swing GUI Components: Part 2

Lines 59–72 create menu item exitItem, set its mnemonic to x, add it to fileMenu
and register an ActionListener that terminates the program when the user selects exit-
Item. Lines 74–76 create the JMenuBar, attach it to the window with JFrame method set-
JMenuBar and use JMenuBar method add to attach the fileMenu to the JMenuBar.

Setting Up the Format Menu
Lines 78–79 create the formatMenu and set its mnemonic to r. F is not used because that’s
the File menu’s mnemonic. Lines 84–85 create colorMenu (this will be a submenu in Format)
and set its mnemonic to C. Line 88 creates JRadioButtonMenuItem array colorItems, which
refers to the menu items in colorMenu. Line 89 creates ButtonGroup colorButtonGroup,
which ensures that only one of the Color submenu items is selected at a time. Line 90 creates
an instance of inner class ItemHandler (declared at lines 154–181) that responds to selec-
tions from the Color and Font submenus (discussed shortly). The loop at lines 93–100 creates
each JRadioButtonMenuItem in array colorItems, adds each menu item to colorMenu and
to colorButtonGroup and registers the ActionListener for each menu item.

Line 102 invokes AbstractButton method setSelected to select the first element in
array colorItems. Line 104 adds colorMenu as a submenu of formatMenu. Line 105
invokes JMenu method addSeparator to add a horizontal separator line to the menu.

Lines 108–126 create the Font submenu and several JRadioButtonMenuItems and select
the first element of JRadioButtonMenuItem array fonts. Line 129 creates a JCheckBoxMenu-
Item array to represent the menu items for specifying bold and italic styles for the fonts. Line
130 creates an instance of inner class StyleHandler (declared at lines 185–208) to respond
to the JCheckBoxMenuItem events. The for statement at lines 133–139 creates each JCheck-
BoxMenuItem, adds it to fontMenu and registers its ItemListener. Line 141 adds fontMenu
as a submenu of formatMenu. Line 142 adds the formatMenu to bar (the menu bar).

Creating the Rest of the GUI and Defining the Event Handlers
Lines 145–147 create a JLabel for which the Format menu items control the font, font
color and font style. The initial foreground color is set to the first element of array color-
Values (Color.BLACK) by invoking JComponent method setForeground. The initial font
is set to Serif with PLAIN style and 72-point size. Line 149 sets the background color of

Look-and-Feel Observation 35.4
Menus appear left to right in the order they’re added to a JMenuBar.

Look-and-Feel Observation 35.5
A submenu is created by adding a menu as a menu item in another menu.

Look-and-Feel Observation 35.6
Separators can be added to a menu to group menu items logically.

Look-and-Feel Observation 35.7
Any JComponent can be added to a JMenu or to a JMenuBar.

jhtp_35_GUI2.fm Page 14 Monday, May 1, 2017 4:38 PM

35.5 JPopupMenu 35_15

the window’s content pane to cyan, and line 150 attaches the JLabel to the CENTER of the
content pane’s BorderLayout.

ItemHandler method actionPerformed (lines 157–181) uses two for statements to
determine which font or color menu item generated the event and sets the font or color of
the JLabel displayLabel, respectively. The if condition at line 163 uses Abstract-
Button method isSelected to determine the selected JRadioButtonMenuItem. The if
condition at line 173 invokes the event object’s getSource method to get a reference to
the JRadioButtonMenuItem that generated the event. Line 176 invokes AbstractButton
method getText to obtain the name of the font from the menu item.

StyleHandler method itemStateChanged (lines 188–207) is called if the user selects
a JCheckBoxMenuItem in the fontMenu. Lines 195–203 determine which JCheckBoxMenu-
Items are selected and use their combined state to determine the new font style.

35.5 JPopupMenu
Applications often provide context-sensitive pop-up menus for several reasons—they can
be convenient, there might not be a menu bar and the options they display can be specific
to individual on-screen components. In Swing, such menus are created with class JPopup-
Menu (a subclass of JComponent). These menus provide options that are specific to the
component for which the popup trigger event occurred—on most systems, when the user
presses and releases the right mouse button.

The application in Figs. 35.7–35.8 creates a JPopupMenu that allows the user to select
one of three colors and change the background color of the window. When the user clicks
the right mouse button on the PopupFrame window’s background, a JPopupMenu con-
taining colors appears. If the user clicks a JRadioButtonMenuItem for a color, ItemHandler
method actionPerformed changes the background color of the window’s content pane.

Line 25 of the PopupFrame constructor (Fig. 35.7, lines 21–70) creates an instance of
class ItemHandler (declared in lines 73–89) that will process the item events from the
menu items in the pop-up menu. Line 29 creates the JPopupMenu. The for statement
(lines 33–39) creates a JRadioButtonMenuItem object (line 35), adds it to popupMenu (line
36), adds it to ButtonGroup colorGroup (line 37) to maintain one selected JRadioBut-
tonMenuItem at a time and registers its ActionListener (line 38). Line 41 sets the initial
background to white by invoking method setBackground.

Look-and-Feel Observation 35.8
The pop-up trigger event is platform specific. On most platforms that use a mouse with
multiple buttons, the pop-up trigger event occurs when the user clicks the right mouse but-
ton on a component that supports a pop-up menu.

1 // Fig. 22.7: PopupFrame.java
2 // Demonstrating JPopupMenus.
3 import java.awt.Color;
4 import java.awt.event.MouseAdapter;
5 import java.awt.event.MouseEvent;
6 import java.awt.event.ActionListener;

Fig. 35.7 | JPopupMenu for selecting colors. (Part 1 of 3.)

jhtp_35_GUI2.fm Page 15 Monday, May 1, 2017 4:38 PM

35_16 Chapter 35 Swing GUI Components: Part 2

7 import java.awt.event.ActionEvent;
8 import javax.swing.JFrame;
9 import javax.swing.JRadioButtonMenuItem;

10 import javax.swing.JPopupMenu;
11 import javax.swing.ButtonGroup;
12
13 public class PopupFrame extends JFrame
14 {
15 private final JRadioButtonMenuItem[] items; // holds items for colors
16 private final Color[] colorValues =
17 { Color.BLUE, Color.YELLOW, Color.RED }; // colors to be used
18
19
20 // no-argument constructor sets up GUI
21 public PopupFrame()
22 {
23 super("Using JPopupMenus");
24
25 ItemHandler handler = new ItemHandler(); // handler for menu items
26 String[] colors = { "Blue", "Yellow", "Red" };
27
28 ButtonGroup colorGroup = new ButtonGroup(); // manages color items
29
30 items = new JRadioButtonMenuItem[colors.length];
31
32 // construct menu item, add to pop-up menu, enable event handling
33 for (int count = 0; count < items.length; count++)
34 {
35 items[count] = new JRadioButtonMenuItem(colors[count]);
36
37 colorGroup.add(items[count]); // add item to button group
38 items[count].addActionListener(handler); // add handler
39 }
40
41 setBackground(Color.WHITE);
42
43 // declare a MouseListener for the window to display pop-up menu
44 addMouseListener(
45 new MouseAdapter() // anonymous inner class
46 {
47 // handle mouse press event
48 @Override
49 public void mousePressed(MouseEvent event)
50 {
51 checkForTriggerEvent(event);
52 }
53
54 // handle mouse release event
55 @Override
56 public void mouseReleased(MouseEvent event)
57 {
58 checkForTriggerEvent(event);
59 }

Fig. 35.7 | JPopupMenu for selecting colors. (Part 2 of 3.)

private final JPopupMenu popupMenu; // allows user to select color

popupMenu = new JPopupMenu(); // create pop-up menu

popupMenu.add(items[count]); // add item to pop-up menu

jhtp_35_GUI2.fm Page 16 Monday, May 1, 2017 4:38 PM

35.5 JPopupMenu 35_17

60
61 // determine whether event should trigger pop-up menu
62 private void checkForTriggerEvent(MouseEvent event)
63 {
64
65
66
67 }
68 }
69);
70 } // end PopupFrame constructor
71
72 // private inner class to handle menu item events
73 private class ItemHandler implements ActionListener
74 {
75 // process menu item selections
76 @Override
77 public void actionPerformed(ActionEvent event)
78 {
79 // determine which menu item was selected
80 for (int i = 0; i < items.length; i++)
81 {
82 if (event.getSource() == items[i])
83 {
84 getContentPane().setBackground(colorValues[i]);
85 return;
86 }
87 }
88 }
89 } // end private inner class ItemHandler
90 } // end class PopupFrame

1 // Fig. 22.8: PopupTest.java
2 // Testing PopupFrame.
3 import javax.swing.JFrame;
4
5 public class PopupTest
6 {
7 public static void main(String[] args)
8 {
9 PopupFrame popupFrame = new PopupFrame();

10 popupFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 popupFrame.setSize(300, 200);
12 popupFrame.setVisible(true);
13 }
14 } // end class PopupTest

Fig. 35.8 | Test class for PopupFrame. (Part 1 of 2.)

