
36Java Platform Module System

O b j e c t i v e s
In this chapter you’ll:
■ Understand the motivation for

modularity.
■ Review the Java Platform

Module System JEPs and JSRs.
■ Create module declarations

that specify module
dependencies with requires
and specify which packages a
module makes available to
other modules with exports.

■ Allow runtime reflection of
types with open and opens.

■ Use services to loosely couple
system components to make
large-scale systems easier to
develop and maintain.

■ Indicate that a module uses a
service or provides a service
implementation with the
uses and provides…with
directives, respectively.

■ Use the jdeps command to
determine a module’s
dependencies.

■ Migrate non-modularized
code to Java 9 with unnamed
and automatic modules.

■ Use the NetBeans IDE to
create module graphs.

■ See how the runtime
determines dependencies with
the module resolver.

■ Use jlink to create smaller
runtimes appropriate for
resource-constrained devices.

jhtp_36_Java9.FM Page 1 Tuesday, April 11, 2017 1:10 PM

36_2 Chapter 36 Java Platform Module System

36.1 Introduction1

In this chapter, we introduce the Java Platform Module System (JPMS)—Java 9’s most
important new technology. Modularity—the result of Project Jigsaw2—helps developers
at all levels be more productive as they build, maintain and evolve software systems, espe-
cially large systems. College students in upper-level programming courses will want to
master modularity for career preparation.

36.1 Introduction
36.2 Module Declarations

36.2.1 requires
36.2.2 requires transitive—Implied

Readability
36.2.3 exports and exports…to
36.2.4 uses
36.2.5 provides…with
36.2.6 open, opens and opens…to,

36.2.7 Restricted Keywords
36.3 Modularized Welcome App

36.3.1 Welcome App’s Structure
36.3.2 Class Welcome
36.3.3 module-info.java
36.3.4 Module-Dependency Graph
36.3.5 Compiling a Module
36.3.6 Running an App from a Module’s

Exploded Folders
36.3.7 Packaging a Module into a Modular

JAR File
36.3.8 Running the Welcome App from a

Modular JAR File
36.3.9 Aside: Classpath vs. Module Path

36.4 Creating and Using a Custom
Module

36.4.1 Exporting a Package for Use in Other
Modules

36.4.2 Using a Class from a Package in
Another Module

36.4.3 Compiling and Running the Example
36.4.4 Packaging the App into Modular JAR

Files
36.4.5 Strong Encapsulation and

Accessibility
36.5 Module-Dependency Graphs: A

Deeper Look
36.5.1 java.sql
36.5.2 java.se
36.5.3 Browsing the JDK Module Graph
36.5.4 Error: Module Graph with a Cycle

36.6 Migrating Code to Java 9
36.6.1 Unnamed Module
36.6.2 Automatic Modules
36.6.3 jdeps: Java Dependency Analysis

36.7 Resources in Modules; Using an
Automatic Module

36.7.1 Automatic Modules
36.7.2 Requiring Multiple Modules
36.7.3 Opening a Module for Reflection
36.7.4 Module-Dependency Graph
36.7.5 Compiling the Module
36.7.6 Running a Modularized App

36.8 Creating Custom Runtimes with
jlink

36.8.1 Listing the JRE’s Modules
36.8.2 Custom Runtime Containing Only

java.base
36.8.3 Creating a Custom Runtime for the

Welcome App
36.8.4 Executing the Welcome App Using a

Custom Runtime
36.8.5 Using the Module Resolver on a

Custom Runtime
36.9 Services and ServiceLoader

36.9.1 Service-Provider Interface
36.9.2 Loading and Consuming Service

Providers
36.9.3 uses Module Directive and Service

Consumers
36.9.4 Running the App with No Service

Providers
36.9.5 Implementing a Service Provider
36.9.6 provides…with Module Directive

and Declaring a Service Provider
36.9.7 Running the App with One Service

Provider
36.9.8 Implementing a Second Service

Provider
36.9.9 Running the App with Two Service

Providers
36.10 Wrap-Up

1. We’d like to thank Brian Goetz, Alex Buckley, Alan Bateman, Lance Anderson, Mandy Chung and
Paul Bakker for answering our questions and sharing insights.

2. “Project Jigsaw.” http://openjdk.java.net/projects/jigsaw/.

jhtp_36_Java9.FM Page 2 Tuesday, April 11, 2017 1:10 PM

36.1 Introduction 36_3

Software Required
Before reading this chapter, install JDK 9 and the chapter’s source-code examples as de-
scribed in the Before You Begin section that follows the Preface. We’ll present several
module-dependency graphs that were created with an early access version of the NetBeans
IDE that includes JDK 9 support:

Other IDE vendors will likely provide similar tools.

What is a Module?
Modularity adds a higher level of aggregation above packages. The key new language ele-
ment is the module—a uniquely named, reusable group of related packages, as well as re-
sources (like images and XML files) and a module descriptor specifying:

• the module’s name,

• the module’s dependencies (that is, other modules this module depends on),

• the packages it explicitly makes available to other modules (all other packages in
the module are implicitly unavailable to other modules),

• the services it offers,

• the services it consumes, and

• to what other modules it allows reflection.

History
The Java SE Platform has been around since 1995. There are now approximately 10 mil-
lion developers using it to build everything from small apps for resource-constrained de-
vices—like those in the Internet of Things (IoT) and other embedded devices—to large-
scale business-critical and mission-critical systems. There are massive amounts of legacy
code out there, but until now, the Java platform has primarily been a monolithic one-size-
fits-all solution. Over the years there have been various efforts geared to modularizing Java,
but none is widely used.

Modularizing the Java SE Platform has been challenging to implement and the effort
has taken many years. JSR 277: Java Module System was originally proposed in 20053 for
Java 7. This JSR was later superseded by JSR 376: Java Platform Module System and tar-
geted for Java 8. The Java SE Platform is now modularized in Java 9, but only after Java 9
was delayed until July 2017.

Goals
According to JSR 376, the key goals of modularizing the Java SE Platform are:4

• Reliable configuration—Modularity provides mechanisms for explicitly declar-
ing dependencies between modules in a manner that’s recognized both at compile
time and execution time. The system can walk through these dependencies to de-
termine the subset of all modules required to support your app.

http://wiki.netbeans.org/JDK9Support

3. “JSR 277: Java Module System.” https://jcp.org/en/jsr/detail?id=277.
4. “JSR 376: Java Platform Module System.” https://jcp.org/en/jsr/detail?id=376.

jhtp_36_Java9.FM Page 3 Tuesday, April 11, 2017 1:10 PM

36_4 Chapter 36 Java Platform Module System

• Strong encapsulation—The packages in a module are accessible to other modules
only if the module explicitly “exports” them. Even then, another module cannot
use those packages unless it explicitly states that it “requires” the other module’s
capabilities. This improves platform security because fewer classes are accessible
to potential attackers. You may find that considering modularity helps you come
up with cleaner, more logical designs.

• Scalable Java Platform—Previously the Java Platform was a monolith consisting
of a massive numbers of packages, making it challenging to develop, maintain
and evolve. It couldn’t be easily subsetted. The platform is now modularized into
95 modules (this number will change as Java evolves). You can create custom run-
times consisting of only modules you need for your apps or the devices you’re tar-
geting. For example, if a device does not support GUIs, you could create a
runtime that does not include the GUI modules, significantly reducing the run-
time’s size.

• Greater platform integrity—Before Java 9, it was possible to use many classes in
the platform that were not meant for use by an app’s classes. With strong encap-
sulation, these internal APIs are truly encapsulated and hidden from apps using
the platform. One downside of this is that it can make migrating your legacy code
to Java 9 problematic.

• Improved performance—The JVM uses various optimization techniques to im-
prove application performance. JSR 3765 indicates that these techniques are
more effective when it’s known in advance that required types are located only in
specific modules.

Listing the JDK’s Modules
A crucial aspect of Java 9 is dividing the JDK into modules to support various configura-
tions (JEP 2006). Using the java command from the JDK’s bin folder with the --list-
modules option, as in:

lists the JDK’s set of modules (Fig. 36.1), which includes the standard modules that imple-
ment the Java SE Specification (names starting with java), JavaFX modules (names starting
with javafx), JDK-specific modules (names starting with jdk) and Oracle-specific modules
(names starting with oracle). Each module name is followed by a version string. In this case,
we used a JDK 9 early access version, so each module is followed by the version string "@9-
ea", indicating that it’s a Java 9 early access ("ea") module. The "-ea" will be removed
when Java 9 is released.

5. Reinhold, Mark. “JSR 376: Java Platform Module System.” https://jcp.org/en/jsr/

detail?id=376.
6. Reinhold, Mark. “JEP 200: The Modular JDK.” http://openjdk.java.net/jeps/200.

java --list-modules

jhtp_36_Java9.FM Page 4 Tuesday, April 11, 2017 1:10 PM

36.1 Introduction 36_5

JEPs and JSRs of Java Modularity
We discussed what JEPs and JSRs are in the Preface. The Java modularity JEPs and JSRs
are shown in Fig. 36.2. We cite these throughout the chapter.

java.activation@9-ea
java.base@9-ea
java.compiler@9-ea
java.corba@9-ea
java.datatransfer@9-ea
java.desktop@9-ea
java.instrument@9-ea
java.jnlp@9-ea
java.logging@9-ea
java.management@9-ea
java.management.rmi@9-ea
java.naming@9-ea
java.prefs@9-ea
java.rmi@9-ea
java.scripting@9-ea
java.se@9-ea
java.se.ee@9-ea
java.security.jgss@9-ea
java.security.sasl@9-ea
java.smartcardio@9-ea
java.sql@9-ea
java.sql.rowset@9-ea
java.transaction@9-ea
java.xml@9-ea
java.xml.bind@9-ea
java.xml.crypto@9-ea
java.xml.ws@9-ea
java.xml.ws.annotation@9-ea
javafx.base@9-ea
javafx.controls@9-ea
javafx.deploy@9-ea
javafx.fxml@9-ea
javafx.graphics@9-ea
javafx.media@9-ea
javafx.swing@9-ea
javafx.web@9-ea
jdk.accessibility@9-ea
jdk.attach@9-ea
jdk.charsets@9-ea
jdk.compiler@9-ea
jdk.crypto.cryptoki@9-ea
jdk.crypto.ec@9-ea
jdk.crypto.mscapi@9-ea
jdk.deploy@9-ea
jdk.deploy.controlpanel@9-ea
jdk.dynalink@9-ea
jdk.editpad@9-ea
jdk.hotspot.agent@9-ea

jdk.httpserver@9-ea
jdk.incubator.httpclient@9-ea
jdk.internal.ed@9-ea
jdk.internal.jvmstat@9-ea
jdk.internal.le@9-ea
jdk.internal.opt@9-ea
jdk.internal.vm.ci@9-ea
jdk.jartool@9-ea
jdk.javadoc@9-ea
jdk.javaws@9-ea
jdk.jcmd@9-ea
jdk.jconsole@9-ea
jdk.jdeps@9-ea
jdk.jdi@9-ea
jdk.jdwp.agent@9-ea
jdk.jfr@9-ea
jdk.jlink@9-ea
jdk.jshell@9-ea
jdk.jsobject@9-ea
jdk.jstatd@9-ea
jdk.localedata@9-ea
jdk.management@9-ea
jdk.management.agent@9-ea
jdk.naming.dns@9-ea
jdk.naming.rmi@9-ea
jdk.net@9-ea
jdk.pack@9-ea
jdk.packager@9-ea
jdk.packager.services@9-ea
jdk.plugin@9-ea
jdk.plugin.dom@9-ea
jdk.plugin.server@9-ea
jdk.policytool@9-ea
jdk.rmic@9-ea
jdk.scripting.nashorn@9-ea
jdk.scripting.nashorn.shell@9-ea
jdk.sctp@9-ea
jdk.security.auth@9-ea
jdk.security.jgss@9-ea
jdk.snmp@9-ea
jdk.unsupported@9-ea
jdk.xml.bind@9-ea
jdk.xml.dom@9-ea
jdk.xml.ws@9-ea
jdk.zipfs@9-ea
oracle.desktop@9-ea
oracle.net@9-ea

Fig. 36.1 | Output of java --list-modules showing the JDK’s 95 modules.

jhtp_36_Java9.FM Page 5 Tuesday, April 11, 2017 1:10 PM

36_6 Chapter 36 Java Platform Module System

Quick Tour of the Chapter
This chapter introduces key modularity concepts you’re likely to use when building large-
scale systems. Some of the key topics you’ll see throughout this chapter include:

• Module declarations—You’ll create module declarations that specify a module’s
dependencies (with the requires directive), which packages a module makes
available to other modules (with the exports directive), services it offers (with the
provides…with directive), services it consumes (with the uses directive) and to
what other modules it allows reflection (with the open modifier and the opens
and opens…to directives).

• Module-dependency graphs—We’ll use the NetBeans IDE’s JDK 9 support to
create module graphs that help you visualize the dependencies among modules.

• Module resolver—We’ll show you the steps the runtime’s module resolver per-
forms to ensure that a module’s dependencies are fulfilled.

• jlink (the Java linker)—You’ll use this new JDK 9 tool to create smaller custom
runtimes, then use them to execute apps. In fact, many of this book’s command-
line apps can be executed on a custom runtime consisting only of the most fun-
damental JDK module—java.base—which includes core Java API packages,
such as java.lang, java.io and java.util. As you’ll see, all modules implicitly
depend on java.base.

• Reflection—Reflection enables a Java program to dynamically load types then cre-
ate objects of those types and use them.7 These capabilities can still be used, de-
spite Java 9’s strong encapsulation, but only with modules that explicitly allow it.
We’ll show how to specify that a module allows reflection with an open modifier
and the opens and opens…to directive in a module declaration.

• Migration—The Java platform has been in use for over 20 years, so enormous
amounts of non-modularized legacy code will need to be migrated to the modular

Java Modularity JEPs and JSRs

JEP 200: The Modular JDK (http://openjdk.java.net/jeps/200)

JEP 201: Modular Source Code (http://openjdk.java.net/jeps/201)

JEP 220: Modular Run-Time Images (http://openjdk.java.net/jeps/220)

JEP 260: Encapsulate Most Internal APIs (http://openjdk.java.net/jeps/260)

JEP 261: Module System (http://openjdk.java.net/jeps/261)

JEP 275: Modular Java Application Packaging (http://openjdk.java.net/jeps/275)

JEP 282: jlink: The Java Linker (http://openjdk.java.net/jeps/282)

JSR 376: Java Platform Module System (https://www.jcp.org/en/jsr/detail?id=376)

JSR 379: Java SE 9 (https://www.jcp.org/en/jsr/detail?id=379)

Fig. 36.2 | Java Modularity JEPs and JSRs.

7. The Java™ Tutorials, “Trail: The Reflection API,” https://docs.oracle.com/javase/tutorial/
reflect/.

jhtp_36_Java9.FM Page 6 Tuesday, April 11, 2017 1:10 PM

36.2 Module Declarations 36_7

world of Java 9. Though there are traps and pitfalls due to Java 9’s stronger en-
capsulation, we’ll show how the unnamed module and automatic modules can
help make migration straightforward. We’ll use the jdeps tool to determine code
dependencies among modules and on pre-Java-9 internal APIs (which are for the
most part strongly encapsulated in Java 9). Much pre-Java-9 code will run with-
out modification, but there are some issues that we explain in Section 36.6.

• Services and Service Providers—When you create substantial software systems
that fulfill important needs, they can live on for decades. During that time,
change is the rule rather than the exception. In Section 10.13, we discussed tight
coupling and loose coupling. It’s been proven that tight coupling makes it difficult
to modify systems. We’ll show how to create loosely coupled system components
with service-provider interfaces and implementations and the ServiceLoader
class. We’ll also demonstrate the uses and provides…with directives in module
declarations to indicate that a module uses a service or provides a service imple-
mentation, respectively.

We’ll present the preceding concepts using several larger live-code examples with
meaningful outputs, some code snippets, module graphs produced with the NetBeans
IDE’s Graph view of a module declaration and examples of various new commands (like
jlink) and new options for existing commands (like javac, java and jar). Some addi-
tional example-rich sources are:

• Project Jigsaw: Module System Quick-Start Guide—http://openjdk.java.net/

projects/jigsaw/quick-start

• Mak, Sander, and Paul Bakker. Java 9 Modularity: Patterns and Practices for De-
veloping Maintainable Applications. Sebastopol, CA: O’Reilly Media, 2017.

A Terminology Note
The Java Runtime Environment (JRE) includes the Java Virtual Machine (JVM) and oth-
er software for executing Java programs. As of Java 9, the JRE is now a proper subset of
the Java Development Kit (JDK), which contains all the Java APIs and tools required to
create and run Java programs. This chapter uses the terms Java Platform and Java SE Plat-
form synonymously with the JDK.

36.2 Module Declarations
As we mentioned, a module must provide a module descriptor—metadata that specifies the
module’s dependencies, the packages the module makes available to other modules, and
more. A module descriptor is the compiled version of a module declaration that’s defined in
a file named module-info.java. Each module declaration begins with the keyword module,
followed by a unique module name and a module body enclosed in braces, as in

The module declaration’s body can be empty or may contain various module directives,
including requires, exports, provides…with, uses and opens (each of which we dis-
cuss). As you’ll see in Section 36.3.5, compiling the module declaration creates the mod-
ule descriptor, which is stored in a file named module-info.class in the module’s root

module modulename {
}

jhtp_36_Java9.FM Page 7 Tuesday, April 11, 2017 1:10 PM

36_8 Chapter 36 Java Platform Module System

folder. Here we briefly introduce each module directive. You’ll see actual module declara-
tions beginning in Section 36.3.3.

36.2.1 requires
A requires module directive specifies that this module depends on another module—this
relationship is called a module dependency. Each module must explicitly state its depen-
dencies. When module A requires module B, module A is said to read module B and
module B is read by module A. To specify a dependency on another module, use re-
quires, as in:

Section 36.3.3 demonstrates a requires directive.8

36.2.2 requires transitive—Implied Readability
To specify a dependency on another module and to ensure that other modules reading
your module also read that dependency—known as implied readability—use requires
transitive as in:

Consider the following directive from the java.desktop module declaration:

In this case, any module that reads java.desktop also implicitly reads java.xml. For ex-
ample, if a method from the java.desktop module returns a type from the java.xml
module, code in modules that read java.desktop, becomes dependent on java.xml.
Without the requires transitive directive in java.desktop’s module declaration, such
dependent modules will not compile unless they explicitly read java.xml.

According to JSR 379,9 Java SE’s standard modules must grant implied readability in
all cases like the one described here. Also, though a Java SE standard module may depend
on non-standard modules, it must not grant implied readability to them.

36.2.3 exports and exports…to
An exports module directive specifies one of the module’s packages whose public types
(and their nested public and protected types) should be accessible to code in all other
modules. An exports…to directive enables you to specify in a comma-separated list pre-
cisely which module’s or modules’ code can access the exported package—this is known
as a qualified export. Section 36.4 demonstrates the exports directive.

requires modulename;

8. There is also a requires static directive to indicate that a module is required at compile time, but
optional at runtime. This is known as an optional dependency and is beyond this chapter’s scope.

requires transitive modulename;

requires transitive java.xml;

9. Clark, Iris, and Mark Reinhold. “Java SE 9 (JSR 379).” March 6, 2017. http://cr.openjdk.java.net/
~iris/se/9/java-se-9-pr-spec-01/java-se-9-spec.html#s7.

Portability Tip 36.1
Because Java SE standard modules must not grant implied readability to non-standard
modules, code depending only on Java SE standard modules is portable across Java SE im-
plementations.

jhtp_36_Java9.FM Page 8 Tuesday, April 11, 2017 1:10 PM

36.2 Module Declarations 36_9

36.2.4 uses
A uses module directive specifies a service used by this module—making the module a
service consumer. A service is an object of a class that implements the interface or extends
the abstract class specified in the uses directive. Section 36.9.3 demonstrates the uses
directive.

36.2.5 provides…with
A provides…with module directive specifies that a module provides a service implemen-
tation—making the module a service provider. The provides part of the directive speci-
fies an interface or abstract class listed in a module’s uses directive and the with part of
the directive specifies the name of the class that implements the interface or extends the
abstract class. Section 36.9.6 demonstrates the provides…with directive.

36.2.6 open, opens and opens…to10,11

Before Java 9, reflection could be used to learn about all types in a package and all mem-
bers of a type—even its private members—whether you wanted to allow this capability
or not. Thus, nothing was truly encapsulated.

A key motivation of the module system is strong encapsulation. By default, a type in a
module is not accessible to other modules unless it’s a public type and you export its
package. You expose only the packages you want to expose. With Java 9, this also applies
to reflection.

Allowing Runtime-Only Access to a Package
An opens module directive of the form

indicates that a specific package’s public types (and their nested public and protected
types) are accessible to code in other modules at runtime only. Also, all of the types in the
specified package (and all of the types’ members) are accessible via reflection.

Allowing Runtime-Only Access to a Package By Specific Modules
An opens…to module directive of the form

indicates that a specific package’s public types (and their nested public and protected
types) types are accessible to code in the listed module(s) at runtime only. Also, all of the
types in the specified package (and all of the types’ members) are accessible via reflection
to code in the specified modules.

10. Buckley, Alex. “JPMS: Modules in the Java Language and JVM.” February 23, 2017. http://
cr.openjdk.java.net/~mr/jigsaw/spec/lang-vm.html.

11. Gosling, James, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and Dan Smith. “The Java® Lan-
guage Specification Java SE 9 Edition.” Section 7.7.2. February 22, 2017. http://cr.openjdk.ja-
va.net/~mr/jigsaw/spec/java-se-9-jls-pr-diffs.pdf.

opens package

opens package to comma-separated-list-of-modules

jhtp_36_Java9.FM Page 9 Tuesday, April 11, 2017 1:10 PM

36_10 Chapter 36 Java Platform Module System

Allowing Runtime-Only Access to All Packages in a Module
If all the packages in a given module should be accessible at runtime and via reflection to
all other modules, you may open the entire module, as in

Reflection Defaults
By default, a module with runtime reflective access to a package can see the package’s pub-
lic types (and their nested public and protected types). However, the code in other
modules can access all types in the exposed package and all members within those types,
including private members. For more information on using reflection to access all of a
type’s members, visit

Dependency Injection
Reflection is commonly used with dependency injection. One example of this, is an FXML-
based JavaFX app, like those you’ve seen in Chapters 12, 13, 22 and miscellaneous other
examples. When an FXML app loads, the controller object and the GUI components on
which it depends are dynamically created as follows:

• First, because the app depends on a controller object that handles the GUI inter-
actions, the FXMLLoader injects a controller object into the running app—that is,
the FXMLLoader uses reflection to locate and load the controller class into mem-
ory, and to create an object of that class.

• Next, because the controller depends on the GUI components declared in FXML,
the FXMLLoader creates the GUI components objects declared in the FXML and
injects them into the controller object by assigning each to the controller object’s
corresponding @FXML instance variable.

Once this process is complete, the controller can interact with the GUI and respond to its
events. We’ll use the opens…to directive in Section 36.7.2 to allow the FXMLLoader to use
reflection on a JavaFX app in a custom module.

36.2.7 Restricted Keywords
The keywords exports, module, open, opens, provides, requires, to, transitive, uses
and with are restricted keywords. They’re keywords only in module declarations and may
be used as identifiers anywhere else in your code.

We mentioned in footnote 8 that there is also a requires static module directive.
Of course, static is a regular keyword.

36.3 Modularized Welcome App
In this section, we create a simple Welcome app to demonstrate module fundamentals. We’ll:

• create a class that resides in a module,

• provide a module declaration,

open module modulename {
 // module directives
}

https://docs.oracle.com/javase/tutorial/reflect/

jhtp_36_Java9.FM Page 10 Tuesday, April 11, 2017 1:10 PM

36.3 Modularized Welcome App 36_11

• compile the module declaration and Welcome class into a module, and

• run the class containing main in that module.

After covering these basics, we’ll also demonstrate:

• packaging the Welcome app in a modular JAR file and

• running the app from that JAR file.

36.3.1 Welcome App’s Structure
The app we present in this section consists of two .java files—Welcome.java contains the
Welcome app class and module-info.java contains the module declaration. By conven-
tion, a modularized app has the following folder structure:

For our Welcome app, which will be defined in the package com.deitel.welcome, the fold-
er structure is shown in Fig. 36.3.

The src folder stores all of the app’s source code. It contains the module’s root folder,
which has the module’s name—com.deitel.welcome (we’ll discuss module naming
momentarily). The module’s root folder contains nested folders representing the package’s
directory structure—com/deitel/welcome—which corresponds to the package
com.deitel.welcome. This folder contains Welcome.java. The module’s root folder con-
tains the required module declaration module-info.java.

Module Naming Conventions
Like package names, module names must be unique. To ensure unique package names, you
typically begin the name with your organization’s Internet domain name in reverse order.
Our domain name is deitel.com, so we begin our package names with com.deitel. By
convention, module names also use the reverse-domain-name convention.

At compile time, if multiple modules have the same name, a compilation error occurs.
At runtime, if multiple modules have the same name an exception occurs.

AppFolder
 src
 ModuleNameFolder
 PackageFolders
 JavaSourceCodeFiles
 module-info.java

Fig. 36.3 | Folder structure for the Welcome app.

jhtp_36_Java9.FM Page 11 Tuesday, April 11, 2017 1:10 PM

36_12 Chapter 36 Java Platform Module System

This example uses the same name for the module and its contained package, because
there is only one package in the module. This is not required, but is a common convention.
In a modular app, Java maintains the module names separately from package names and any
type names in those packages, so duplicate module and package names are allowed.