Fig. 35.7 | JPopupMenu for selecting colors. (Part 3 of 3.)

if (event.isPopupTrigger())
 popupMenu.show(
 event.getComponent(), event.getX(), event.getY());

jhtp_35_GUI2.fm Page 17 Monday, May 1, 2017 4:38 PM

35_18 Chapter 35 Swing GUI Components: Part 2

Lines 44–69 register a MouseListener to handle the mouse events of the application
window. Methods mousePressed (lines 48–52) and mouseReleased (lines 55–59) check
for the pop-up trigger event. Each method calls private utility method checkForTrigger-
Event (lines 62–67) to determine whether the pop-up trigger event occurred. If it did,
MouseEvent method isPopupTrigger returns true, and JPopupMenu method show dis-
plays the JPopupMenu. The first argument to method show specifies the origin component,
whose position helps determine where the JPopupMenu will appear on the screen. The last
two arguments are the x-y coordinates (measured from the origin component’s upper-left
corner) at which the JPopupMenu is to appear.

When the user selects a menu item from the pop-up menu, class ItemHandler’s
method actionPerformed (lines 76–88) determines which JRadioButtonMenuItem the
user selected and sets the background color of the window’s content pane.

35.6 Pluggable Look-and-Feel
A program that uses Java’s AWT GUI components (package java.awt) takes on the look-
and-feel of the platform on which the program executes. A Java application running on a
macOS looks like other macOS applications, one running on Microsoft Windows looks
like other Windows applications, and one running on a Linux platform looks like other
applications on that Linux platform. This is sometimes desirable, because it allows users
of the application on each platform to use GUI components with which they’re already
familiar. However, it also introduces interesting portability issues.

Look-and-Feel Observation 35.9
Displaying a JPopupMenu for the pop-up trigger event of multiple GUI components re-
quires registering mouse-event handlers for each of those GUI components.

Portability Tip 35.1
GUI components often look different on different platforms (fonts, font sizes, component
borders, etc.) and might require different amounts of space to display. This could change
their layout and alignments.

Portability Tip 35.2
GUI components on different platforms have might different default functionality—e.g.,
not all platforms allow a button with the focus to be “pressed” with the space bar.

Fig. 35.8 | Test class for PopupFrame. (Part 2 of 2.)

jhtp_35_GUI2.fm Page 18 Monday, May 1, 2017 4:38 PM

35.6 Pluggable Look-and-Feel 35_19

Swing’s lightweight GUI components eliminate many of these issues by providing
uniform functionality across platforms and by defining a uniform cross-platform look-
and-feel. Section 26.2 introduced the Nimbus look-and-feel. Earlier versions of Java used
the metal look-and-feel, which is still the default. Swing also provides the flexibility to cus-
tomize the look-and-feel to appear as a Microsoft Windows-style look-and-feel (only on
Windows systems), a Motif-style (UNIX) look-and-feel (across all platforms) or a Macin-
tosh look-and-feel (only on Mac systems).

Figures 35.9–35.10 demonstrate a way to change the look-and-feel of a Swing GUI.
It creates several GUI components, so you can see the change in their look-and-feel at the
same time. The output windows show the Metal, Nimbus, CDE/Motif, Windows and
Windows Classic look-and-feels that are available on Windows systems. The installed
look-and-feels will vary by platform.

We’ve covered the GUI components and event-handling concepts in this example
previously, so we focus here on the mechanism for changing the look-and-feel. Class UIM-
anager (package javax.swing) contains nested class LookAndFeelInfo (a public static
class) that maintains information about a look-and-feel. Line 20 (Fig. 35.9) declares an
array of type UIManager.LookAndFeelInfo (note the syntax used to identify the static
inner class LookAndFeelInfo). Line 34 uses UIManager static method getInstalled-
LookAndFeels to get the array of UIManager.LookAndFeelInfo objects that describe each
look-and-feel available on your system.

Performance Tip 35.1
Each look-and-feel is represented by a Java class. UIManager method getInstalled-
LookAndFeels does not load each class. Rather, it provides the names of the available look-
and-feel classes so that a choice can be made (presumably once at program start-up). This
reduces the overhead of having to load all the look-and-feel classes even if the program will
not use some of them.

1 // Fig. 22.9: LookAndFeelFrame.java
2 // Changing the look-and-feel.
3 import java.awt.GridLayout;
4 import java.awt.BorderLayout;
5 import java.awt.event.ItemListener;
6 import java.awt.event.ItemEvent;
7 import javax.swing.JFrame;
8
9 import javax.swing.JRadioButton;

10 import javax.swing.ButtonGroup;
11 import javax.swing.JButton;
12 import javax.swing.JLabel;
13 import javax.swing.JComboBox;
14 import javax.swing.JPanel;
15 import javax.swing.SwingConstants;
16
17
18 public class LookAndFeelFrame extends JFrame
19 {

Fig. 35.9 | Look-and-feel of a Swing-based GUI. (Part 1 of 3.)

import javax.swing.UIManager;

import javax.swing.SwingUtilities;

jhtp_35_GUI2.fm Page 19 Monday, May 1, 2017 4:38 PM

35_20 Chapter 35 Swing GUI Components: Part 2

20 private final UIManager.LookAndFeelInfo[] looks;
21 private final String[] lookNames; // look-and-feel names
22 private final JRadioButton[] radio; // for selecting look-and-feel
23 private final ButtonGroup group; // group for radio buttons
24 private final JButton button; // displays look of button
25 private final JLabel label; // displays look of label
26 private final JComboBox<String> comboBox; // displays look of combo box
27
28 // set up GUI
29 public LookAndFeelFrame()
30 {
31 super("Look and Feel Demo");
32
33
34
35 lookNames = new String[looks.length];
36
37 // get names of installed look-and-feels
38 for (int i = 0; i < looks.length; i++)
39 lookNames[i] = looks[i].getName();
40
41 JPanel northPanel = new JPanel();
42 northPanel.setLayout(new GridLayout(3, 1, 0, 5));
43
44 label = new JLabel("This is a " + lookNames[0] + " look-and-feel",
45 SwingConstants.CENTER);
46 northPanel.add(label);
47
48 button = new JButton("JButton");
49 northPanel.add(button);
50
51 comboBox = new JComboBox<String>(lookNames);
52 northPanel.add(comboBox);
53
54 // create array for radio buttons
55 radio = new JRadioButton[looks.length];
56
57 JPanel southPanel = new JPanel();
58
59 // use a GridLayout with 3 buttons in each row
60 int rows = (int) Math.ceil(radio.length / 3.0);
61 southPanel.setLayout(new GridLayout(rows, 3));
62
63 group = new ButtonGroup(); // button group for look-and-feels
64 ItemHandler handler = new ItemHandler(); // look-and-feel handler
65
66 for (int count = 0; count < radio.length; count++)
67 {
68 radio[count] = new JRadioButton(lookNames[count]);
69 radio[count].addItemListener(handler); // add handler
70 group.add(radio[count]); // add radio button to group
71 southPanel.add(radio[count]); // add radio button to panel
72 }

Fig. 35.9 | Look-and-feel of a Swing-based GUI. (Part 2 of 3.)

// get installed look-and-feel information
looks = UIManager.getInstalledLookAndFeels();

jhtp_35_GUI2.fm Page 20 Monday, May 1, 2017 4:38 PM

35.6 Pluggable Look-and-Feel 35_21

73
74 add(northPanel, BorderLayout.NORTH); // add north panel
75 add(southPanel, BorderLayout.SOUTH); // add south panel
76
77 radio[0].setSelected(true); // set default selection
78 } // end LookAndFeelFrame constructor
79
80 // use UIManager to change look-and-feel of GUI
81 private void changeTheLookAndFeel(int value)
82 {
83 try // change look-and-feel
84 {
85
86
87
88
89
90 }
91 catch (Exception exception)
92 {
93 exception.printStackTrace();
94 }
95 }
96
97 // private inner class to handle radio button events
98 private class ItemHandler implements ItemListener
99 {
100 // process user's look-and-feel selection
101 @Override
102 public void itemStateChanged(ItemEvent event)
103 {
104 for (int count = 0; count < radio.length; count++)
105 {
106 if (radio[count].isSelected())
107 {
108 label.setText(String.format(
109 "This is a %s look-and-feel", lookNames[count]));
110 comboBox.setSelectedIndex(count); // set combobox index
111 changeTheLookAndFeel(count); // change look-and-feel
112 }
113 }
114 }
115 } // end private inner class ItemHandler
116 } // end class LookAndFeelFrame

1 // Fig. 22.10: LookAndFeelDemo.java
2 // Changing the look-and-feel.
3 import javax.swing.JFrame;
4

Fig. 35.10 | Test class for LookAndFeelFrame. (Part 1 of 2.)

Fig. 35.9 | Look-and-feel of a Swing-based GUI. (Part 3 of 3.)

// set look-and-feel for this application
UIManager.setLookAndFeel(looks[value].getClassName());

// update components in this application
SwingUtilities.updateComponentTreeUI(this);

jhtp_35_GUI2.fm Page 21 Monday, May 1, 2017 4:38 PM

35_22 Chapter 35 Swing GUI Components: Part 2

Our utility method changeTheLookAndFeel (lines 81–95) is called by the event handler
for the JRadioButtons at the bottom of the user interface. The event handler (declared in
private inner class ItemHandler at lines 98–115) passes an integer representing the element
in array looks that should be used to change the look-and-feel. Line 86 invokes static
method setLookAndFeel of UIManager to change the look-and-feel. The getClassName
method of class UIManager.LookAndFeelInfo determines the name of the look-and-feel
class that corresponds to the UIManager.LookAndFeelInfo object. If the look-and-feel is not
already loaded, it will be loaded as part of the call to setLookAndFeel. Line 89 invokes the
static method updateComponentTreeUI of class SwingUtilities (package javax.swing)
to change the look-and-feel of every GUI component attached to its argument (this
instance of our application class LookAndFeelFrame) to the new look-and-feel.

5 public class LookAndFeelDemo
6 {
7 public static void main(String[] args)
8 {
9 LookAndFeelFrame lookAndFeelFrame = new LookAndFeelFrame();

10 lookAndFeelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 lookAndFeelFrame.setSize(400, 220);
12 lookAndFeelFrame.setVisible(true);
13 }
14 } // end class LookAndFeelDemo

Fig. 35.10 | Test class for LookAndFeelFrame. (Part 2 of 2.)

jhtp_35_GUI2.fm Page 22 Monday, May 1, 2017 4:38 PM

35.7 JDesktopPane and JInternalFrame 35_23

35.7 JDesktopPane and JInternalFrame
A multiple-document interface (MDI) is a main window (called the parent window) con-
taining other windows (called child windows) and is often used to manage several open
documents. For example, many e-mail programs allow you to have several windows open
at the same time, so you can compose or read multiple e-mail messages simultaneously.
Similarly, many word processors allow the user to open multiple documents in separate
windows within a main window, making it possible to switch between them without hav-
ing to close one to open another. The application in Figs. 35.11–35.12 demonstrates
Swing’s JDesktopPane and JInternalFrame classes for implementing multiple-document
interfaces.

1 // Fig. 22.11: DesktopFrame.java
2 // Demonstrating JDesktopPane.
3 import java.awt.BorderLayout;
4 import java.awt.Dimension;
5 import java.awt.Graphics;
6 import java.awt.event.ActionListener;
7 import java.awt.event.ActionEvent;
8 import java.util.Random;
9 import javax.swing.JFrame;

10
11 import javax.swing.JMenuBar;
12 import javax.swing.JMenu;
13 import javax.swing.JMenuItem;
14
15 import javax.swing.JPanel;
16 import javax.swing.ImageIcon;
17
18 public class DesktopFrame extends JFrame
19 {
20
21
22 // set up GUI
23 public DesktopFrame()
24 {
25 super("Using a JDesktopPane");
26
27 JMenuBar bar = new JMenuBar();
28 JMenu addMenu = new JMenu("Add");
29 JMenuItem newFrame = new JMenuItem("Internal Frame");
30
31 addMenu.add(newFrame); // add new frame item to Add menu
32 bar.add(addMenu); // add Add menu to menu bar
33 setJMenuBar(bar); // set menu bar for this application
34
35
36
37
38 // set up listener for newFrame menu item
39 newFrame.addActionListener(

Fig. 35.11 | Multiple-document interface. (Part 1 of 2.)

import javax.swing.JDesktopPane;

import javax.swing.JInternalFrame;

private final JDesktopPane theDesktop;

theDesktop = new JDesktopPane();
add(theDesktop); // add desktop pane to frame

jhtp_35_GUI2.fm Page 23 Monday, May 1, 2017 4:38 PM

35_24 Chapter 35 Swing GUI Components: Part 2

40 new ActionListener() // anonymous inner class
41 {
42 // display new internal window
43 @Override
44 public void actionPerformed(ActionEvent event)
45 {
46 // create internal frame
47
48
49
50 MyJPanel panel = new MyJPanel();
51 frame.add(panel, BorderLayout.CENTER);
52 frame.pack(); // set internal frame to size of contents
53
54
55
56 }
57 }
58);
59 } // end DesktopFrame constructor
60 } // end class DesktopFrame
61
62 // class to display an ImageIcon on a panel
63 class MyJPanel extends JPanel
64 {
65 private static final SecureRandom generator = new SecureRandom();
66
67 private final static String[] images = { "yellowflowers.png",
68 "purpleflowers.png", "redflowers.png", "redflowers2.png",
69 "lavenderflowers.png" };
70
71 // load image
72 public MyJPanel()
73 {
74 int randomNumber = generator.nextInt(images.length);
75
76 }
77
78 // display imageIcon on panel
79 @Override
80 public void paintComponent(Graphics g)
81 {
82 super.paintComponent(g);
83
84 }
85
86 // return image dimensions
87 public Dimension getPreferredSize()
88 {
89
90
91 }
92 } // end class MyJPanel

Fig. 35.11 | Multiple-document interface. (Part 2 of 2.)

JInternalFrame frame = new JInternalFrame(
 "Internal Frame", true, true, true, true);

theDesktop.add(frame); // attach internal frame
frame.setVisible(true); // show internal frame

private final ImageIcon picture; // image to be displayed

picture = new ImageIcon(images[randomNumber]); // set icon

picture.paintIcon(this, g, 0, 0); // display icon

return new Dimension(picture.getIconWidth(),
 picture.getIconHeight());

jhtp_35_GUI2.fm Page 24 Monday, May 1, 2017 4:38 PM

35.7 JDesktopPane and JInternalFrame 35_25

Lines 27–33 create a JMenuBar, a JMenu and a JMenuItem, add the JMenuItem to the
JMenu, add the JMenu to the JMenuBar and set the JMenuBar for the application window.
When the user selects the JMenuItem newFrame, the application creates and displays a new
JInternalFrame object containing an image.

Line 35 assigns JDesktopPane (package javax.swing) variable theDesktop a new
JDesktopPane object that will be used to manage the JInternalFrame child windows.
Line 36 adds the JDesktopPane to the JFrame. By default, the JDesktopPane is added to
the center of the content pane’s BorderLayout, so the JDesktopPane expands to fill the
entire application window.

1 // Fig. 22.12: DesktopTest.java
2 // Demonstrating JDesktopPane.
3 import javax.swing.JFrame;
4
5 public class DesktopTest
6 {
7 public static void main(String[] args)
8 {
9 DesktopFrame desktopFrame = new DesktopFrame();

10 desktopFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 desktopFrame.setSize(600, 480);
12 desktopFrame.setVisible(true);
13 }
14 } // end class DesktopTest

Fig. 35.12 | Test class for DeskTopFrame. (Part 1 of 2.)

Internal frames Minimize Maximize Close

Minimized internal frames Position the mouse over any corner of a child window to resize
the window (if resizing is allowed)

jhtp_35_GUI2.fm Page 25 Monday, May 1, 2017 4:38 PM

35_26 Chapter 35 Swing GUI Components: Part 2

Lines 39–58 register an ActionListener to handle the event when the user selects the
newFrame menu item. When the event occurs, method actionPerformed (lines 43–56)
creates a JInternalFrame object in lines 47–48. The JInternalFrame constructor used
here takes five arguments—a String for the title bar of the internal window, a boolean
indicating whether the internal frame can be resized by the user, a boolean indicating
whether the internal frame can be closed by the user, a boolean indicating whether the
internal frame can be maximized by the user and a boolean indicating whether the internal
frame can be minimized by the user. For each of the boolean arguments, a true value indi-
cates that the operation should be allowed (as is the case here).

As with JFrames and JApplets, a JInternalFrame has a content pane to which GUI
components can be attached. Line 50 creates an instance of our class MyJPanel (declared
at lines 63–91) that is added to the JInternalFrame at line 51.

Line 52 uses JInternalFrame method pack to set the size of the child window.
Method pack uses the preferred sizes of the components to determine the window’s size.
Class MyJPanel declares method getPreferredSize (lines 87–91) to specify the panel’s
preferred size for use by the pack method. Line 54 adds the JInternalFrame to the JDesk-
topPane, and line 55 displays the JInternalFrame.

Classes JInternalFrame and JDesktopPane provide many methods for managing
child windows. See the JInternalFrame and JDesktopPane online API documentation
for complete lists of these methods:

35.8 JTabbedPane
A JTabbedPane arranges GUI components into layers, of which only one is visible at a
time. Users access each layer via a tab—similar to folders in a file cabinet. When the user
clicks a tab, the appropriate layer is displayed. The tabs appear at the top by default but
also can be positioned at the left, right or bottom of the JTabbedPane. Any component

docs.oracle.com/javase/8/docs/api/javax/swing/JInternalFrame.html
docs.oracle.com/javase/8/docs/api/javax/swing/JDesktopPane.html

Fig. 35.12 | Test class for DeskTopFrame. (Part 2 of 2.)