Modules normally group related packages. As such, the packages will often have com-
monality among portions of their names. For example, if a module contains the packages

you’d typically name the module with the common portion of the package names—
com.deitel.sample. If there’s no common portion, then you’d choose a name represent-
ing the module’s purpose. For example, the java.base module contains core packages
that are considered fundamental to Java apps (such as java.lang, java.io, java.time and
java.util), and the java.sql module contains the packages required for interacting with
databases via JDBC (such as java.sql and javax.sql). These are just two of the many
standard modules that you saw in Fig. 36.1. The online documentation for each provides
a complete list of its exported packages—for the java.base module, visit:

Listing the java.base Module’s Contents
You can use the java command’s --list-modules option to display information from the
java.base module’s descriptor, including its list of exported packages, as in:

Figure 36.4 shows the portion of the preceding command’s output which lists the java.base
module’s packages that any module can access. You’ve used several of these packages in the
book, including java.io, java.lang, java.math, java.nio, java.time and java.util.

com.deitel.sample.firstpackage;
com.deitel.sample.secondpackage;
com.deitel.sample.thirdpackage;

http://download.java.net/java/jdk9/docs/api/java.base-summary.html

java --list-modules java.base

exports java.io
exports java.lang
exports java.lang.annotation
exports java.lang.invoke
exports java.lang.module
exports java.lang.ref
exports java.lang.reflect
exports java.math
exports java.net
exports java.net.spi
exports java.nio
exports java.nio.channels
exports java.nio.channels.spi
exports java.nio.charset
exports java.nio.charset.spi
exports java.nio.file
exports java.nio.file.attribute
exports java.nio.file.spi
exports java.security

exports java.security.acl
exports java.security.cert
exports java.security.interfaces
exports java.security.spec
exports java.text
exports java.text.spi
exports java.time
exports java.time.chrono
exports java.time.format
exports java.time.temporal
exports java.time.zone
exports java.util
exports java.util.concurrent
exports java.util.concurrent.atomic
exports java.util.concurrent.locks
exports java.util.function
exports java.util.jar
exports java.util.regex
exports java.util.spi

Fig. 36.4 | Partial output of the command java --list-modules java.base. (Part 1 of 2.)

jhtp_36_Java9.FM Page 12 Tuesday, April 11, 2017 1:10 PM

36.3 Modularized Welcome App 36_13

The complete output of the preceding command lists lots of additional information
about the java.base module. Figure 36.5 shows some of the remaining output with
sample lines from each category of information.

The uses lines, like

indicate that there are types in the java.base module’s packages which use objects that
implement various service-provider interfaces. The provides…with

indicates that this module’s jdk.internal.jrtfs package contains a service-provider
implementation class named JrtFileSystemProvider that implements the service-
provider interface named FileSystemProvider from package java.nio.file.spi.
Section 36.9 shows a substantial example demonstrating that service-provider interfaces
and implementations can be used to create loosely coupled system components for systems
that are easier to develop, maintain and evolve than tightly coupled systems.

The exports…to lines like

exports java.util.stream
exports java.util.zip
exports javax.crypto
exports javax.crypto.interfaces
exports javax.crypto.spec
exports javax.net
exports javax.net.ssl

exports javax.security.auth
exports javax.security.auth.callback
exports javax.security.auth.login
exports javax.security.auth.spi
exports javax.security.auth.x500
exports javax.security.cert

...
 java.util.spi.CurrencyNameProvider
 uses java.util.spi.ResourceBundleControlProvider
 uses java.util.spi.LocaleNameProvider
...
 java.nio.file.spi.FileSystemProvider
 jdk.internal.jrtfs.JrtFileSystemProvider
...
 sun.net.sdp oracle.net
 exports jdk.internal.jimage to jdk.jlink
 exports sun.net.www.protocol.http.ntlm to jdk.deploy
...
 com.sun.crypto.provider
 contains com.sun.java.util.jar.pack
 contains com.sun.net.ssl
 ...

Fig. 36.5 | Partial output of the command java --list-modules java.base showing other
categories of information that it displays.

uses java.util.spi.CurrencyNameProvider

provides java.nio.file.spi.FileSystemProvider
 with jdk.internal.jrtfs.JrtFileSystemProvider

exports sun.net.sdp to oracle.net

Fig. 36.4 | Partial output of the command java --list-modules java.base. (Part 2 of 2.)

uses

provides
with

exports to

contains

jhtp_36_Java9.FM Page 13 Tuesday, April 11, 2017 1:10 PM

36_14 Chapter 36 Java Platform Module System

indicate that the java.base module exports a given package (sun.net.sdp) only to a spec-
ified module (oracle.net). The java.base module has many of these qualified exports.
Packages listed in such exports may be read only by the one or more designated modules
in the comma-separated list after the keyword to. In the JDK, such qualified exports are
used for packages (like sun.net.sdp) containing JDK internal implementations of types
that should not be used by developers.

The contains lines, like

specify that the module contains packages that are not exported for use in other modules.
Note that contains is not a directive like requires or exports that you can use in your
modules. Rather, it’s information inserted by the compiler to indicate that a module con-
tains the specified package—the package is not exported for use by other modules. The
JVM uses this information to improve performance when it loads classes from those pack-
ages at runtime.12

36.3.2 Class Welcome
Figure 36.6 presents a Welcome app that simply displays a String at the command line.
When defining types that will be placed in modules, every type must be placed into a pack-
age (line 3).

36.3.3 module-info.java
Figure 36.7 contains the module declaration for the com.deitel.welcome module. We
call modules we create for our own use application modules.

contains com.sun.crypto.provider

12. Brian Goetz, e-mail message to authors, March 16, 2017.

1 // Fig. 36.6: Welcome.java
2 // Welcome class that will be placed in a module
3 // all classes in modules must be packaged
4
5 public class Welcome {
6 public static void main(String[] args) {
7 // class System is in package java.lang from the java.base module
8 System.out.println("Welcome to the Java Platform Module System!");
9 }

10 }

Fig. 36.6 | Welcome class that will be placed in a module.

1 // Fig. 36.7: module-info.java
2 // Module declaration for the com.deitel.welcome module
3 module com.deitel.welcome {
4 requires java.base; // implicit in all modules, so can be omitted
5 }

Fig. 36.7 | Module declaration for the com.deitel.welcome module.

package com.deitel.welcome;

jhtp_36_Java9.FM Page 14 Tuesday, April 11, 2017 1:10 PM

36.3 Modularized Welcome App 36_15

Again, the module declaration begins with the keyword module followed by the
module’s name and braces that enclose the declaration’s body. This module declaration
contains a requires module directive, indicating that the app depends on types defined
in module java.base. Actually, all modules depend on java.base, so the requires
module directive in line 4 is implicit in all module declarations and may be omitted, as in:

36.3.4 Module-Dependency Graph
Figure 36.8 shows the module-dependency graph for com.deitel.welcome, indicating
that the module reads only the standard module java.base. This dependency is indicated
in the diagram with the arrow from com.deitel.welcome to java.base. This graph will
be identical regardless of whether you include line 4 in the module declaration.

A module-dependency graph shows dependencies among observable modules13—
that is, the built-in standard modules and any additional modules required by a given app
or library module. The graph’s nodes are modules and their dependencies are represented by
directed edges (arrows) that connect the nodes. Some edges represent explicit dependen-
cies on modules explicitly specified in a module declaration’s requires clauses (as you’ll
see in Fig. 36.14). Some edges represent implicit dependencies in which one of the
required modules in turn depends on other modules (as you’ll see in Fig. 36.22). In
Fig. 36.8, java.base is shown as an explicit dependency, because all modules depend on it.

This graph was produced with an early access version of NetBeans that has JDK 9 sup-
port—again, you can learn about this version of the IDE and download its installer from:

In a NetBeans project, when you open a module’s module-info.java file, you can choose
between the Source code and Graph views. In Graph view, NetBeans creates a module-de-

module com.deitel.welcome {
}

Software Engineering Observation 36.1
Every module implicitly depends on java.base. Writing requires java.base; in a
module declaration is redundant.

Fig. 36.8 | Module-dependency graph for the com.deitel.welcome module.

13. Bateman, Alan, Alex Buckley, Jonathan Gibbons and Mark Reinhold. “JEP 261: Module System.”
http://openjdk.java.net/jeps/261.

http://wiki.netbeans.org/JDK9Support

Thick blue highlight indicates the module being graphed—in
this case com.deitel.welcome

Thin blue highlight indicates a required module—all
modules implicitly require java.base

jhtp_36_Java9.FM Page 15 Tuesday, April 11, 2017 1:10 PM

36_16 Chapter 36 Java Platform Module System

pendency- graph, based on the module declaration. When NetBeans graphs a module, it
also graphs that module’s dependencies, including the implicit dependency on java.base.
Figure 36.8 shows that java.base itself does not have any dependencies.

To create this graph in NetBeans, we performed the following steps:

1. First, we created a WelcomeApp project containing the com.deitel.welcome
package.

2. Next, we added the com.deitel.welcome module’s module-info.java file by
right-clicking the project, selecting New > Other…, selecting Java Module Info
from the Java category of the dialog, then clicking Next > and Finish. The file is
added to the project’s default package automatically.

3. Finally, we opened module-info.java file, changed the module name from the
default provided by NetBeans (the project name) to com.deitel.welcome and
switched to Graph view.

You can arrange the nodes in NetBeans by dragging them or by right clicking the graph
and selecting from various Layout options—we chose Hierarchical, in which the given
module appears at the top and arrows point down to the module’s dependencies. You may
use Zoom To Fit to make the graph fill the available space in the window and Export As
Image to save an image containing the graph.

36.3.5 Compiling a Module
To compile the Welcome app’s module, open a command window, use the cd command
to change to this chapter’s WelcomeApp folder, then type:

The -d option indicates that javac should place the compiled code in the specified fold-
er—in this case a mods folder that will contain a subfolder named com.deitel.welcome
representing the compiled module. The name mods is used by convention for a folder that
contains modules.

Note Regarding Lengthy Commands in This Chapter
For clarity, we split the preceding command into multiple lines, using line-continuation
characters. Many of the commands we use in this chapter’s examples are lengthy. This
chapter shows the commands in Windows format, with the caret (^) line-continuation
character. Linux and macOS users should replace the carets in the commands with the
backslash (\) line-continuation character. You can also enter such lengthy commands as a
single command without the line continuations.

Welcome App’s Folder Structure After Compilation
If the code compiles correctly, the WelcomeApp folder’s mods subfolder structure contains
the compiled code (Fig. 36.9). This is known as the exploded-module folder, because the
folders and .class files are not in a JAR (Java archive) file—collection of directories and
files compressed into a single file, known as an archive. The exploded module’s structure
parallels that of the app’s src folder described previously. We’ll package the app as a JAR

javac -d mods/com.deitel.welcome ^
 src/com.deitel.welcome/module-info.java ^
 src/com.deitel.welcome/com/deitel/welcome/Welcome.java

jhtp_36_Java9.FM Page 16 Tuesday, April 11, 2017 1:10 PM

36.3 Modularized Welcome App 36_17

shortly. Exploded module folders and modular JAR files (Section 36.3.7) together are
module artifacts. These can be placed on the module path—a list of module artifact loca-
tions—when compiling and executing modularized code.14,15

Listing the com.deitel.welcome Module’s Contents
You can use the java command’s --list-modules option to display information from the
com.deitel.welcome module descriptor, as in:

The resulting output:

shows that the module requires the standard module java.base and contains the pack-
ages com, com.deitel and com.deitel.welcome (each folder is viewed as a package).
Though the module contains these packages, they are not exported. Therefore, its con-
tents cannot be used by other modules. The module declaration for this example explicitly
required java.base and the preceding listing included

If the module declaration had implicitly required java.base, then the listing instead would
have included

There is no requires mandated module directive—it is simply included in the --list-
modules output to indicate the implicit dependence on java.base.

Fig. 36.9 | Welcome app’s mods folder structure.

14. Reinhold, Mark. “The State of the Module System.” March 8, 2016. http://openjdk.java.net/
projects/jigsaw/spec/sotms/#module-artifacts.

15. Bateman, Alan, Alex Buckley, Jonathan Gibbons and Mark Reinhold. “JEP 261: Module System.”
http://openjdk.java.net/jeps/261.

java --module-path mods --list-modules com.deitel.welcome

module com.deitel.welcome (file:///C:/examples/ch36/WelcomeApp/
mods/com.deitel.welcome/)
 requires java.base (@9-ea)
 contains com
 contains com.deitel
 contains com.deitel.welcome

requires java.base

requires mandated java.base

jhtp_36_Java9.FM Page 17 Tuesday, April 11, 2017 1:10 PM

36_18 Chapter 36 Java Platform Module System

36.3.6 Running an App from a Module’s Exploded Folders
To run the Welcome app from the module’s exploded folders, use the following command
(again, from the WelcomeApp folder):

The --module-path option specifies the module path—in this case, the mods folder. The
--module option specifies the module name and the fully qualified class name of the app’s
entry point—that is, a class containing main. The program executes and displays:

In the preceding command, --module-path can be abbreviated as -p and --module as -m.

36.3.7 Packaging a Module into a Modular JAR File
You can use the jar command to package an exploded module folder as a modular JAR
file16 that contains all of the module’s files, including its module-info.class file, which
is placed in the JAR’s root folder. When running the app, you specify the JAR file on the
module path. The folder in which you wish to output the JAR file must exist before run-
ning the jar command.

If a module contains an app’s entry point, you can specify that class with the jar com-
mand’s --main-class option, as in:

The options are as follows:

• --create specifies that the command should create a new JAR file.

• -f specifies the name of the JAR file and is followed by the name—in this case,
the file com.deitel.welcome.jar will be created in the folder named jars.

• --main-class specifies the fully qualified name of the app’s entry point—a class
that contains a main method.

• -C specifies which folder contains the files that should be included in the JAR file
and is followed by the files to include—the dot (.) indicates that all files in the
folder should be included.