Maximized
internal frame

jhtp_35_GUI2.fm Page 26 Monday, May 1, 2017 4:38 PM

35.8 JTabbedPane 35_27

can be placed on a tab. If the component is a container, such as a panel, it can use any
layout manager to lay out several components on the tab. Class JTabbedPane is a subclass
of JComponent. The application in Figs. 35.13–35.14 creates one tabbed pane with three
tabs. Each tab displays one of the JPanels—panel1, panel2 or panel3.

1 // Fig. 22.13: JTabbedPaneFrame.java
2 // Demonstrating JTabbedPane.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import javax.swing.JFrame;
6
7 import javax.swing.JLabel;
8 import javax.swing.JPanel;
9 import javax.swing.JButton;

10 import javax.swing.SwingConstants;
11
12 public class JTabbedPaneFrame extends JFrame
13 {
14 // set up GUI
15 public JTabbedPaneFrame()
16 {
17 super("JTabbedPane Demo ");
18
19
20
21 // set up pane11 and add it to JTabbedPane
22 JLabel label1 = new JLabel("panel one", SwingConstants.CENTER);
23 JPanel panel1 = new JPanel();
24 panel1.add(label1);
25
26
27 // set up panel2 and add it to JTabbedPane
28 JLabel label2 = new JLabel("panel two", SwingConstants.CENTER);
29 JPanel panel2 = new JPanel();
30 panel2.setBackground(Color.YELLOW);
31 panel2.add(label2);
32
33
34 // set up panel3 and add it to JTabbedPane
35 JLabel label3 = new JLabel("panel three");
36 JPanel panel3 = new JPanel();
37 panel3.setLayout(new BorderLayout());
38 panel3.add(new JButton("North"), BorderLayout.NORTH);
39 panel3.add(new JButton("West"), BorderLayout.WEST);
40 panel3.add(new JButton("East"), BorderLayout.EAST);
41 panel3.add(new JButton("South"), BorderLayout.SOUTH);
42 panel3.add(label3, BorderLayout.CENTER);
43
44
45 add(tabbedPane); // add JTabbedPane to frame
46 }
47 } // end class JTabbedPaneFrame

Fig. 35.13 | JTabbedPane used to organize GUI components.

import javax.swing.JTabbedPane;

JTabbedPane tabbedPane = new JTabbedPane(); // create JTabbedPane

tabbedPane.addTab("Tab One", null, panel1, "First Panel");

tabbedPane.addTab("Tab Two", null, panel2, "Second Panel");

tabbedPane.addTab("Tab Three", null, panel3, "Third Panel");

jhtp_35_GUI2.fm Page 27 Monday, May 1, 2017 4:38 PM

35_28 Chapter 35 Swing GUI Components: Part 2

The constructor (lines 15–46) builds the GUI. Line 19 creates an empty JTabbedPane
with default settings—that is, tabs across the top. If the tabs do not fit on one line, they’ll
wrap to form additional lines of tabs. Next the constructor creates the JPanels panel1,
panel2 and panel3 and their GUI components. As we set up each panel, we add it to
tabbedPane, using JTabbedPane method addTab with four arguments. The first argument
is a String that specifies the title of the tab. The second argument is an Icon reference that
specifies an icon to display on the tab. If the Icon is a null reference, no image is displayed.
The third argument is a Component reference that represents the GUI component to dis-
play when the user clicks the tab. The last argument is a String that specifies the tool tip
for the tab. For example, line 25 adds JPanel panel1 to tabbedPane with title "Tab One"
and the tool tip "First Panel". JPanels panel2 and panel3 are added to tabbedPane at
lines 32 and 43. To view a tab, click it with the mouse or use the arrow keys to cycle
through the tabs.

35.9 BoxLayout Layout Manager
In Chapter 26, we introduced three layout managers—FlowLayout, BorderLayout and
GridLayout. This section and Section 35.10 present two additional layout managers
(summarized in Fig. 35.15). We discuss them in the examples that follow.

1 // Fig. 22.14: JTabbedPaneDemo.java
2 // Demonstrating JTabbedPane.
3 import javax.swing.JFrame;
4
5 public class JTabbedPaneDemo
6 {
7 public static void main(String[] args)
8 {
9 JTabbedPaneFrame tabbedPaneFrame = new JTabbedPaneFrame();

10 tabbedPaneFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 tabbedPaneFrame.setSize(250, 200);
12 tabbedPaneFrame.setVisible(true);
13 }
14 } // end class JTabbedPaneDemo

Fig. 35.14 | Test class for JTabbedPaneFrame.

jhtp_35_GUI2.fm Page 28 Monday, May 1, 2017 4:38 PM

35.9 BoxLayout Layout Manager 35_29

The BoxLayout layout manager (in package javax.swing) arranges GUI components
horizontally along a container’s x-axis or vertically along its y-axis. The application in
Figs. 35.16–35.17 demonstrate BoxLayout and the container class Box that uses Box-
Layout as its default layout manager.

Layout manager Description

BoxLayout Allows GUI components to be arranged left-to-right or top-to-bottom in a
container. Class Box declares a container that uses BoxLayout and provides
static methods to create a Box with a horizontal or vertical BoxLayout.

GridBagLayout Similar to GridLayout, but the components can vary in size and can be added
in any order.

Fig. 35.15 | Additional layout managers.

1 // Fig. 22.16: BoxLayoutFrame.java
2 // Demonstrating BoxLayout.
3 import java.awt.Dimension;
4 import javax.swing.JFrame;
5 import javax.swing.Box;
6 import javax.swing.JButton;
7
8 import javax.swing.JPanel;
9 import javax.swing.JTabbedPane;

10
11 public class BoxLayoutFrame extends JFrame
12 {
13 // set up GUI
14 public BoxLayoutFrame()
15 {
16 super("Demonstrating BoxLayout");
17
18 // create Box containers with BoxLayout
19
20
21
22
23
24 final int SIZE = 3; // number of buttons on each Box
25
26 // add buttons to Box horizontal1
27 for (int count = 0; count < SIZE; count++)
28
29
30 // create strut and add buttons to Box vertical1
31 for (int count = 0; count < SIZE; count++)
32 {
33
34
35 }

Fig. 35.16 | BoxLayout layout manager. (Part 1 of 2.)

import javax.swing.BoxLayout;

Box horizontal1 = Box.createHorizontalBox();
Box vertical1 = Box.createVerticalBox();
Box horizontal2 = Box.createHorizontalBox();
Box vertical2 = Box.createVerticalBox();

horizontal1.add(new JButton("Button " + count));

vertical1.add(Box.createVerticalStrut(25));
vertical1.add(new JButton("Button " + count));

jhtp_35_GUI2.fm Page 29 Monday, May 1, 2017 4:38 PM

35_30 Chapter 35 Swing GUI Components: Part 2

36
37 // create horizontal glue and add buttons to Box horizontal2
38 for (int count = 0; count < SIZE; count++)
39 {
40
41
42 }
43
44 // create rigid area and add buttons to Box vertical2
45 for (int count = 0; count < SIZE; count++)
46 {
47
48
49 }
50
51 // create vertical glue and add buttons to panel
52 JPanel panel = new JPanel();
53 panel.setLayout ();
54
55 for (int count = 0; count < SIZE; count++)
56 {
57
58
59 }
60
61 // create a JTabbedPane
62
63
64
65 // place each container on tabbed pane
66 tabs.addTab("Horizontal Box", horizontal1);
67 tabs.addTab("Vertical Box with Struts", vertical1);
68 tabs.addTab("Horizontal Box with Glue", horizontal2);
69 tabs.addTab("Vertical Box with Rigid Areas", vertical2);
70 tabs.addTab("Vertical Box with Glue", panel);
71
72 add(tabs); // place tabbed pane on frame
73 } // end BoxLayoutFrame constructor
74 } // end class BoxLayoutFrame

1 // Fig. 22.17: BoxLayoutDemo.java
2 // Demonstrating BoxLayout.
3 import javax.swing.JFrame;
4
5 public class BoxLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 BoxLayoutFrame boxLayoutFrame = new BoxLayoutFrame();

Fig. 35.17 | Test class for BoxLayoutFrame. (Part 1 of 2.)

Fig. 35.16 | BoxLayout layout manager. (Part 2 of 2.)

horizontal2.add(Box.createHorizontalGlue());
horizontal2.add(new JButton("Button " + count));

vertical2.add(Box.createRigidArea(new Dimension(12, 8)));
vertical2.add(new JButton("Button " + count));

new BoxLayout(panel, BoxLayout.Y_AXIS)

panel.add(Box.createGlue());
panel.add(new JButton("Button " + count));

JTabbedPane tabs = new JTabbedPane(
 JTabbedPane.TOP, JTabbedPane.SCROLL_TAB_LAYOUT);

jhtp_35_GUI2.fm Page 30 Monday, May 1, 2017 4:38 PM

35.9 BoxLayout Layout Manager 35_31

Creating Box Containers
Lines 19–22 create Box containers. References horizontal1 and horizontal2 are initial-
ized with static Box method createHorizontalBox, which returns a Box container with
a horizontal BoxLayout in which GUI components are arranged left-to-right. Variables
vertical1 and vertical2 are initialized with static Box method createVerticalBox,
which returns references to Box containers with a vertical BoxLayout in which GUI com-
ponents are arranged top-to-bottom.

Struts
The loop at lines 27–28 adds three JButtons to horizontal1. The for statement at lines
31–35 adds three JButtons to vertical1. Before adding each button, line 33 adds a ver-
tical strut to the container with static Box method createVerticalStrut. A vertical
strut is an invisible GUI component that has a fixed pixel height and is used to guarantee
a fixed amount of space between GUI components. The int argument to method create-
VerticalStrut determines the height of the strut in pixels. When the container is resized,
the distance between GUI components separated by struts does not change. Class Box also
declares method createHorizontalStrut for horizontal BoxLayouts.

10 boxLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 boxLayoutFrame.setSize(400, 220);
12 boxLayoutFrame.setVisible(true);
13 }
14 } // end class BoxLayoutDemo

Fig. 35.17 | Test class for BoxLayoutFrame. (Part 2 of 2.)

Arrows for cycling
through tabs

jhtp_35_GUI2.fm Page 31 Monday, May 1, 2017 4:38 PM

35_32 Chapter 35 Swing GUI Components: Part 2

Glue
The for statement at lines 38–42 adds three JButtons to horizontal2. Before adding each
button, line 40 adds horizontal glue to the container with static Box method createHo-
rizontalGlue. Horizontal glue is an invisible GUI component that can be used between
fixed-size GUI components to occupy additional space. Normally, extra space appears to
the right of the last horizontal GUI component or below the last vertical one in a BoxLay-
out. Glue allows the extra space to be placed between GUI components. When the con-
tainer is resized, components separated by glue components remain the same size, but the
glue stretches or contracts to occupy the space between them. Class Box also declares meth-
od createVerticalGlue for vertical BoxLayouts.

Rigid Areas
The for statement at lines 45–49 adds three JButtons to vertical2. Before each button
is added, line 47 adds a rigid area to the container with static Box method create-
RigidArea. A rigid area is an invisible GUI component that always has a fixed pixel width
and height. The argument to method createRigidArea is a Dimension object that speci-
fies the area’s width and height.

Setting a BoxLayout for a Container
Lines 52–53 create a JPanel object and set its layout to a BoxLayout in the conventional
manner, using Container method setLayout. The BoxLayout constructor receives a ref-
erence to the container for which it controls the layout and a constant indicating whether
the layout is horizontal (BoxLayout.X_AXIS) or vertical (BoxLayout.Y_AXIS).

Adding Glue and JButtons
The for statement at lines 55–59 adds three JButtons to panel. Before adding each but-
ton, line 57 adds a glue component to the container with static Box method create-
Glue. This component expands or contracts based on the size of the Box.

Creating the JTabbedPane
Lines 62–63 create a JTabbedPane to display the five containers in this program. The ar-
gument JTabbedPane.TOP sent to the constructor indicates that the tabs should appear at
the top of the JTabbedPane. The argument JTabbedPane.SCROLL_TAB_LAYOUT specifies
that the tabs should wrap to a new line if there are too many to fit on one line.

Attaching the Box Containers and JPanel to the JTabbedPane
The Box containers and the JPanel are attached to the JTabbedPane at lines 66–70. Try
executing the application. When the window appears, resize the window to see how the
glue components, strut components and rigid area affect the layout on each tab.

35.10 GridBagLayout Layout Manager
One of the most powerful predefined layout managers is GridBagLayout (in package ja-
va.awt). This layout is similar to GridLayout in that it arranges components in a grid, but
it’s more flexible. The components can vary in size (i.e., they can occupy multiple rows
and columns) and can be added in any order.

The first step in using GridBagLayout is determining the appearance of the GUI. For
this step you need only a piece of paper. Draw the GUI, then draw a grid over it, dividing

jhtp_35_GUI2.fm Page 32 Monday, May 1, 2017 4:38 PM

35.10 GridBagLayout Layout Manager 35_33

the components into rows and columns. The initial row and column numbers should be
0, so that the GridBagLayout layout manager can use the row and column numbers to
properly place the components in the grid. Figure 35.18 demonstrates drawing the lines
for the rows and columns over a GUI.

GridBagConstraints
A GridBagConstraints object describes how a component is placed in a GridBagLayout.
Several GridBagConstraints fields are summarized in Fig. 35.19.

GridBagConstraints Field anchor
GridBagConstraints field anchor specifies the relative position of the component in an
area that it does not fill. The variable anchor is assigned one of the following GridBagCon-
straints constants: NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST,
NORTHWEST or CENTER. The default value is CENTER.

Fig. 35.18 | Designing a GUI that will use GridBagLayout.

Field Description

anchor Specifies the relative position (NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH,
SOUTHWEST, WEST, NORTHWEST, CENTER) of the component in an area that it
does not fill.

fill Resizes the component in the specified direction (NONE, HORIZONTAL, VER-
TICAL, BOTH) when the display area is larger than the component.

gridx The column in which the component will be placed.
gridy The row in which the component will be placed.
gridwidth The number of columns the component occupies.
gridheight The number of rows the component occupies.
weightx The amount of extra space to allocate horizontally. The grid slot can

become wider when extra space is available.
weighty The amount of extra space to allocate vertically. The grid slot can become

taller when extra space is available.

Fig. 35.19 | GridBagConstraints fields.

Row

Column
0 1 2

0

1

2

3

jhtp_35_GUI2.fm Page 33 Monday, May 1, 2017 4:38 PM

35_34 Chapter 35 Swing GUI Components: Part 2

GridBagConstraints Field fill
GridBagConstraints field fill defines how the component grows if the area in which it
can be displayed is larger than the component. The variable fill is assigned one of the
following GridBagConstraints constants: NONE, VERTICAL, HORIZONTAL or BOTH. The de-
fault value is NONE, which indicates that the component will not grow in either direction.
VERTICAL indicates that it will grow vertically. HORIZONTAL indicates that it will grow hor-
izontally. BOTH indicates that it will grow in both directions.

GridBagConstraints Fields gridx and gridy
Variables gridx and gridy specify where the upper-left corner of the component is placed
in the grid. Variable gridx corresponds to the column, and variable gridy corresponds to
the row. In Fig. 35.18, the JComboBox (displaying “Iron”) has a gridx value of 1 and a
gridy value of 2.

GridBagConstraints Field gridwidth
Variable gridwidth specifies the number of columns a component occupies. The JCombo-
Box occupies two columns. Variable gridheight specifies the number of rows a compo-
nent occupies. The JTextArea on the left side of Fig. 35.18 occupies three rows.

GridBagConstraints Field weightx
Variable weightx specifies how to distribute extra horizontal space to grid slots in a Grid-
BagLayout when the container is resized. A zero value indicates that the grid slot does not
grow horizontally on its own. However, if the component spans a column containing a
component with nonzero weightx value, the component with zero weightx value will
grow horizontally in the same proportion as the other component(s) in that column. This
is because each component must be maintained in the same row and column in which it
was originally placed.

GridBagConstraints Field weighty
Variable weighty specifies how to distribute extra vertical space to grid slots in a Grid-
BagLayout when the container is resized. A zero value indicates that the grid slot does not
grow vertically on its own. However, if the component spans a row containing a compo-
nent with nonzero weighty value, the component with zero weighty value grows vertically
in the same proportion as the other component(s) in the same row.

Effects of weightx and weighty
In Fig. 35.18, the effects of weighty and weightx cannot easily be seen until the container
is resized and additional space becomes available. Components with larger weight values
occupy more of the additional space than those with smaller weight values.

Components should be given nonzero positive weight values—otherwise they’ll
“huddle” together in the middle of the container. Figure 35.20 shows the GUI of
Fig. 35.18 with all weights set to zero.

Demonstrating GridBagLayout
The application in Figs. 35.21–35.22 uses the GridBagLayout layout manager to arrange
the components of the GUI in Fig. 35.18. The application does nothing except demon-
strate how to use GridBagLayout.

jhtp_35_GUI2.fm Page 34 Monday, May 1, 2017 4:38 PM

35.10 GridBagLayout Layout Manager 35_35

Fig. 35.20 | GridBagLayout with the weights set to zero.