You can simplify the -create, -f and --main-class options in the preceding command
with the shorthand notation -cfe, followed by the JAR file name and main class, as in:

java --module-path mods ^
 --module com.deitel.welcome/com.deitel.welcome.Welcome

Welcome to the Java Platform Module System!

16. Bateman, Alan, Alex Buckley, Jonathan Gibbons and Mark Reinhold. “JEP 261: Module System.”
http://openjdk.java.net/jeps/261.

jar --create -f jars/com.deitel.welcome.jar ^
 --main-class com.deitel.welcome.Welcome ^
 -C mods/com.deitel.welcome .

jar -cfe jars/com.deitel.welcome.jar ^
 com.deitel.welcome.Welcome ^
 -C mods/com.deitel.welcome .

jhtp_36_Java9.FM Page 18 Tuesday, April 11, 2017 1:10 PM

36.3 Modularized Welcome App 36_19

36.3.8 Running the Welcome App from a Modular JAR File
Once you place an app in a modular JAR file for which you’ve specified the entry point,
you can execute the app as follows:

or

The program executes and displays:

If you did not specify the entry point when creating the JAR, you may still run the app by
specifying the module name and fully qualified class name, as in:

or

36.3.9 Aside: Classpath vs. Module Path
Before Java 9, the compiler and runtime located types via the classpath—a list of folders
and library archive files containing compiled Java classes. In earlier Java versions, the class-
path was defined by a combination of a CLASSPATH environment variable, extensions
placed in a special folder of the JRE, and options provided to the javac and java com-
mands.

Because types could be loaded from several different locations, the order in which
those locations were searched resulted in brittle apps. For example, many years ago, one of
the authors installed a Java app from a third-party vendor on his system. The app’s installer
placed an old version of a Java library into the JRE’s extensions folder. Several Java apps
on his system depended on a newer version of that library with additional types and
enhanced versions of the library’s older types. Because classes in the JRE’s extensions folder
were loaded before other classes on the classpath,17 the apps that depended on the newer
library version stopped working, failing at runtime with NoClassDefFoundErrors and
NoSuchMethodErrors—sometimes long after the apps began executing.

The reliable configuration provided by modules and module descriptors helps elimi-
nate many such runtime classpath problems. Every module explicitly states its dependen-
cies and these are resolved as an app launches. In Section 36.8.5, we’ll show the steps that
the JRE’s module resolver performs at launch time.

java --module-path jars -m com.deitel.welcome

java -p jars -m com.deitel.welcome

Welcome to the Java Platform Module System!

java --module-path jars ^
 -m com.deitel.welcome/com.deitel.welcome.Welcome

java -p jars -m com.deitel.welcome/com.deitel.welcome.Welcome

17. “Understanding Extension Class Loading.” https://docs.oracle.com/javase/tutorial/ext/
basics/load.html.

Common Programming Error 36.1
The module path may contain only one of each module and every package may be defined
in only one module. If two or more modules have the same name or export the same pack-
ages, the runtime immediately terminates before running the program.

jhtp_36_Java9.FM Page 19 Tuesday, April 11, 2017 1:10 PM

36_20 Chapter 36 Java Platform Module System

36.4 Creating and Using a Custom Module
To demonstrate a module that depends on another custom module in addition to standard
modules, let’s reorganize one of the book’s earlier, non-modularized examples. We’ll de-
clare Section 8.2’s Time1 and Time1Test classes in separate modules, then use class Time1
from the module containing Time1Test. As you’ll see, we’ll export class Time1’s package
from one module and require Time1’s enclosing module from a module containing the
Time1Test class. Figure 36.10 shows the src folder structure for the app’s two modules.

36.4.1 Exporting a Package for Use in Other Modules
As you learned previously, every class that you wish to place in a module must be declared
in a package. For this reason, we added the package statement in line 3 (Fig. 36.11) to
class Time1 (which was originally declared in Fig. 8.1).

Fig. 36.10 | TimeApp example’s src folder structure.

1 // Fig. 36.11: Time1.java
2 // Class Time1 that will be placed in a module.
3
4
5 public class Time1 {
6 private int hour; // 0 - 23
7 private int minute; // 0 - 59
8 private int second; // 0 - 59
9

10 // set a new time value using universal time; throw an
11 // exception if the hour, minute or second is invalid
12 public void setTime(int hour, int minute, int second) {
13 // validate hour, minute and second
14 if (hour < 0 || hour >= 24 || minute < 0 || minute >= 60 ||
15 second < 0 || second >= 60) {

Fig. 36.11 | Class Time1 that will be placed in a module. (Part 1 of 2.)

package com.deitel.timelibrary;

jhtp_36_Java9.FM Page 20 Tuesday, April 11, 2017 1:10 PM

36.4 Creating and Using a Custom Module 36_21

com.deitel.timelibrary Module Declaration
After placing Time1 in a package, we must declare the module via a module declaration
(Fig. 36.12). Line 4 indicates that the module com.deitel.timelibrary exports the pack-
age com.deitel.timelibrary. Now the package’s public classes (in this case, just class
Time1) can be used by any module that reads the com.deitel.timelibrary module, provid-
ed that the module can be found on the module path, as you’ll see in Section 36.4.3.

36.4.2 Using a Class from a Package in Another Module
The app’s entry point—class Time1Test (which was originally declared in Fig. 8.2)—also
must be packaged for placement in a module (line 3 of Fig. 36.13). In addition, class
Time1Test manipulates an object of class Time1, which is declared in a package of another
module. For this reason, we import Time1 in line 5.

16 throw new IllegalArgumentException(
17 "hour, minute and/or second was out of range");
18 }
19
20 this.hour = hour;
21 this.minute = minute;
22 this.second = second;
23 }
24
25 // convert to String in universal-time format (HH:MM:SS)
26 public String toUniversalString() {
27 return String.format("%02d:%02d:%02d", hour, minute, second);
28 }
29
30 // convert to String in standard-time format (H:MM:SS AM or PM)
31 public String toString() {
32 return String.format("%d:%02d:%02d %s",
33 ((hour == 0 || hour == 12) ? 12 : hour % 12),
34 minute, second, (hour < 12 ? "AM" : "PM"));
35 }
36 }

1 // Fig. 36.12: module-info.java
2 // Module declaration for the com.deitel.timelibrary module
3 module com.deitel.timelibrary {
4 // package available to other modules
5 }

Fig. 36.12 | Module declaration for the com.deitel.timelibrary module.

1 // Fig. 36.13: Time1Test.java
2 // Time1 object used in an app.
3

Fig. 36.13 | Time1 object used in an app. (Part 1 of 2.)

Fig. 36.11 | Class Time1 that will be placed in a module. (Part 2 of 2.)

exports com.deitel.timelibrary;

package com.deitel.timetest;

jhtp_36_Java9.FM Page 21 Tuesday, April 11, 2017 1:10 PM

36_22 Chapter 36 Java Platform Module System

com.deitel.timetest Module Declaration
Because class Time1 is located in a package of the com.deitel.timelibrary module, the
module containing class Time1Test (com.deitel.timetest) must declare its dependency
on that other module. The module declaration (Fig. 36.14) indicates this dependency
with the requires directive (line 4). Without this and the exports directive in Fig. 36.12,
class Time1Test would not be able to import and use class Time1.

4
5
6
7 public class Time1Test {
8 public static void main(String[] args) {
9 // create and initialize a Time1 object

10 Time1 time = new Time1(); // invokes Time1 constructor
11
12 // output string representations of the time
13 displayTime("After time object is created", time);
14 System.out.println();
15
16 // change time and output updated time
17 time.setTime(13, 27, 6);
18 displayTime("After calling setTime", time);
19 System.out.println();
20
21 // attempt to set time with invalid values
22 try {
23 time.setTime(99, 99, 99); // all values out of range
24 }
25 catch (IllegalArgumentException e) {
26 System.out.printf("Exception: %s%n%n", e.getMessage());
27 }
28
29 // display time after attempt to set invalid values
30 displayTime("After calling setTime with invalid values", time);
31 }
32
33 // displays a Time1 object in 24-hour and 12-hour formats
34 private static void displayTime(String header, Time1 t) {
35 System.out.printf("%s%nUniversal time: %s%nStandard time: %s%n",
36 header, t.toUniversalString(), t.toString());
37 }
38 }

1 // Fig. 36.14: module-info.java
2 // Module declaration for the com.deitel.timetest module
3 module com.deitel.timetest {
4
5 }

Fig. 36.14 | Module declaration for the com.deitel.timetest module.

Fig. 36.13 | Time1 object used in an app. (Part 2 of 2.)

import com.deitel.timelibrary.Time1;

requires com.deitel.timelibrary;

jhtp_36_Java9.FM Page 22 Tuesday, April 11, 2017 1:10 PM

36.4 Creating and Using a Custom Module 36_23

com.deitel.timetest Module-dependency Graph
Figure 36.15 shows the Time1Test app’s module-dependency graph indicating that:

• the module named com.deitel.timetest reads com.deitel.timelibrary and
the standard module java.base, and

• the module named com.deitel.timelibrary reads the module java.base.

To create this graph in NetBeans, we performed the following steps:

1. Created a TimeLibrary project containing the com.deitel.timelibrary pack-
age and com.deitel.timelibrary’s module-info.java file.

2. Created a TimeApp project containing the com.deitel.timetest package and
com.deitel.timetest’s module-info.java file.

3. Right clicked the TimeApp project’s Libraries node and selected Add Project…,
then selected the TimeLibrary project and clicked Add Project JAR Files—this
adds the TimeLibrary project’s modular JAR file to the TimeApp project.

4. Finally, we opened the TimeApp project’s module-info.java file in Graph view.

36.4.3 Compiling and Running the Example
You must compile both modules before running this app. The com.deitel.timelibrary
module must be compiled first, because com.deitel.timetest depends on it. IDEs and
other build tools (like Ant, Gradle and Maven) typically can deal with order-of-compila-
tion issues like this for you.

Compiling Module com.deitel.timelibrary
To compile the com.deitel.timelibrary module, open a command window, use the cd
command to change to this chapter’s TimeApp folder on your system, then type:

Fig. 36.15 | Module-dependency graph for the com.deitel.timetest module.

javac -d mods/com.deitel.timelibrary ^
 src/com.deitel.timelibrary/module-info.java ^
 src/com.deitel.timelibrary/com/deitel/timelibrary/Time1.java

jhtp_36_Java9.FM Page 23 Tuesday, April 11, 2017 1:10 PM

36_24 Chapter 36 Java Platform Module System

Compiling Module com.deitel.timetest
Next, to compile the com.deitel.timetest module, type:

Here we added the option --module-path to indicate that the mods folder contains mod-
ules on which the com.deitel.timetest module depends—in this case, we previously
compiled the com.deitel.timelibrary module into the mods folder.

Running the Example
Finally, to run this example, type:

In this command:

• the option --module-path indicates where the app’s modules are located, and

• the option -m specifies which class should be used as the app’s entry point—that
is, a class containing the main method that the JVM calls to launch the app.

For the main class, note that you must specify its module name followed by a slash and its
fully qualified class name, because the class is now in a package contained in a module.
The program’s output is shown below:

36.4.4 Packaging the App into Modular JAR Files
In this section, we’ll package each app into a modular JAR file then run the app. To pack-
age com.deitel.timelibrary into a modular JAR file, type:

To package com.deitel.timetest into a modular JAR file, type:

javac --module-path mods -d mods/com.deitel.timetest ^
 src/com.deitel.timetest/module-info.java ^
 src/com.deitel.timetest/com/deitel/timetest/Time1Test.java

java --module-path mods ^
 -m com.deitel.timetest/com.deitel.timetest.Time1Test

After time object is created
Universal time: 00:00:00
Standard time: 12:00:00 AM

After calling setTime
Universal time: 13:27:06
Standard time: 1:27:06 PM

Exception: hour, minute and/or second was out of range

After calling setTime with invalid values
Universal time: 13:27:06
Standard time: 1:27:06 PM

jar --create -f jars/com.deitel.timelibrary.jar ^
 -C mods/com.deitel.timelibrary .

jar --create -f jars/com.deitel.timetest.jar ^
 --main-class com.deitel.timetest.Time1Test ^
 -C mods/com.deitel.timetest .

jhtp_36_Java9.FM Page 24 Tuesday, April 11, 2017 1:10 PM

36.4 Creating and Using a Custom Module 36_25

Running the App from a Modular JAR File
Once you place an app in a modular JAR file for which you’ve specified the main class, you
can execute the app as follows:

The program executes and displays the same output shown in Section 36.4.3.

36.4.5 Strong Encapsulation and Accessibility
Before Java 9, you could use any public class that you imported into your code. Whether
you could access the class’s members was determined by how they were declared—public,
protected, package access or private (as described in Chapters 3–8). Due to Java 9’s
strong encapsulation in modules, public types in a module are no longer accessible to your
code by default—so public no longer means available to all:

• If a module exports a package, the public types in that package are accessible by
any module that reads the package’s module.

• If a module exports a package to a specific module (via exports…to), the public
types in that package are accessible only to the specific module and only if that
module reads the package’s module.

• If a module does not export a package, the public types in that package are ac-
cessible only within their enclosing module.

Once you have access to a type in another module, then the normal rules of public, pro-
tected, package access and private apply.