1 // Fig. 22.21: GridBagFrame.java
2 // Demonstrating GridBagLayout.
3
4
5 import java.awt.Component;
6 import javax.swing.JFrame;
7 import javax.swing.JTextArea;
8 import javax.swing.JTextField;
9 import javax.swing.JButton;

10 import javax.swing.JComboBox;
11
12 public class GridBagFrame extends JFrame
13 {
14
15
16
17 // set up GUI
18 public GridBagFrame()
19 {
20 super("GridBagLayout");
21
22
23
24
25 // create GUI components
26 JTextArea textArea1 = new JTextArea("TextArea1", 5, 10);
27 JTextArea textArea2 = new JTextArea("TextArea2", 2, 2);
28
29 String[] names = { "Iron", "Steel", "Brass" };
30 JComboBox<String> comboBox = new JComboBox<String>(names);
31
32 JTextField textField = new JTextField("TextField");
33 JButton button1 = new JButton("Button 1");
34 JButton button2 = new JButton("Button 2");
35 JButton button3 = new JButton("Button 3");
36
37 // weightx and weighty for textArea1 are both 0: the default
38 // anchor for all components is CENTER: the default
39
40

Fig. 35.21 | GridBagLayout layout manager. (Part 1 of 2.)

import java.awt.GridBagLayout;
import java.awt.GridBagConstraints;

private final GridBagLayout layout; // layout of this frame
private final GridBagConstraints constraints; // layout's constraints

layout = new GridBagLayout();
setLayout(layout); // set frame layout
constraints = new GridBagConstraints(); // instantiate constraints

constraints.fill = GridBagConstraints.BOTH;
addComponent(textArea1, 0, 0, 1, 3);

jhtp_35_GUI2.fm Page 35 Monday, May 1, 2017 4:38 PM

35_36 Chapter 35 Swing GUI Components: Part 2

41
42 // weightx and weighty for button1 are both 0: the default
43
44
45
46 // weightx and weighty for comboBox are both 0: the default
47 // fill is HORIZONTAL
48
49
50 // button2
51
52
53
54
55
56 // fill is BOTH for button3
57
58
59
60
61 // weightx and weighty for textField are both 0, fill is BOTH
62
63
64 // weightx and weighty for textArea2 are both 0, fill is BOTH
65
66 } // end GridBagFrame constructor
67
68 // method to set constraints on
69 private void addComponent(Component component,
70 int row, int column, int width, int height)
71 {
72
73
74
75
76
77
78 }
79 } // end class GridBagFrame

1 // Fig. 22.22: GridBagDemo.java
2 // Demonstrating GridBagLayout.
3 import javax.swing.JFrame;
4
5 public class GridBagDemo
6 {
7 public static void main(String[] args)
8 {
9 GridBagFrame gridBagFrame = new GridBagFrame();

Fig. 35.22 | Test class for GridBagFrame. (Part 1 of 2.)

Fig. 35.21 | GridBagLayout layout manager. (Part 2 of 2.)

constraints.fill = GridBagConstraints.HORIZONTAL;
addComponent(button1, 0, 1, 2, 1);

addComponent(comboBox, 2, 1, 2, 1);

constraints.weightx = 1000; // can grow wider
constraints.weighty = 1; // can grow taller
constraints.fill = GridBagConstraints.BOTH;
addComponent(button2, 1, 1, 1, 1);

constraints.weightx = 0;
constraints.weighty = 0;
addComponent(button3, 1, 2, 1, 1);

addComponent(textField, 3, 0, 2, 1);

addComponent(textArea2, 3, 2, 1, 1);

constraints.gridx = column;
constraints.gridy = row;
constraints.gridwidth = width;
constraints.gridheight = height;
layout.setConstraints(component, constraints); // set constraints
add(component); // add component

jhtp_35_GUI2.fm Page 36 Monday, May 1, 2017 4:38 PM

35.10 GridBagLayout Layout Manager 35_37

GUI Overview
The GUI contains three JButtons, two JTextAreas, a JComboBox and a JTextField. The
layout manager is GridBagLayout. Lines 21–22 create the GridBagLayout object and set
the layout manager for the JFrame to layout. Line 23 creates the GridBagConstraints
object used to determine the location and size of each component in the grid. Lines 26–
35 create each GUI component that will be added to the content pane.

JTextArea textArea1
Lines 39–40 configure JTextArea textArea1 and add it to the content pane. The values
for weightx and weighty values are not specified in constraints, so each has the value
zero by default. Thus, the JTextArea will not resize itself even if space is available. How-
ever, it spans multiple rows, so the vertical size is subject to the weighty values of JButtons
button2 and button3. When either button is resized vertically based on its weighty value,
the JTextArea is also resized.

Line 39 sets variable fill in constraints to GridBagConstraints.BOTH, causing the
JTextArea to always fill its entire allocated area in the grid. An anchor value is not speci-
fied in constraints, so the default CENTER is used. We do not use variable anchor in this

10 gridBagFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 gridBagFrame.setSize(300, 150);
12 gridBagFrame.setVisible(true);
13 }
14 } // end class GridBagDemo

Fig. 35.22 | Test class for GridBagFrame. (Part 2 of 2.)

jhtp_35_GUI2.fm Page 37 Monday, May 1, 2017 4:38 PM

35_38 Chapter 35 Swing GUI Components: Part 2

application, so all the components will use the default. Line 40 calls our utility method
addComponent (declared at lines 69–78). The JTextArea object, the row, the column, the
number of columns to span and the number of rows to span are passed as arguments.

JButton button1
JButton button1 is the next component added (lines 43–44). By default, the weightx and
weighty values are still zero. The fill variable is set to HORIZONTAL—the component will
always fill its area in the horizontal direction. The vertical direction is not filled. The
weighty value is zero, so the button will become taller only if another component in the
same row has a nonzero weighty value. JButton button1 is located at row 0, column 1.
One row and two columns are occupied.

JComboBox comboBox
JComboBox comboBox is the next component added (line 48). By default, the weightx and
weighty values are zero, and the fill variable is set to HORIZONTAL. The JComboBox button
will grow only in the horizontal direction. The weightx, weighty and fill variables retain
the values set in constraints until they’re changed. The JComboBox button is placed at
row 2, column 1. One row and two columns are occupied.

JButton button2
JButton button2 is the next component added (lines 51–54). It’s given a weightx value
of 1000 and a weighty value of 1. The area occupied by the button is capable of growing
in the vertical and horizontal directions. The fill variable is set to BOTH, which specifies
that the button will always fill the entire area. When the window is resized, button2 will
grow. The button is placed at row 1, column 1. One row and one column are occupied.

JButton button3
JButton button3 is added next (lines 57–59). Both the weightx value and weighty value
are set to zero, and the value of fill is BOTH. JButton button3 will grow if the window is
resized—it’s affected by the weight values of button2. The weightx value for button2 is
much larger than that for button3. When resizing occurs, button2 will occupy a larger
percentage of the new space. The button is placed at row 1, column 2. One row and one
column are occupied.

JTextField textField and JTextArea textArea2
Both the JTextField textField (line 62) and JTextArea textArea2 (line 65) have a
weightx value of 0 and a weighty value of 0. The value of fill is BOTH. The JTextField
is placed at row 3, column 0, and the JTextArea at row 3, column 2. The JTextField oc-
cupies one row and two columns, the JTextArea one row and one column.

Method addComponent
Method addComponent’s parameters are a Component reference component and integers
row, column, width and height. Lines 72–73 set the GridBagConstraints variables gridx
and gridy. The gridx variable is assigned the column in which the Component will be
placed, and the gridy value is assigned the row in which the Component will be placed.
Lines 74–75 set the GridBagConstraints variables gridwidth and gridheight. The
gridwidth variable specifies the number of columns the Component will span in the grid,

jhtp_35_GUI2.fm Page 38 Monday, May 1, 2017 4:38 PM

35.10 GridBagLayout Layout Manager 35_39

and the gridheight variable specifies the number of rows the Component will span in the
grid. Line 76 sets the GridBagConstraints for a component in the GridBagLayout. Meth-
od setConstraints of class GridBagLayout takes a Component argument and a GridBag-
Constraints argument. Line 77 adds the component to the JFrame.

When you execute this application, try resizing the window to see how the constraints
for each GUI component affect its position and size in the window.

GridBagConstraints Constants RELATIVE and REMAINDER
Instead of gridx and gridy, a variation of GridBagLayout uses GridBagConstraints con-
stants RELATIVE and REMAINDER. RELATIVE specifies that the next-to-last component in a
particular row should be placed to the right of the previous component in the row.
REMAINDER specifies that a component is the last component in a row. Any component that
is not the second-to-last or last component on a row must specify values for GridbagCon-
straints variables gridwidth and gridheight. The application in Figs. 35.23–35.24 ar-
ranges components in GridBagLayout, using these constants.

1 // Fig. 22.23: GridBagFrame2.java
2 // Demonstrating GridBagLayout constants.
3 import java.awt.GridBagLayout;
4 import java.awt.GridBagConstraints;
5 import java.awt.Component;
6 import javax.swing.JFrame;
7 import javax.swing.JComboBox;
8 import javax.swing.JTextField;
9 import javax.swing.JList;

10 import javax.swing.JButton;
11
12 public class GridBagFrame2 extends JFrame
13 {
14 private final GridBagLayout layout; // layout of this frame
15
16
17 // set up GUI
18 public GridBagFrame2()
19 {
20 super("GridBagLayout");
21
22
23 constraints = new GridBagConstraints(); // instantiate constraints
24
25 // create GUI components
26 String[] metals = { "Copper", "Aluminum", "Silver" };
27 JComboBox comboBox = new JComboBox(metals);
28
29 JTextField textField = new JTextField("TextField");
30
31 String[] fonts = { "Serif", "Monospaced" };
32 JList list = new JList(fonts);
33

Fig. 35.23 | GridBagConstraints constants RELATIVE and REMAINDER. (Part 1 of 2.)

private final GridBagConstraints constraints; // layout's constraints

layout = new GridBagLayout();
setLayout(layout); // set frame layout

jhtp_35_GUI2.fm Page 39 Monday, May 1, 2017 4:38 PM

35_40 Chapter 35 Swing GUI Components: Part 2

34 String[] names = { "zero", "one", "two", "three", "four" };
35 JButton[] buttons = new JButton[names.length];
36
37 for (int count = 0; count < buttons.length; count++)
38 buttons[count] = new JButton(names[count]);
39
40 // define GUI component constraints for textField
41
42
43
44
45
46
47 // buttons[0] -- weightx and weighty are 1: fill is BOTH
48
49
50
51 // buttons[1] -- weightx and weighty are 1: fill is BOTH
52
53
54
55 // buttons[2] -- weightx and weighty are 1: fill is BOTH
56
57
58
59 // comboBox -- weightx is 1: fill is BOTH
60
61
62
63
64 // buttons[3] -- weightx is 1: fill is BOTH
65
66
67
68
69 // buttons[4] -- weightx and weighty are 1: fill is BOTH
70
71
72
73 // list -- weightx and weighty are 1: fill is BOTH
74
75
76 } // end GridBagFrame2 constructor
77
78 // add a component to the container
79 private void addComponent(Component component)
80 {
81
82
83 }
84 } // end class GridBagFrame2

Fig. 35.23 | GridBagConstraints constants RELATIVE and REMAINDER. (Part 2 of 2.)

constraints.weightx = 1;
constraints.weighty = 1;
constraints.fill = GridBagConstraints.BOTH;
constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(textField);

constraints.gridwidth = 1;
addComponent(buttons[0]);

constraints.gridwidth = GridBagConstraints.RELATIVE;
addComponent(buttons[1]);

constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(buttons[2]);

constraints.weighty = 0;
constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(comboBox);

constraints.weighty = 1;
constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(buttons[3]);

constraints.gridwidth = GridBagConstraints.RELATIVE;
addComponent(buttons[4]);

constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(list);

layout.setConstraints(component, constraints);
add(component); // add component

jhtp_35_GUI2.fm Page 40 Monday, May 1, 2017 4:38 PM

35.10 GridBagLayout Layout Manager 35_41

Setting the JFrame’s Layout to a GridBagLayout
Lines 21–22 create a GridBagLayout and use it to set the JFrame’s layout manager. The
components that are placed in GridBagLayout are created in lines 27–38—they are a
JComboBox, a JTextField, a JList and five JButtons.

Configuring the JTextField
The JTextField is added first (lines 41–45). The weightx and weighty values are set to
1. The fill variable is set to BOTH. Line 44 specifies that the JTextField is the last com-
ponent on the line. The JTextField is added to the content pane with a call to our utility
method addComponent (declared at lines 79–83). Method addComponent takes a Compo-
nent argument and uses GridBagLayout method setConstraints to set the constraints
for the Component. Method add attaches the component to the content pane.

Configuring JButton buttons[0]
JButton buttons[0] (lines 48–49) has weightx and weighty values of 1. The fill vari-
able is BOTH. Because buttons[0] is not one of the last two components on the row, it’s
given a gridwidth of 1 and so will occupy one column. The JButton is added to the con-
tent pane with a call to utility method addComponent.

Configuring JButton buttons[1]
JButton buttons[1] (lines 52–53) has weightx and weighty values of 1. The fill vari-
able is BOTH. Line 52 specifies that the JButton is to be placed relative to the previous com-
ponent. The Button is added to the JFrame with a call to addComponent.

1 // Fig. 22.24: GridBagDemo2.java
2 // Demonstrating GridBagLayout constants.
3 import javax.swing.JFrame;
4
5 public class GridBagDemo2
6 {
7 public static void main(String[] args)
8 {
9 GridBagFrame2 gridBagFrame = new GridBagFrame2();

10 gridBagFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 gridBagFrame.setSize(300, 200);
12 gridBagFrame.setVisible(true);
13 }
14 } // end class GridBagDemo2

Fig. 35.24 | Test class for GridBagDemo2.

jhtp_35_GUI2.fm Page 41 Monday, May 1, 2017 4:38 PM

35_42 Chapter 35 Swing GUI Components: Part 2

Configuring JButton buttons[2]
JButton buttons[2] (lines 56–57) has weightx and weighty values of 1. The fill vari-
able is BOTH. This JButton is the last component on the line, so REMAINDER is used. The
JButton is added to the content pane with a call to addComponent.

Configuring JComboBox
The JComboBox (lines 60–62) has a weightx of 1 and a weighty of 0. The JComboBox will
not grow vertically. The JComboBox is the only component on the line, so REMAINDER is
used. The JComboBox is added to the content pane with a call to addComponent.

Configuring JButton buttons[3]
JButton buttons[3] (lines 65–67) has weightx and weighty values of 1. The fill vari-
able is BOTH. This JButton is the only component on the line, so REMAINDER is used. The
JButton is added to the content pane with a call to addComponent.

Configuring JButton buttons[4]
JButton buttons[4] (lines 70–71) has weightx and weighty values of 1. The fill vari-
able is BOTH. This JButton is the next-to-last component on the line, so RELATIVE is used.
The JButton is added to the content pane with a call to addComponent.

Configuring JList
The JList (lines 74–75) has weightx and weighty values of 1. The fill variable is BOTH.
The JList is added to the content pane with a call to addComponent.

35.11 Wrap-Up
This chapter completes our introduction to GUIs. In this chapter, we discussed additional
GUI topics, such as menus, sliders, pop-up menus, multiple-document interfaces, tabbed
panes and Java’s pluggable look-and-feel. All these components can be added to existing
applications to make them easier to use and understand. We also presented additional lay-
out managers for organizing and sizing GUI components.

Summary

Section 22.2 JSlider
• JSliders (p. 2) enable you to select from a range of integer values. They can display major and

minor tick marks, and labels for the tick marks (p. 2). They also support snap-to ticks (p. 3)—
positioning the thumb (p. 2) between two tick marks snaps it to the closest tick mark.

jhtp_35_GUI2.fm Page 42 Monday, May 1, 2017 4:38 PM

 Summary 35_43

• JSliders have either horizontal or vertical orientation. For a horizontal JSlider, the minimum
value is at the extreme left and the maximum value at the extreme right. For a vertical JSlider,
the minimum value is at the extreme bottom and the maximum value at the extreme top. The
position of the thumb indicates the current value of the JSlider. Method getValue (p. 6) of class
JSlider returns the current thumb position.

• JSlider method setMajorTickSpacing () sets the spacing for tick marks on a JSlider. Method
setPaintTicks (p. 6) with a true argument indicates that the tick marks should be displayed.

• JSliders generate ChangeEvents when the user interacts with a JSlider. A ChangeListener
(p. 6) declares method stateChanged (p. 6) that can respond to ChangeEvents.

Section 35.3 Understanding Windows in Java
• A window’s (p. 6) events can be handled by a WindowListener (p. 7), which provides seven win-

dow-event-handling methods—windowActivated, windowClosed, windowClosing, windowDeac-
tivated, windowDeiconified, windowIconified and windowOpened.

Section 35.4 Using Menus with Frames
• Menus neatly organize commands in a GUI. In Swing GUIs, menus can be attached only to ob-

jects of classes with method setJMenuBar (p. 7).

• A JMenuBar (p. 7) is a container for menus. A JMenuItem appears in a menu. A JMenu (p. 7) con-
tains menu items and can be added to a JMenuBar or to other JMenus as submenus.

• When a menu is clicked, it expands to show its list of menu items.

• When a JCheckBoxMenuItem (p. 8) is selected, a check appears to the left of the menu item. When
the JCheckBoxMenuItem is selected again, the check is removed.

• In a ButtonGroup, only one JRadioButtonMenuItem (p. 8) can be selected at a time.

• AbstractButton method setMnemonic (p. 13) specifies the mnemonic (p. 8) for a button. Mne-
monic characters are normally displayed with an underline.

• A modal dialog box (p. 13) does not allow access to any other window in the application until
the dialog is dismissed. The dialogs displayed with class JOptionPane are modal dialogs. Class
JDialog (p. 13) can be used to create your own modal or nonmodal dialogs.