Compilation Error When Attempting to Use an Inaccessible Type
The project TimeAppMissingExports in this chapter’s ExamplesShowingErrors folder
demonstrates that explicitly named modules have strong encapsulation and do not export
packages unless you explicitly list them in exports directives. In this project, we removed
the exports directive from the com.deitel.timelibrary’s module declaration, then re-
compiled the module. Next, we tried to recompile the com.deitel.timetest module.
The compiler produced the following error message, which indicates that the package
com.deitel.timelibrary is not exported and thus is inaccessible:

java --module-path jars -m com.deitel.timetest

src\com.deitel.timetest\com\deitel\timetest\Time1Test.java:5:
error: package com.deitel.timelibrary is not visible
import com.deitel.timelibrary.Time1;
 ^
 (package com.deitel.timelibrary is declared in module
com.deitel.timelibrary, which is not in the module graph)
1 error

Common Programming Error 36.2
When a requires dependency is not fulfilled by an exports clause in another module a
compilation error occurs.

jhtp_36_Java9.FM Page 25 Tuesday, April 11, 2017 1:10 PM

36_26 Chapter 36 Java Platform Module System

36.5 Module-Dependency Graphs: A Deeper Look
Previously, we’ve shown two module-dependency graphs. Here we continue our discus-
sion of module graphs and show the errors that occur if a module directly or indirectly
requires itself—known as a cycle.

36.5.1 java.sql
Figure 36.16 shows the module-dependency graph for a module named modulegraphtest
that depends on the java.sql module, per the following module declaration:

NetBeans highlights the module declared by the module declaration (modulegraphtest)
with a thick blue line. It also highlights java.sql, because it’s explicitly listed in a
requires directive and java.base, because it’s implicitly required by all modules. The
other modules shown (java.xml and java.logging) are included in the graph, because
java.sql depends on them.

36.5.2 java.se
Figure 36.17 shows the significantly more complex java.se module’s dependency
graph—this is an aggregator module that specifies via requires transitive all the mod-
ules necessary to support Java SE 9 apps. To produce this graph, we first downloaded the
JDK 9 source code, as described at

We then opened the java.se module’s declaration (located in the source-code folder’s
jdk/src/java.se/share/classes folder) in NetBeans Graph view. We rotated the graph
90° for readability. There is also a java.se.ee aggregator module, which includes every-
thing in the java.se module and additional Java SE modules with packages that overlap
with the Java Enterprise Edition (EE) Platform.

module modulegraphtest {
 requires java.sql;
}

if

Fig. 36.16 | Dependency graph for a module that depends on java.sql.

http://hg.openjdk.java.net/jdk9/jdk9/raw-file/tip/common/doc/
building.html

jhtp_36_Java9.FM Page 26 Tuesday, April 11, 2017 1:10 PM

36.5 Module-Dependency Graphs: A Deeper Look 36_27

Fig. 36.17 | java.se module-dependency graph.

jhtp_36_Java9.FM Page 27 Tuesday, April 11, 2017 1:10 PM

36_28 Chapter 36 Java Platform Module System

36.5.3 Browsing the JDK Module Graph
It’s interesting to look at the JDK’s full module-dependency graph. This is the largest of
the module graphs we show. You can view the graph on our website at:

When you open it with your web browser, it will initially display the complete image in
the browser’s window. Click the image to zoom in, then scroll horizontally and vertically
to view the graph’s details. We produced this image using the Graphviz tool available from

36.5.4 Error: Module Graph with a Cycle
A module is not allowed to directly or indirectly reference itself. Doing so would result in
a cycle when computing the module’s dependency graph.

A Module That (Incorrectly) Requires Itself
Consider the following module declaration in which the module requires itself:

When you compile this declaration, the following error occurs, indicating a cycle in the
module’s dependencies:

Two Modules That (Incorrectly) Require One Another
Similarly, consider a project named CircularDependency containing two modules—mod-

ule1 and module2—with the structure shown in Fig. 36.18.

http://deitel.com/bookresources/jhtp11/ModularJDKGraph.png

http://www.graphviz.org/

Common Programming Error 36.3
A compilation error occurs if a module graph contains a cycle.

module mymodule {
 requires mymodule;
}

module-info.java:2: error: cyclic dependence involving mymodule
 requires mymodule;
 ^
1 error

Fig. 36.18 | CircularDependency example’s src folder structure.

jhtp_36_Java9.FM Page 28 Tuesday, April 11, 2017 1:10 PM

36.6 Migrating Code to Java 9 36_29

If the module declarations for these two modules indicate that each module requires
the other, as in

and

then, when you compile these modules

the compiler again issues an error indicating a cycle in the module dependencies:

Modules in a Cycle Are Really “One Thing”
Ultimately all the modules in a cycle are really one module—not separate modules.18

While we were writing this chapter, a friend of ours who works for a large organization
told us that his group is preparing for Java 9 modularity. He indicated that they have mul-
tiple large pre-Java-9 JAR files. Initially they thought they’d make each JAR a separate
module, but their JARs turned out to be so interdependent that they’ve decided to com-
bine them into a single module. This kind of interdependency is what leads to cycles in
your design. Ideally, when you modularize a previously monolithic system, you want to
break that system into separate modules that are easier to maintain and secure. This can
pose significant refactoring challenges in large code bases.

36.6 Migrating Code to Java 9
Many pre-Java-9 apps will run unaltered on Java 9. In fact, as we prepared this book, we
tested every app using JDK 9 and they all compiled and ran without issue. In Java 9, all
programs are compiled and executed using the module system. Java 9 strongly encapsu-
lates types that are not exported by modules, so it’s possible that some apps will fail to com-
pile because types that were accessible to them prior to Java 9 no longer are. For example,
there are many pre-Java-9 internal APIs that were not meant for use outside the JDK, but
were in fact used outside the JDK—many of these are not exported in Java 9 and thus are

module module1 {
 exports package1;
 requires module2;
}

module module2 {
 exports package2;
 requires module1;
}

javac --module-source-path src ^
 --module-path mods -d mods ^
 src/module1/module-info.java ^
 src/module1/package1/Class1.java ^
 src/module2/module-info.java ^
 src/module2/package2/Class2.java

src\module1\module-info.java:9: error: cyclic dependence involving
module2
 requires module2;
 ^
1 error

18. Alex Buckley, e-mail message to authors, March 24, 2017.

jhtp_36_Java9.FM Page 29 Tuesday, April 11, 2017 1:10 PM

36_30 Chapter 36 Java Platform Module System

inaccessible.19 If your code uses such internal APIs directly or indirectly, it will fail to com-
pile.

Some internal APIs considered critically important are still available in Java 9. Various
JEPs referenced by JSR 37920 define new public APIs that replace these internal APIs.
These internal APIs will eventually be removed.

Java is more than two decades old so there’s vast amounts of legacy Java code to
migrate to Java 9. The module system provides mechanisms that can automatically place
your code in modules to help you with migration.

36.6.1 Unnamed Module
In Java 9, all code is required to be placed in modules. When you execute code that’s not
in a module, the code is loaded from the classpath and placed in the unnamed module.
This is why we can run some non-modularized code in the modularized JDK, but unfor-
tunately without the benefits of modularization.

The unnamed module:

• implicitly exports all of its packages, and

• implicitly reads all other modules.

However, because the module is unnamed, there’s no way to refer to it in a requires direc-
tive from a named module, so a named module cannot depend on the unnamed module.

36.6.2 Automatic Modules
There are enormous numbers of preexisting libraries that you can use in your apps. Many
of these are not yet modularized. However, to facilitate migration, you can add any
library’s JAR file to an app’s module path, then use the packages in that JAR. When you
do, the JAR file implicitly becomes an automatic module and can be specified in a module

19. Reinhold, Mark. “JEP 260: Encapsulate Most Internal APIs.” http://openjdk.java.net/jeps/260.
20. Clark, Iris, and Mark Reinhold. “Java SE 9 (JSR 379).” March 6, 2017. http://cr.openjdk.java.net/

~iris/se/9/java-se-9-pr-spec-01/java-se-9-spec.html.

Software Engineering Observation 36.2
Modularity enables strong encapsulation. Code that is not exported cannot be accessed by
other modules.

Error-Prevention Tip 36.1
You can use the jdeps tool (Section 36.6.3) released with Java 8 to locate a type’s depen-
dencies or the dependencies for all types in a JAR file. In Java 9, the tool also supports
modules. The jdeps option --jdk-internals specifically identifies uses of JDK internal
APIs in code. Some pre-Java-9 internal APIs have been placed into packages that are ex-
ported in Java 9 and some are now strongly encapsulated. For each internal API that
jdeps locates, you can review JEP 260 and update your code accordingly.

Common Programming Error 36.4
JDK 9 hides most pre-Java-9 internal APIs, so pre-Java-9 code that uses them will not
compile and run on Java 9.

jhtp_36_Java9.FM Page 30 Tuesday, April 11, 2017 1:10 PM

36.6 Migrating Code to Java 9 36_31

declaration’s requires directives. The JAR’s file name—minus the .jar extension—be-
comes its module name, which must be a valid Java identifier for use in a requires direc-
tive. Also, an automatic module:

• implicitly exports all of its packages—so, any module that reads the automatic
module (including the unnamed module) has access to the public types in the
automatic module’s packages.

• implicitly reads (requires) all other modules, including other automatic modules
and the unnamed module—so, an automatic module has access to all the public
types exposed by the system’s other modules.

We demonstrate an automatic module in Section 36.7.

36.6.3 jdeps: Java Dependency Analysis
Another tool to help you migrate your code to Java 9 is the jdeps command, which was
introduced in Java 8 to help you determine a type’s class and package dependencies. A key
use of jdeps is to locate dependencies on pre-Java-9 internal APIs that are now strongly
encapsulated in Java 9. To determine whether a class has any such dependencies, use the
following command on your compiled pre-Java-9 code:

or if you have many classes in a JAR file, use:

If this command produces no output, then your class or set of classes does not have any
dependence on JDK internal APIs that are no longer accessible.

Determining the Modules You Need
Java 9 adds the ability to discover module dependencies in Java 9 code. When you’re pre-
paring to create custom runtimes, you also can use jdeps to determine your app’s depen-
dencies, so you know which modules to include. For example, this chapter’s Welcome app
depends only on java.base. We can confirm that by executing the following command
from the WelcomeApp folder, which checks the com.deitel.welcome module’s dependen-
cies:

This produces the following output, showing the packages and modules the app uses:

jdeps --jdk-internals YourClassName.class

jdeps --jdk-internals YourJARName.jar

Error-Prevention Tip 36.2
Check every pre-Java-9 compiled class/JAR file with the jdeps command to ensure that
your code does not depend on JDK internal APIs.

jdeps --module-path jars -m com.deitel.welcome

com.deitel.welcome
 [file:///C:/examples/ch36/WelcomeApp/jars/com.deitel.welcome.jar]
 requires java.base (@9-ea)
com.deitel.welcome -> java.base
 com.deitel.welcome -> java.io java.base
 com.deitel.welcome -> java.lang java.base

jhtp_36_Java9.FM Page 31 Tuesday, April 11, 2017 1:10 PM

36_32 Chapter 36 Java Platform Module System

The output shows that our module com.deitel.welcome depends on the java.base mod-
ule, and that our module specifically uses types from the java.base module’s java.io and
java.lang packages.

The preceding command may also be written as

In addition, you can use jdeps on a specific .class file, as in:

which produces

Verbose jdeps Output
If you’d like more details, you can specify the -v (verbose) option as in:

which produces:

showing precisely which packages, types and modules the app uses. Knowing that the app
requires only java.base, we can then use jlink to create a custom runtime containing
only that module, which we’ll do in Section 36.8.

Using jdeps to Produce DOT Files for Graphing Tools
You can use graphing tools—such as Graphviz (www.graphviz.org) and its web-based
version (www.webgraphviz.com)—to produce module-dependency graphs using the DOT
graph description language,21 which specifies a graph’s nodes and edges. The jdeps tool
can create DOT (.dot) files with the --dot-output option as in:

which produces two .dot files in the current folder (.):

• summary.dot—the description of module com.deitel.welcome’s dependencies.

• com.deitel.welcome.dot—the description of module com.deitel.welcome’s
specific package dependencies.

Figure 36.19 shows the graph we produced by opening summary.dot in a text editor, then
copying and pasting its contents

jdeps jars/com.deitel.welcome.jar

jdeps mods/com.deitel.welcome/com/deitel/welcome/Welcome.class

Welcome.class -> java.base
 com.deitel.welcome -> java.io java.base
 com.deitel.welcome -> java.lang java.base

jdeps -v jars/com.deitel.welcome.jar

com.deitel.welcome
 [file:///C:/examples/ch36/WelcomeApp/jars/com.deitel.welcome.jar]
 requires java.base (@9-ea)
com.deitel.welcome -> java.base
 com.deitel.welcome.Welcome -> java.io.PrintStream java.base
 com.deitel.welcome.Welcome -> java.lang.Object java.base
 com.deitel.welcome.Welcome -> java.lang.String java.base
 com.deitel.welcome.Welcome -> java.lang.System java.base

21. https://en.wikipedia.org/wiki/DOT_(graph_description_language).

jdeps --dot-output . jars/com.deitel.welcome.jar

jhtp_36_Java9.FM Page 32 Tuesday, April 11, 2017 1:10 PM

36.7 Resources in Modules; Using an Automatic Module 36_33

into the textbox at webgraphviz.com and clicking Generate Graph.22

Additional jdeps Options
For a complete list of jdeps options, visit

for Windows or visit

for macOS and Linux.