Section 22.5 JPopupMenu
• Context-sensitive pop-up menus (p. 15) are created with class JPopupMenu. The pop-up trigger

event occurs normally when the user presses and releases the right mouse button. MouseEvent
method isPopupTrigger (p. 18) returns true if the pop-up trigger event occurred.

• JPopupMenu method show (p. 18) displays a JPopupMenu. The first argument specifies the origin
component, which helps determine where the JPopupMenu will appear. The last two arguments
are the coordinates from the origin component’s upper-left corner, at which the JPopupMenu ap-
pears.

Section 35.6 Pluggable Look-and-Feel
• Class UIManager.LookAndFeelInfo (p. 19) maintains information about a look-and-feel.

• UIManager (p. 19) static method getInstalledLookAndFeels (p. 19) returns an array of UIMan-
ager.LookAndFeelInfo objects that describe the available look-and-feels.

• UIManager static method setLookAndFeel (p. 22) changes the look-and-feel. SwingUtilities
(p. 22) static method updateComponentTreeUI (p. 22) changes the look-and-feel of every com-
ponent attached to its Component argument to the new look-and-feel.

jhtp_35_GUI2.fm Page 43 Monday, May 1, 2017 4:38 PM

35_44 Chapter 35 Swing GUI Components: Part 2

Section 22.7 JDesktopPane and JInternalFrame
• Many of today’s applications use a multiple-document interface (MDI; p. 23) to manage several

open documents that are being processed in parallel. Swing’s JDesktopPane (p. 23) and JInter-
nalFrame (p. 23) classes provide support for creating multiple-document interfaces.

Section 22.8 JTabbedPane
• A JTabbedPane (p. 26) arranges GUI components into layers, of which only one is visible at a

time. Users access each layer by clicking its tab.

Section 22.9 BoxLayout Layout Manager
• BoxLayout)p. 939) arranges GUI components left-to-right or top-to-bottom in a container.

• Class Box represents a container with BoxLayout as its default layout manager and provides stat-
ic methods to create a Box with a horizontal or vertical BoxLayout.

Section 22.10 GridBagLayout Layout Manager
• GridBagLayout (p. 32) is similar to GridLayout, but each component size can vary.

• A GridBagConstraints object (p. 33) specifies how a component is placed in a GridBagLayout.

Self-Review Exercises
35.1 Fill in the blanks in each of the following statements:

a) The class is used to create a menu object.
b) The method of class JMenu places a separator bar in a menu.
c) JSlider events are handled by the method of interface .
d) The GridBagConstraints instance variable is set to CENTER by default.

35.2 State whether each of the following is true or false. If false, explain why.
a) When the programmer creates a JFrame, a minimum of one menu must be created and

added to the JFrame.
b) The variable fill belongs to the GridBagLayout class.
c) Drawing on a GUI component is performed with respect to the (0, 0) upper-left corner

coordinate of the component.
d) The default layout for a Box is BoxLayout.

35.3 Find the error(s) in each of the following and explain how to correct the error(s).
a) JMenubar b;
b) mySlider = JSlider(1000, 222, 100, 450);
c) gbc.fill = GridBagConstraints.NORTHWEST; // set fill
d) // override to paint on a customized Swing component

public void paintcomponent(Graphics g)

{

 g.drawString("HELLO", 50, 50);

}
e) // create a JFrame and display it

JFrame f = new JFrame("A Window");

f.setVisible(true);

Answers to Self-Review Exercises
35.1 a) JMenu. b) addSeparator. c) stateChanged, ChangeListener. d) anchor.

35.2 a) False. A JFrame does not require any menus.

jhtp_35_GUI2.fm Page 44 Monday, May 1, 2017 4:38 PM

 Exercises 35_45

b) False. The variable fill belongs to the GridBagConstraints class.
c) True.
d) True.

35.3 a) JMenubar should be JMenuBar.
b) The first argument to the constructor should be SwingConstants.HORIZONTAL or Swing-

Constants.VERTICAL, and the keyword new must be used after the = operator. Also, the
minimum value should be less than the maximum and the initial value should be in
range.

c) The constant should be either BOTH, HORIZONTAL, VERTICAL or NONE.
d) paintcomponent should be paintComponent, and the method should call super.paint-

Component(g) as its first statement.
e) The JFrame’s setSize method must also be called to establish the size of the window.

Exercises
35.4 (Fill-in-the-Blanks) Fill in the blanks in each of the following statements:

a) A JMenuItem that is a JMenu is called a(n) .
b) Method attaches a JMenuBar to a JFrame.
c) Container class has a default BoxLayout.
d) A(n) manages a set of child windows declared with class JInternalFrame.

35.5 (True or False) State whether each of the following is true or false. If false, explain why.
a) Menus require a JMenuBar object so they can be attached to a JFrame.
b) BoxLayout is the default layout manager for a JFrame.
c) JApplets can contain menus.

35.6 (Find the Code Errors) Find the error(s) in each of the following. Explain how to correct
the error(s).

a) x.add(new JMenuItem("Submenu Color")); // create submenu
b) container.setLayout(new GridbagLayout());

35.7 (Display a Circle and Its Attributes) Write a program that displays a circle of random size
and calculates and displays the area, radius, diameter and circumference. Use the following equa-
tions: diameter = 2 × radius, area = π × radius2, circumference = 2 × π × radius. Use the constant
Math.PI for pi (π). All drawing should be done on a subclass of JPanel, and the results of the calcu-
lations should be displayed in a read-only JTextArea.

35.8 (Using a JSlider) Enhance the program in Exercise 35.7 by allowing the user to alter the
radius with a JSlider. The program should work for all radii in the range from 100 to 200. As the
radius changes, the diameter, area and circumference should be updated and displayed. The initial
radius should be 150. Use the equations from Exercise 35.7. All drawing should be done on a sub-
class of JPanel, and the results of the calculations should be displayed in a read-only JTextArea.

35.9 (Varying weightx and weighty) Explore the effects of varying the weightx and weighty
values of the program in Fig. 35.21. What happens when a slot has a nonzero weight but is not al-
lowed to fill the whole area (i.e., the fill value is not BOTH)?

35.10 (Synchronizing a JSlider and a JTextField) Write a program that uses the paintCompo-
nent method to draw the current value of a JSlider on a subclass of JPanel. In addition, provide a
JTextField where a specific value can be entered. The JTextField should display the current value
of the JSlider at all times. Changing the value in the JTextField should also update the JSlider.
A JLabel should be used to identify the JTextField. The JSlider methods setValue and getValue
should be used. [Note: The setValue method is a public method that does not return a value and
takes one integer argument, the JSlider value, which determines the position of the thumb.]

jhtp_35_GUI2.fm Page 45 Monday, May 1, 2017 4:38 PM

35_46 Chapter 35 Swing GUI Components: Part 2

35.11 (Creating a Color Chooser) Declare a subclass of JPanel called MyColorChooser that pro-
vides three JSlider objects and three JTextField objects. Each JSlider represents the values from
0 to 255 for the red, green and blue parts of a color. Use these values as the arguments to the Color
constructor to create a new Color object. Display the current value of each JSlider in the corre-
sponding JTextField. When the user changes the value of the JSlider, the JTextField should be
changed accordingly. Use your new GUI component as part of an application that displays the cur-
rent Color value by drawing a filled rectangle.

35.12 (Creating a Color Chooser: Modification) Modify the MyColorChooser class of
Exercise 35.11 to allow the user to enter an integer value into a JTextField to set the red, green or
blue value. When the user presses Enter in the JTextField, the corresponding JSlider should be set
to the appropriate value.

35.13 (Creating a Color Chooser: Modification) Modify the application in Exercise 35.12 to draw
the current color as a rectangle on an instance of a subclass of JPanel which provides its own paint-
Component method to draw the rectangle and provides set methods to set the red, green and blue
values for the current color. When any set method is invoked, the drawing panel should automati-
cally repaint itself.

35.14 (Drawing Application) Modify the application in Exercise 35.13 to allow the user to drag
the mouse across the drawing panel (a subclass of JPanel) to draw a shape in the current color. En-
able the user to choose what shape to draw.

35.15 (Drawing Application Modification) Modify the application in Exercise 35.14 to allow the
user to terminate the application by clicking the close box on the window that is displayed and by
selecting Exit from a File menu. Use the techniques shown in Fig. 35.5.

35.16 (Complete Drawing Application) Using the techniques developed in this chapter and
Chapter 26, create a complete drawing application. The program should use the GUI components
from Chapter 26 and this chapter to enable the user to select the shape, color and fill characteristics.
Each shape should be stored in an array of MyShape objects, where MyShape is the superclass in your
hierarchy of shape classes. Use a JDesktopPane and JInternalFrames to allow the user to create mul-
tiple separate drawings in separate child windows. Create the user interface as a separate child win-
dow containing all the GUI components that allow the user to determine the characteristics of the
shape to be drawn. The user can then click in any JInternalFrame to draw the shape.

jhtp_35_GUI2.fm Page 46 Monday, May 1, 2017 4:38 PM