36.7 Resources in Modules; Using an Automatic Module
When the types in a module require resources—such images, videos, XML documents and
more—those resources should be packaged with the module to ensure that they’re avail-
able when the module’s types are used at execution time. This is known as resource en-
capsulation.23 In this section, we’ll migrate our non-modularized JavaFX VideoPlayer
example from Section 22.6 into a module that also encapsulates the app’s resources—the
FXML file that describes the GUI and its video file that will be loaded and played at exe-
cution time. By convention, resources typically are placed in a folder named res.

Recall that the original VideoPlayer example consisted of the following files all in
Chapter 22’s VideoPlayer folder:

• VideoPlayer.xml—The FXML file that describes the app’s GUI.

• VideoPlayer.java—The Application subclass that begins the app’s execution.

• VideoPlayerController.java—The controller class that responds to the GUIs
events and loads the video.

digraph "summary" {
 "com.deitel.welcome" -> "java.base (java.base)";
}

Fig. 36.19 | Webgraphviz.com graph based on summary.dot

22. The .dot extension is also used by Microsoft Word document templates. On systems with Microsoft
Word installed, open the jdeps-produced .dot files directly from a text editor.

http://download.java.net/java/jdk9/docs/technotes/tools/windows/
jdeps.html

http://download.java.net/java/jdk9/docs/technotes/tools/unix/
jdeps.html

23. “Java Platform Module System Requirements.” http://openjdk.java.net/projects/jigsaw/
spec/reqs/#resource-encapsulation

jhtp_36_Java9.FM Page 33 Tuesday, April 11, 2017 1:10 PM

36_34 Chapter 36 Java Platform Module System

• sts117.mp4—The NASA video24 that the app loads and plays.

• controlsfx-8.40.12—The ControlsFX library containing the dialog class
ExceptionDialog. We display an ExceptionDialog if the MediaPlayer encoun-
ters any errors.

Reorganizing for Modularization
For the purpose of this example, we reorganized the files into the folder structure shown
in Fig. 36.20 to support modules. Notice the following about the structure:

• The files VideoPlayer.fxml and sts117.mp4, which are not Java source code
files, are located in the module directory’s res folder. These files will be read from
the module’s res folder when the app executes.

• As required for modularization, we placed the classes VideoPlayer and Video-
PlayerController in a package—the folder structure com/deitel/videoplayer
corresponds to the package com.deitel.videoplayer.

• As required, we created a module-info.java file in the module’s root folder.

In addition, we renamed controlsfx-8.40.12.jar to controlsfx.jar and placed it di-
rectly in the VideoPlayer folder’s mods subfolder.

36.7.1 Automatic Modules
The ControlsFX library we used when developing the VideoPlayer in Section 22.6 was not
designed to be a Java module. However, you can add any library’s JAR file to an app’s mod-
ule path, then use the packages in that JAR. When you do, the JAR file implicitly becomes
an automatic module and can be specified in a module declaration’s requires directives.
The JAR’s file name—minus the .jar extension—becomes its module name, which must be
a valid Java identifier for use in a requires directive. This is why we renamed the JAR by
removing -8.40.12 from the original filename. Also, an automatic module:

24. For NASA’s terms of use, visit http://www.nasa.gov/multimedia/guidelines/.

Fig. 36.20 | Modularized VideoPlayer src folder structure.

jhtp_36_Java9.FM Page 34 Tuesday, April 11, 2017 1:10 PM

36.7 Resources in Modules; Using an Automatic Module 36_35

• implicitly exports all of its packages—so, any module that reads the automatic
module has access to the public types in the automatic module’s packages.

• implicitly reads all other modules in the app, including other automatic mod-
ules—so, an automatic module has access to all the public types exposed by the
system’s other modules.

Code Changes for Modularization
We made the following code changes:

• VideoPlayer.fxml—We modified the controller class’s name to use its fully
qualified name com.deitel.videoplayer.VideoPlayerController so that the
FXMLLoader can find the controller class.

• VideoPlayer.java—We changed the name of the FXML file to load from "Vid-
eoPlayer.fxml" to "/res/VideoPlayer.fxml", which indicates that the FXML
file is located in the module’s res folder. We also added the package statement

• VideoPlayerController.java—We modified the name of the video file from
"sts117.mp4" to "/res/sts117.mp4", which indicates that the video file is locat-
ed in the module’s res folder. We also added the package statement

The rest of the code is identical to what we presented in Section 22.6.

36.7.2 Requiring Multiple Modules
The com.deitel.videoplayer module declaration (Fig. 36.21) indicates that the module
requires javafx.controls, javafx.fxml, javafx.media and controlsfx (the automatic
module discussed in Section 36.7.1). The module exports the com.deitel.videoplayer
package (line 9), because class VideoPlayerController is used by class FXMLLoader (mod-
ule javafx.fxml) when it creates the controller object and the app’s GUI.

36.7.3 Opening a Module for Reflection
In Fig. 36.21, the opens…to directive (line 10) indicates that the accessible types in the
package com.deitel.videoplayer should be available via reflection at runtime to types in

 package com.deitel.videoplayer;

 package com.deitel.videoplayer;

1 // Fig. 36.21: module-info.java
2 // Module declaration for the com.deitel.videoplayer module
3 module com.deitel.videoplayer {
4 requires javafx.controls;
5 requires javafx.fxml;
6 requires javafx.media;
7
8
9

10
11 }

Fig. 36.21 | Module declaration for the com.deitel.videoplayer module.

requires controlsfx; // automatic module for ControlsFX

exports com.deitel.videoplayer;
opens com.deitel.videoplayer to javafx.fxml;

jhtp_36_Java9.FM Page 35 Tuesday, April 11, 2017 1:10 PM

36_36 Chapter 36 Java Platform Module System

the javafx.fxml module. As we discussed in Section 36.2.6, this enables the FXMLLoader
to locate and load class VideoPlayerController. The FXMLLoader the creates a Video-
PlayerController object and injects into it references to the GUIs components that the
FXMLLoader creates from the app’s FXML file. For one module to open a package to an-
other module, that package must first be exported (possibly as a qualified export using
exports…to).

36.7.4 Module-Dependency Graph
Figure 36.22 shows the com.deitel.videoplayer module-dependency graph. Again, the
ones with light blue highlights are explicitly specified in requires directives—except for ja-
va.base, which is implicitly required by all modules. The other modules shown are de-
pendencies of the modules specified in the requires directives.

36.7.5 Compiling the Module
To compile the com.deitel.videoplayer module, type:

Note that we included the --module-path option, because the mods folder contains con-
trolsfx.jar—the automatic module that is required to compile this app.

Fig. 36.22 | com.deitel.videoplayer module-dependency graph.

javac --module-path mods -d mods/com.deitel.videoplayer ^
 src/com.deitel.videoplayer/module-info.java ^
 src/com.deitel.videoplayer/com/deitel/videoplayer/*.java

jhtp_36_Java9.FM Page 36 Tuesday, April 11, 2017 1:10 PM

36.8 Creating Custom Runtimes with jlink 36_37

Copying the Resource Files into the Module
Though some IDEs and build tools will automatically put the module’s resources into the
compiled module, the preceding javac command does not. Once you’ve compiled the
module, copy the res folder from this project’s src/com.deitel.videoplayer folder into
the mods/com.deitel.videoplayer folder.

36.7.6 Running a Modularized App
To execute class VideoPlayer from the com.deitel.videoplayer module, type:

Figure 36.23 shows the app executing on Windows.

36.8 Creating Custom Runtimes with jlink
A new tool in JDK 9 is the jlink command—Java’s linker for creating custom runtime
images.25 In a custom runtime, you can include just what’s necessary for a given app or set
of apps to execute. For example, if you’re creating a runtime for a device that does not sup-
port GUIs, you can create a runtime without the corresponding modules that support
Swing and JavaFX. In fact, many of this book’s text-only, command-line examples can ex-
ecute on a runtime that contains only the java.base module.

java --module-path mods ^
 -m com.deitel.videoplayer/com.deitel.videoplayer.VideoPlayer

Fig. 36.23 | Modularized VideoPlayer app executing.

25. Denise, Jean-Francois. “JEP 282: jlink: The Java Linker.” http://openjdk.java.net/jeps/282.

jhtp_36_Java9.FM Page 37 Tuesday, April 11, 2017 1:10 PM

36_38 Chapter 36 Java Platform Module System

36.8.1 Listing the JRE’s Modules
With modularization the JRE is a proper subset of the JDK.26 If you run the command:

from the JRE’s bin folder, the result contains only the JRE’s 73 modules (Fig. 36.24),
rather than the full listing of the JDK’s 95 modules. This number will change as Java
evolves. In Section 36.8.3, we do this on a custom runtime produced with the jlink com-
mand—in that case, only the single module bundled with that runtime will be displayed.

java --list-modules

26. Brian Goetz, e-mail message to authors, March 20, 2017.

Software Engineering Observation 36.3
You can use the modularized Java platform to conveniently form custom runtimes for
smaller capacity devices.

java.activation@9-ea
java.base@9-ea
java.compiler@9-ea
java.corba@9-ea
java.datatransfer@9-ea
java.desktop@9-ea
java.instrument@9-ea
java.jnlp@9-ea
java.logging@9-ea
java.management@9-ea
java.management.rmi@9-ea
java.naming@9-ea
java.prefs@9-ea
java.rmi@9-ea
java.scripting@9-ea
java.se@9-ea
java.se.ee@9-ea
java.security.jgss@9-ea
java.security.sasl@9-ea
java.smartcardio@9-ea
java.sql@9-ea
java.sql.rowset@9-ea
java.transaction@9-ea
java.xml@9-ea
java.xml.bind@9-ea
java.xml.crypto@9-ea
java.xml.ws@9-ea
java.xml.ws.annotation@9-ea
javafx.base@9-ea
javafx.controls@9-ea
javafx.deploy@9-ea
javafx.fxml@9-ea
javafx.graphics@9-ea
javafx.media@9-ea
javafx.swing@9-ea
javafx.web@9-ea
jdk.accessibility@9-ea

jdk.charsets@9-ea
jdk.crypto.cryptoki@9-ea
jdk.crypto.ec@9-ea
jdk.crypto.mscapi@9-ea
jdk.deploy@9-ea
jdk.deploy.controlpanel@9-ea
jdk.dynalink@9-ea
jdk.httpserver@9-ea
jdk.incubator.httpclient@9-ea
jdk.internal.le@9-ea
jdk.internal.vm.ci@9-ea
jdk.javaws@9-ea
jdk.jdwp.agent@9-ea
jdk.jfr@9-ea
jdk.jsobject@9-ea
jdk.localedata@9-ea
jdk.management@9-ea
jdk.management.agent@9-ea
jdk.naming.dns@9-ea
jdk.naming.rmi@9-ea
jdk.net@9-ea
jdk.pack@9-ea
jdk.plugin@9-ea
jdk.plugin.dom@9-ea
jdk.plugin.server@9-ea
jdk.scripting.nashorn@9-ea
jdk.scripting.nashorn.shell@9-ea
jdk.sctp@9-ea
jdk.security.auth@9-ea
jdk.security.jgss@9-ea
jdk.snmp@9-ea
jdk.unsupported@9-ea
jdk.xml.dom@9-ea
jdk.zipfs@9-ea
oracle.desktop@9-ea
oracle.net@9-ea

Fig. 36.24 | Output of java --list-modules showing the modules that compose the JRE.

jhtp_36_Java9.FM Page 38 Tuesday, April 11, 2017 1:10 PM

36.8 Creating Custom Runtimes with jlink 36_39

36.8.2 Custom Runtime Containing Only java.base
For the purpose of this example, change to the WelcomeApp folder—after creating the cus-
tom runtime, you’ll execute the Welcome app using it. The following command creates a
runtime containing only the module java.base:

The commands options are as follows:

• --module-path specifies one or more folders in which to locate the modules that
will be included in the runtime—in this case, the JDK’s jmods folder, which con-
tains the modular JAR files for all of the JDK’s modules.

• --add-modules specifies which modules to include in the runtime—in this case,
just java.base.

• --output specifies the folder in which the runtime’s contents are placed—in this
case, the folder javabaseruntime. This folder will be placed in the folder from
which you execute the preceding command (unless you specify additional path
information). If the folder already exists, an error occurs.

This runtime can execute an app that depends only on types from the packages in module
java.base, including many of this book’s command-line apps.

Note Regarding the JAVA_HOME Variable
The JAVA_HOME environment variable must refer to JDK 9’s installation folder on your sys-
tem—see the Before You Begin section before the preface for information on configuring
this environment variable. On Windows, you specify %JAVA_HOME% to use JAVA_HOME’s val-
ue in a command. Linux and macOS users should replace %JAVA_HOME% with $JAVA_HOME.
So, for example, the preceding command on Linux and macOS would be:

In either case, if the path contains spaces, place the environment variable in quotes ("").

Executing the Welcome App Using This Custom Runtime
To run the app with the custom runtime, on Windows use:

or on macOS/Linux use:

The program executes and displays:

Listing the Modules in a Custom Runtime
Previously we used the command

jlink --module-path "%JAVA_HOME%"/jmods --add-modules java.base ^
 --output javabaseruntime

jlink --module-path "$JAVA_HOME"/jmods --add-modules java.base \
 --output javabaseruntime

javabaseruntime\bin\java --module-path mods ^
 --module com.deitel.welcome/com.deitel.welcome.Welcome

javabaseruntime/bin/java --module-path mods \
 --module com.deitel.welcome/com.deitel.welcome.Welcome

Welcome to the Java Platform Module System!

java --list-modules

jhtp_36_Java9.FM Page 39 Tuesday, April 11, 2017 1:10 PM

36_40 Chapter 36 Java Platform Module System

to list all the modules in the JDK. Once you have a custom runtime, you can use the java
command from the custom runtime’s bin folder to confirm the modules it includes, as in:

When executing the custom runtime’s java command, use \ to separate folder names on
Windows and / to separate the folder names on macOS and Linux. The preceding com-
mand produces the following output:

Similarly the following command creates a custom runtime containing only the
module java.desktop and any other modules on which it depends:

For this custom runtime, running

(again, use forward slashes on macOS and Linux) produces the following output

36.8.3 Creating a Custom Runtime for the Welcome App
To create a custom runtime containing only the modules com.deitel.welcome and its de-
pendencies (in this case, java.base), use:

This creates a custom runtime in the folder welcomeruntime. The preceding command
specifies multiple folders—jars and %JAVA_HOME%. On Windows, the path-separator char-
acter for lists of folders is a semicolon (;). Linux and macOS users should replace the semi-
colons in the commands with the colon (:) path-separator character, as in

To see the list of modules included in the custom runtime, on Windows use:

(again, use forward slashes on macOS and Linux) which produces the following list of
modules:

36.8.4 Executing the Welcome App Using a Custom Runtime
To run the app with the custom runtime, on Windows use:

javabaseruntime\bin\java --list-modules

java.base@9-ea

jlink --module-path "%JAVA_HOME%"/jmods ^
 --add-modules java.desktop --output javadesktopruntime

javadesktopruntime\bin\java --list-modules

java.base@9-ea
java.datatransfer@9-ea
java.desktop@9-ea
java.prefs@9-ea
java.xml@9-ea

jlink --module-path jars;"%JAVA_HOME%"/jmods ^
 --add-modules com.deitel.welcome --output welcomeruntime

jlink --module-path jars:"$JAVA_HOME"/jmods \
 --add-modules com.deitel.welcome --output welcomeruntime

welcomeruntime\bin\java --list-modules

com.deitel.welcome
java.base@9-ea

welcomeruntime\bin\java -m com.deitel.welcome

jhtp_36_Java9.FM Page 40 Tuesday, April 11, 2017 1:10 PM

36.9 Services and ServiceLoader 36_41

(Again, use forward slashes on macOS and Linux.) The program executes and displays:

36.8.5 Using the Module Resolver on a Custom Runtime
When you run a modularized app, the JVM uses a module resolver to determine which
modules are required at execution time and ensure that their dependencies are satisfied—this
is known as the transitive closure of those modules. To locate modules, the module resolver
looks at the observable modules—that is, those built into the runtime (like java.base) and
those located on the module path. For a required module that cannot be found, the runtime
throws a java.lang.module.FindException.

For a given app and runtime, you can view the steps the module resolver follows to
determine module dependencies and ensure that the required modules are available to the
program. To do so, include -Xdiag:resolver option27 in the java command, as in:

(Again, use forward slashes on macOS and Linux.) This uses the custom welcomerun-
time’s java command to display the resolver’s steps for locating modules, followed by the
program’s output:

The module-resolution process for the Welcome app proceeds as follows:

1. First, the resolver locates the app’s initial module—com.deitel.welcome—con-
taining the app’s entry point. The resolver refers to this as the root module. This
is the root node in the module-dependency graph.

2. Next, the resolver locates java.base, because the com.deitel.welcome module
descriptor specifies that com.deitel.welcome requires java.base.

3. Since java.base does not depend on other modules, the dependency graph is
now complete and the resolver displays the resulting list of modules required to
execute the program.

Next, the program executes and displays its output. If a required module were not found
during this process, a java.lang.module.FindException would be displayed in this out-
put and the program would not execute.

36.9 Services and ServiceLoader
In Section 10.13, we discussed “programming to an interface, not an implementation” as
a mechanism for creating loosely coupled objects. We’ll use these concepts in this section

Welcome to the Java Platform Module System!

welcomeruntime\bin\java -Xdiag:resolver -m com.deitel.welcome

27. Bateman, Alan, Alex Buckley, Jonathan Gibbons and Mark Reinhold. “JEP 261: Module System.”
http://openjdk.java.net/jeps/261.

[Resolver] Root module com.deitel.welcome located
[Resolver] (jrt:/com.deitel.welcome)
[Resolver] Module java.base located, required by com.deitel.welcome
[Resolver] (jrt:/java.base)
[Resolver] Result:
[Resolver] com.deitel.welcome
[Resolver] java.base
Welcome to the Java Platform Module System!

jhtp_36_Java9.FM Page 41 Tuesday, April 11, 2017 1:10 PM

36_42 Chapter 36 Java Platform Module System

as we introduce services and class ServiceLoader, which help you create loosely coupled
system components. This can make large-scale systems easier to develop and maintain.

MathTutor App
We’ll develop a MathTutor app (consisting of three modules) that supports various types
of randomly generated math problems. Rather than hard-coding these into the app, we’ll
load math problems through a service-provider interface that describes how to obtain math
problems. We’ll then define two service providers—classes that implement this interface.
One service provider will create addition problems and the other multiplication problems.
At runtime, we’ll load objects of these service-provider implementation classes and use
them. The completed app structure consisting of three modules is shown in Fig. 36.25.

MathTutor App’s Modules
Module com.deitel.mathtutor aggregates two related packages:

• com.deitel.mathtutor: This package contains class MathTutor—a command-
line app that displays random math problems to the user, inputs the user’s re-
sponses and displays whether each response is correct or incorrect.

• com.deitel.mathtutor.spi: This package contains the ProblemProvider service-
provider interface and the supporting abstract class Problem, which represents a
math problem. Class MathTutor uses ProblemProviders to obtain Problem objects.

Module com.deitel.additionprovider contains a package of the same name in
which we declare class AdditionProblemProvider. This implementation of the service-
provider interface ProblemProvider generates random addition Problems.

Fig. 36.25 | Folder structure for the MathTutor app’s modules.

jhtp_36_Java9.FM Page 42 Tuesday, April 11, 2017 1:10 PM

36.9 Services and ServiceLoader 36_43

Module com.deitel.multiplicationprovider contains a package of the same name
in which we declare class MultiplicationProblemProvider. This implementation of the
service-provider interface ProblemProvider generates random multiplication Problems.

How We’ll Demonstrate the App
We’ll initially run the MathTutor app without placing the service-provider implementa-
tion modules on the module path to demonstrate what happens when no service providers
are found at runtime. Next, we’ll “plug in” the module com.deitel.additionprovider
on the module path, then re-run the app to demonstrate that we’re able to obtain Problems
from an AdditionProblemProvider. Finally, we’ll “plug in” both the com.deitel.addi-
tionprovider and com.deitel.multiplicationprovider modules on the module path,
then re-run the app to demonstrate that we’re able to obtain Problems generated by both
an AdditionProblemProvider and a MultiplicationProblemProvider.

Plug-in Architecture
This “plug-in” architecture using a service-provider interface and multiple service-provid-
er implementations makes the MathTutor app easy to extend. Simply create a module con-
taining a ProblemProvider implementation, then add it to the module path when you run
the app. It also makes the app more configurable, because you can choose which modules
to include on the module path when you execute the app.

Reliable Configuration
The mechanisms for creating loosely coupled systems like the MathTutor app have been
used extensively in Java since its early versions. A key new concept in Java 9—which also
applies to modules in general—is reliable configuration. For the MathTutor app to be able
to display Problems to the user, it must be able to locate and load ProblemProvider im-
plementations. As you’ll see, module declarations enable you to specify which service-
provider interfaces a module uses and whether a module contains types that implement
those interfaces.

36.9.1 Service-Provider Interface
The package com.deitel.mathtutor.spi contains the com.deitel.mathtutor module’s
service-provider interface ProblemProvider and the supporting abstract class Problem.
The final component of this package’s name—spi—is commonly used in packages that
declare one or more service-provider interfaces. Interface ProblemProvider (Fig. 36.26)
declares method getProblem (line 6) that returns a Problem.

1 // Fig. 36.26: ProblemProvider.java
2 // Service-provider interface for obtaining a Problem
3 package com.deitel.mathtutor.spi;
4
5 public interface ProblemProvider {
6 public Problem getProblem();
7 }

Fig. 36.26 | Service-provider interface for obtaining a Problem.

jhtp_36_Java9.FM Page 43 Tuesday, April 11, 2017 1:10 PM

36_44 Chapter 36 Java Platform Module System

Abstract class Problem (Fig. 36.27) provides the common features of math problems
in this example. Each has two int operands and an int result as well as a String repre-
senting the operation—the MathTutor displays this String with each math problem it
presents to the user. Class Problem’s abstract method getResult is overridden in each
service-provider implementation’s concrete subclass of Problem.

36.9.2 Loading and Consuming Service Providers
Class MathTutor (Fig. 36.28) is the app’s entry point. It provides the logic for locating and
loading ProblemProvider implementations, then using them to present math problems to
the user.

1 // Fig. 36.27: Problem.java
2 // Problem superclass that contains information about a math problem.
3 package com.deitel.mathtutor.spi;
4
5 public abstract class Problem {
6 private int leftOperand;
7 private int rightOperand;
8 private int result;
9 private String operation;

10
11 // constructor
12 public Problem(int leftOperand, int rightOperand, String operation) {
13 this.leftOperand = leftOperand;
14 this.rightOperand = rightOperand;
15 this.operation = operation;
16 }
17
18 // gets the leftOperand
19 public int getLeftOperand() {return leftOperand;}
20
21 // gets the rightOperand
22 public int getRightOperand() {return rightOperand;}
23
24 // gets the operation
25 public String getOperation() {return operation;}
26
27 // gets the result
28
29 }

Fig. 36.27 | Problem superclass that contains information about a math problem.

1 // Fig. 36.28: MathTutor.java
2 // Math tutoring app using ProblemProviders to display math problems.
3 package com.deitel.mathtutor;
4
5 import java.util.List;
6 import java.util.Random;

Fig. 36.28 | Math tutoring app using ProblemProviders to display math problems. (Part 1 of 3.)

public abstract int getResult();

jhtp_36_Java9.FM Page 44 Tuesday, April 11, 2017 1:10 PM

36.9 Services and ServiceLoader 36_45

7 import java.util.Scanner;
8
9

10 import java.util.stream.Collectors;
11
12
13
14 public class MathTutor {
15 private static Scanner input = new Scanner(System.in);
16
17 public static void main(String[] args) {
18 // get a service loader for ProblemProviders
19
20
21
22 // get the list of service providers
23
24
25
26 // check whether there are any providers
27 if (providersList.isEmpty()) {
28 System.out.println(
29 "Terminating MathTutor: No problem providers found.");
30 return;
31 }
32
33 boolean shouldContinue = true;
34 Random random = new Random();
35
36 do {
37 // choose a ProblemProvider at random
38
39
40
41 // get the Problem
42
43
44 // display the problem to the user
45 showProblem(problem);
46 } while (playAgain());
47 }
48
49 // show the math problem to the user
50 private static void showProblem() {
51 String problemStatement = String.format("What is %d %s %d? ",
52 problem.getLeftOperand(), problem.getOperation(),
53 problem.getRightOperand());
54
55 // display problem and get answer from user
56 System.out.printf(problemStatement);
57 int answer = input.nextInt();
58

Fig. 36.28 | Math tutoring app using ProblemProviders to display math problems. (Part 2 of 3.)

import java.util.ServiceLoader;
import java.util.ServiceLoader.Provider;

import com.deitel.mathtutor.spi.Problem;
import com.deitel.mathtutor.spi.ProblemProvider;

ServiceLoader<ProblemProvider> serviceLoader =
 ServiceLoader.load(ProblemProvider.class);

List<Provider<ProblemProvider>> providersList =
 serviceLoader.stream().collect(Collectors.toList());

ProblemProvider provider =
 providersList.get(random.nextInt(providersList.size())).get();

Problem problem = provider.getProblem();

Problem problem

jhtp_36_Java9.FM Page 45 Tuesday, April 11, 2017 1:10 PM

36_46 Chapter 36 Java Platform Module System

Using ServiceLoader to Locate Service Providers
Lines 19–20

create a ServiceLoader (package java.util) that loads ProblemProvider implementa-
tions. ServiceLoader’s static load method receives as its argument the Class object rep-
resenting the service-provider interface’s type—ProblemProvider.class is a class literal
that’s equivalent to creating a Class<ProblemProvider> object, as in:

Method load returns a ServiceLoader<ProblemProvider> that knows only how to load
ProblemProvider implementations.

There are several ways to get service-provider implementations from a Service-
Loader. In lines 23–24

we obtain a List of the available service-provider implementations using ServiceLoader’s
stream method. This returns a Stream<Provider<ProblemProvider>> representing all
the available ProblemProvider implementations, if any. Interface Provider (imported at
line 9) is a nested type of class ServiceLoader. For each available ProblemProvider im-
plementation, the stream contains one Provider<ProblemProvider> object. Line 24 uses
Stream method collect and the predefined Collector defined by Collectors.toList to
get the List containing all the available implementations. If that List is empty (line 27)
the program displays an appropriate message and terminates.

Using a Service-Provider Interface
If the List contains any service-provider implementations, lines 36–46 use them to dis-
play one math problem at a time to the user. Lines 38–39

59 while (answer != problem.getResult()) {
60 System.out.println("Incorrect. Please try again: ");
61 System.out.printf(problemStatement);
62 answer = input.nextInt();
63 }
64
65 System.out.println("Correct!");
66 }
67
68 // play again?
69 private static boolean playAgain() {
70 System.out.printf("Try another? y to continue, n to terminate: ");
71 String response = input.next();
72
73 return response.toLowerCase().startsWith("y");
74 }
75 }

ServiceLoader<ProblemProvider> serviceLoader =
 ServiceLoader.load(ProblemProvider.class);

new Class<ProblemProvider>()

List<Provider<ProblemProvider>> providersList =
 serviceLoader.stream().collect(Collectors.toList());

Fig. 36.28 | Math tutoring app using ProblemProviders to display math problems. (Part 3 of 3.)

jhtp_36_Java9.FM Page 46 Tuesday, April 11, 2017 1:10 PM

36.9 Services and ServiceLoader 36_47

randomly select one Provider<ProblemProvider> object from the providersList, then
invoke that object’s get method to obtain its ProblemProvider. Line 42

then gets a Problem from whichever ProblemProvider was selected.
Note the loose coupling of the MathTutor app and its ProblemProviders. The app does

not refer in any way to AdditionProblemProviders or MultiplicationProblemPro-
viders that generate math problems.

36.9.3 uses Module Directive and Service Consumers
Figure 36.29 shows the com.deitel.mathtutor module declaration. Note that this mod-
ule exports the package com.deitel.mathtutor.spi containing the service-provider in-
terface ProblemProvider and its supporting Problem class. This enables modules that
implement interface ProblemProvider to access those types. The new feature in this dec-
laration is the uses module directive (line 6). This directive indicates that there is a type
in the com.deitel.mathtutor module that uses objects which implement the Problem-
Provider interface. Such a module is called a service consumer.

To be able to consume ProblemProviders, the ServiceLoader must be able to locate
and load their implementations dynamically using Java’s reflection capabilities. When you
run this app, the module resolver will see in the descriptor that this module uses Problem-
Provider implementations and thus is dependent on such providers. It will then search
the modules on the module path looking for any modules that provide implementations
of this interface. If it finds any such modules, it will add them to the module-dependency
graph.

36.9.4 Running the App with No Service Providers
To compile the com.deitel.mathtutor module, type:

ProblemProvider provider =
 providersList.get(random.nextInt(providersList.size())).get();

Problem problem = provider.getProblem();

1 // Fig. 36.29: module-info.java
2 // Module declaration for the com.deitel.mathtutor module
3 module com.deitel.mathtutor {
4 exports com.deitel.mathtutor.spi; // package for provider interface
5
6
7 }

Fig. 36.29 | Module declaration for the com.deitel.mathtutor module.

javac -d mods/com.deitel.mathtutor ^
 src/com.deitel.mathtutor/module-info.java ^
 src/com.deitel.mathtutor/com/deitel/mathtutor/MathTutor.java ^
 src/com.deitel.mathtutor/com/deitel/mathtutor/spi/*.java

uses com.deitel.mathtutor.spi.ProblemProvider;

jhtp_36_Java9.FM Page 47 Tuesday, April 11, 2017 1:10 PM

36_48 Chapter 36 Java Platform Module System

Next, run the app with no ProblemProvider implementations on the module path by us-
ing the following java command, which places only the com.deitel.mathtutor module
on the module path:

The result is

36.9.5 Implementing a Service Provider
Next, let’s create class AdditionProblemProvider (Fig. 36.30), which implements the ser-
vice-provider interface ProblemProvider (line 10). This class’s com.deitel.addition-
provider package will be placed in the com.deitel.additionprovider module
(Section 36.9.6). We import interface ProblemProvider and class Problem from the
com.deitel.mathtutor module’s exported package com.deitel.mathtutor.spi (lines
7–8). When the MathTutor calls an AdditionProblemProvider’s getProblem method
(lines 14–23), the method creates an anonymous subclass of Problem (lines 16–22), pass-
ing to Problem’s constructor two random int values as the operands and the String "+"
as the operation. Lines 18–21 override superclass Problem’s getResult method to return
the sum of the left and right operands.

java --module-path mods/com.deitel.mathtutor ^
 -m com.deitel.mathtutor/com.deitel.mathtutor.MathTutor

Terminating MathTutor: No problem providers found.

1 // Fig. 36.30: AdditionProblemProvider.java
2 // AdditionProblemProvider implementation of interface
3 // ProblemProvider for the MathTutor app.
4 package com.deitel.additionprovider;
5
6 import java.util.Random;
7
8
9

10 public class AdditionProblemProvider {
11 private static Random random = new Random();
12
13 // returns a new addition problem
14 @Override
15 public Problem getProblem() {
16 return new Problem(random.nextInt(10), random.nextInt(10), "+") {
17 // override getResult to add the operands
18 @Override
19 public int getResult() {
20 return getLeftOperand() + getRightOperand();
21 }
22 };
23 }
24 }

Fig. 36.30 | AdditionProblemProvider implementation of interface ProblemProvider for
the MathTutor app.

import com.deitel.mathtutor.spi.Problem;
import com.deitel.mathtutor.spi.ProblemProvider;

implements ProblemProvider

jhtp_36_Java9.FM Page 48 Tuesday, April 11, 2017 1:10 PM

36.9 Services and ServiceLoader 36_49

36.9.6 provides…with Module Directive and Declaring a Service
Provider
Figure 36.31 shows the com.deitel.additionprovider module declaration. Note that
this module requires the module com.deitel.mathtutor. Recall from Fig. 36.29 that
this module exports the package com.deitel.mathtutor.spi containing the types used
in class AdditionProblemProvider. The new feature in this module declaration is the
provides…with module directive. Lines 6–7 specify that this module

• provides an implementation of interface ProblemProvider—declared in the
com.deitel.mathtutor module’s com.deitel.mathtutor.spi package

• with class AdditionProblemProvider—declared in this module’s com.de-
itel.additionprovider package.

Such a module is called a service provider. The directive’s provides part is followed by
the name of an interface or abstract class that’s specified in a module’s uses directive.
The directive’s with part is followed by the name of a class that implements the interface
or extends the abstract class.

36.9.7 Running the App with One Service Provider
Next, we’ll run the app with the AdditionProblemProvider included in the module path.
First, compile the com.deitel.additionprovider module, as follows:

Then run the app with the following java command:

The following sample output shows addition problems:

1 // Fig. 36.31: module-info.java
2 // Module declaration for the com.deitel.additionprovider module
3 module com.deitel.additionprovider {
4 requires com.deitel.mathtutor;
5
6
7
8 }

Fig. 36.31 | Module declaration for the com.deitel.additionprovider module.

javac --module-path mods -d mods/com.deitel.additionprovider ^
 src/com.deitel.additionprovider/module-info.java ^
 src/com.deitel.additionprovider/com/deitel/additionprovider/ ^
 AdditionProblemProvider.java

java --module-path mods ^
 -m com.deitel.mathtutor/com.deitel.mathtutor.MathTutor

What is 9 + 6? 15
Correct!
Try another? y to continue, n to terminate: y
What is 2 + 6? 7
Incorrect. Please try again:
What is 2 + 6? 8
Correct!
Try another? y to continue, n to terminate: n

provides com.deitel.mathtutor.spi.ProblemProvider
 with com.deitel.additionprovider.AdditionProblemProvider;

jhtp_36_Java9.FM Page 49 Tuesday, April 11, 2017 1:10 PM

36_50 Chapter 36 Java Platform Module System

36.9.8 Implementing a Second Service Provider
Class MultiplicationProblemProvider (Fig. 36.32) also implements the service-provider
interface ProblemProvider (line 10). This class’s com.deitel.multiplicationprovider
package will be placed in the com.deitel.multiplicationprovider module (Fig. 36.33).
Class MultiplicationProblemProvider is nearly identical to class AdditionProblemPro-
vider, except that line 16 passes the String "*" for the Problem’s operation and the over-
ridden Problem method getResult returns the product of the left and right operands.

Figure 36.33 shows the com.deitel.multiplicationprovider module declaration.
Again, this module requires the module com.deitel.mathtutor. Lines 6–7 specify that
this module provides an implementation of the ProblemProvider interface with class
MultiplicationProblemProvider.

1 // Fig. 36.32: MultiplicationProblemProvider.java
2 // MultiplicationProblemProvider implementation of interface
3 // ProblemProvider for the MathTutor app.
4 package com.deitel.multiplicationprovider;
5
6 import java.util.Random;
7 import com.deitel.mathtutor.spi.Problem;
8 import com.deitel.mathtutor.spi.ProblemProvider;
9

10 public class MultiplicationProblemProvider {
11 private static Random random = new Random();
12
13 // returns a new addition problem
14 @Override
15 public Problem getProblem() {
16 return new Problem(random.nextInt(10), random.nextInt(10), "*") {
17 // override getResult to add the operands
18 @Override
19 public int getResult() {
20 return getLeftOperand() * getRightOperand();
21 }
22 };
23 }
24 }

Fig. 36.32 | MultiplicationProblemProvider implementation of interface
ProblemProvider for the MathTutor app.

1 // Fig. 36.33: module-info.java
2 // Module declaration for the com.deitel.multiplicationprovider module
3 module com.deitel.multiplicationprovider {
4 requires com.deitel.mathtutor;
5
6
7
8 }

Fig. 36.33 | Module declaration for the com.deitel.multiplicationprovider module.

implements ProblemProvider

provides com.deitel.mathtutor.spi.ProblemProvider with
 com.deitel.multiplicationprovider.MultiplicationProblemProvider;

jhtp_36_Java9.FM Page 50 Tuesday, April 11, 2017 1:10 PM

36.10 Wrap-Up 36_51

36.9.9 Running the App with Two Service Providers
Next, we’ll run the app with both the AdditionProblemProvider and the Multiplica-
tionProblemProvider included in the module path. First, compile the com.deitel.mul-
tiplicationprovider module, as follows:

Then run the app with the following java command:

The following is a sample output showing both addition and multiplication problems:

36.10 Wrap-Up
In this chapter, we introduced Java 9’s new Java Platform Module system. We introduced
key modularity concepts you’re likely to use when building large-scale systems.

You saw that all modules implicitly depend on java.base. You created module dec-
larations that specify a module’s dependencies (with the requires directive), which pack-
ages a module makes available to other modules (with the exports directive), services it
offers (with the provides…with directive), services it consumes (with the uses directive)
and to what other modules it allows reflection (with the open modifier and the opens and
opens…to directives).

To help you visualize the dependencies among modules, we showed several module-
dependency graphs that we created using the NetBeans IDE’s JDK 9 support. We dis-
cussed the steps that the runtime’s module resolver performs to ensure that a module’s
dependencies are fulfilled.

You used JDK 9’s new jlink tool (the Java linker) to create smaller custom runtimes,
then used them to execute apps. We discussed the module system’s strong encapsulation
and showed the steps required to explicitly allow runtime reflection via the open modifier
or the opens and opens…to directives in a module declaration.

javac --module-path mods ^
 -d mods/com.deitel.multiplicationprovider ^
 src/com.deitel.multiplicationprovider/module-info.java ^
 src/com.deitel.multiplicationprovider/com/deitel/
 multiplicationprovider/MultiplicationProblemProvider.java

java --module-path mods ^
 -m com.deitel.mathtutor/com.deitel.mathtutor.MathTutor

What is 4 * 8? 20
Incorrect. Please try again:
What is 4 * 8? 32
Correct!
Try another? y to continue, n to terminate: y
What is 3 * 6? 18
Correct!
Try another? y to continue, n to terminate: y
What is 3 + 7? 10
Correct!
Try another? y to continue, n to terminate: y
What is 9 + 3? 12
Correct!
Try another? y to continue, n to terminate: n

jhtp_36_Java9.FM Page 51 Tuesday, April 11, 2017 1:10 PM

36_52 Chapter 36 Java Platform Module System

We discussed the enormous amount of non-modularized legacy code that will need
to be migrated to modular Java 9, then showed how the unnamed module and automatic
modules can help make migration straightforward. We used the jdeps tool to determine
code dependencies among modules and showed how the tool can be used to check for uses
of pre-Java-9 internal APIs (which are for the most part strongly encapsulated in Java 9).

Finally, we discussed services and service providers for building loosely coupled sys-
tems by using service-provider interfaces and implementations and the ServiceLoader
class. We also demonstrated the uses and provides…with directives in module declara-
tions to indicate that a module uses a service or provides a service implementation, respec-
tively. In the next chapter, we discuss various additional Java 9 topics.

jhtp_36_Java9.FM Page 52 Tuesday, April 11, 2017 1:10 PM

