
37Additional Java 9 Topics

O b j e c t i v e s
In this chapter you’ll:
■ Briefly recap the Java 9 features

we’ve already covered.
■ Understand Java’s new version

numbering scheme.
■ Use the new regular-

expression Matcher methods
appendReplacement,
appendTail,
replaceFirst,
replaceAll and results.

■ Use the new Stream
methods takeWhile and
dropWhile and the new
iterate overload.

■ Learn about the Java 9 JavaFX
and other GUI and graphics
enhancements.

■ Use modules in JShell.
■ Overview the Java 9 security-

related changes and other Java
9 features.

■ Become aware of the
capabilities no longer available
in JDK 9 and Java 9.

■ Become aware of packages,
classes and methods proposed
for removal from future Java
versions.

jhtp_37_Java9OtherTopics.FM Page 1 Tuesday, April 11, 2017 1:21 PM

37_2 Chapter 37 Additional Java 9 Topics

37.1 Introduction
Just before we published this book, Java Specification Request (JSR) 379: Java SE 9 was
released as a draft at:

The JSR details the

• features included in Java 9,

• features that have been removed from Java 9, and

• features that are proposed for removal from future Java versions.

Once this JSR is approved as final it will be posted at:

This JSR is a must read for any Java 9 developer. It gives a high-level overview of the
breadth and depth of Java 9 and provides links to all the key JEPs and JSRs.

In any new version of a language there are items of immediate benefit to most pro-
grammers, items of interest to some programmers and narrow-purpose, specialty topics
that limited numbers of developers will use. We divided this chapter into several groups:

37.1 Introduction
37.2 Recap: Java 9 Features Covered in

Earlier Chapters
37.3 New Version String Format
37.4 Regular Expressions: New Matcher

Class Methods
37.4.1 Methods appendReplacement

and appendTail
37.4.2 Methods replaceFirst and

replaceAll
37.4.3 Method results

37.5 New Stream Interface Methods
37.5.1 Stream Methods takeWhile and

dropWhile
37.5.2 Stream Method iterate
37.5.3 Stream Method ofNullable

37.6 Modules in JShell
37.7 JavaFX 9 Skin APIs
37.8 Other GUI and Graphics

Enhancements
37.8.1 Multi-Resolution Images
37.8.2 TIFF Image I/O
37.8.3 Platform-Specific Desktop Features

37.9 Security Related Java 9 Topics
37.9.1 Filter Incoming Serialization Data
37.9.2 Create PKCS12 Keystores by Default

37.9.3 Datagram Transport Layer Security
(DTLS)

37.9.4 OCSP Stapling for TLS
37.9.5 TLS Application-Layer Protocol

Negotiation Extension
37.10 Other Java 9 Topics

37.10.1 Indify String Concatenation
37.10.2 Platform Logging API and Service
37.10.3 Process API Updates
37.10.4 Spin-Wait Hints
37.10.5 UTF-8 Property Resource Bundles
37.10.6 Use CLDR Locale Data by Default
37.10.7 Elide Deprecation Warnings on

Import Statements
37.10.8 Multi-Release JAR Files
37.10.9 Unicode 8

37.10.10 Concurrency Enhancements
37.11 Items Removed from the JDK and

Java 9
37.12 Items Proposed for Removal from

Future Java Versions
37.12.1 Enhanced Deprecation
37.12.2 Items Likely to Be Removed in Future

Java Versions
37.12.3 Finding Deprecated Features
37.12.4 Java Applets

37.13 Wrap-Up

http://cr.openjdk.java.net/~iris/se/9/java-se-9-pr-spec-01/java-se-
9-spec.html

https://www.jcp.org/en/jsretail?id=379

jhtp_37_Java9OtherTopics.FM Page 2 Tuesday, April 11, 2017 1:21 PM

37.2 Recap: Java 9 Features Covered in Earlier Chapters 37_3

• A recap of the Java 9 features we covered in earlier chapters.

• Live-code examples and discussions of additional functionality that will be useful
to a wider audience.

• A brief overview of specialty features with references to where you can learn more.

• A list of features removed from JDK 9 and Java 9.

• A list of features proposed for removal from future Java versions.

Developers should, of course, avoid features in the last two groups in new development,
and replace uses of those features in old code as it’s migrated to Java 9.

37.2 Recap: Java 9 Features Covered in Earlier Chapters
Here we list the Java 9 features already covered in the book and where you can find each:

• Underscore (_) is no longer a valid identifier (Section 2.2). This is one of several fea-
tures of JEP 213: Milling Project Coin (http://openjdk.java.net/jeps/213).

• Mentioned enhancements to SecureRandom (Section 6.8) per JEP 273 (http://
openjdk.java.net/jeps/273).

• As of Java 9, the compiler now issues a warning if you attempt to access a static
class member through an instance of the class (Section 8.11).

• Introduced private interface methods (Section 10.11), another feature of JEP
213: Milling Project Coin.

• Mentioned the new Stack-Walking API (Section 11.7) from JEP 259 (http://
openjdk.java.net/jeps/259).

• Mentioned that effectively final AutoCloseable variables can now be used in
try-with-resources statements (Section 11.12), another feature of JEP 213: Mill-
ing Project Coin.

• Overviewed new JavaFX 9 features and other GUI and graphics enhancements
(Section 13.8).

• Mentioned Java 9’s more compact String representation (Section 14.3), per JEP
254 (http://openjdk.java.net/jeps/254).

• Presented the new convenience factory methods for creating read-only collections
(Section 16.14), per JEP 269 (http://openjdk.java.net/jeps/269).

• Chapter 25, Introduction to JShell: Java 9’s REPL for Interactive Java, presented
detailed, example-driven coverage of the JDK’s new jshell tool.

• Chapter 36, Java Platform Module System, presented detailed example-driven
coverage of Java 9’s new module system.

37.3 New Version String Format
Prior to Java 9, JDK versions were numbered 1.X.0_updateNumber where X was the major
Java version. For example,

• Java 8’s current JDK version number is jdk1.8.0_121 and

• Java 7’s final JDK version number was jdk1.7.0_80.

jhtp_37_Java9OtherTopics.FM Page 3 Tuesday, April 11, 2017 1:21 PM

37_4 Chapter 37 Additional Java 9 Topics

This numbering scheme has changed. JDK 9 initially will be known as jdk-9. Future mi-
nor version updates will add new features, and security updates will fix security holes.
These updates will be reflected in the JDK version numbers. For example, in 9.1.3:

• 9—is the major Java version number

• 1—is the minor version update number and

• 3—is the security update number.

So 9.2.5 would indicate the version of Java 9 for which there have been two minor version
updates and five total security updates (across major and minor versions). For additional
details, see JEP 223:

37.4 Regular Expressions: New Matcher Class Methods
Java SE 9 adds several new Matcher method overloads—appendReplacement, appendTail,
replaceFirst, replaceAll and results (Fig. 37.1).

http://openjdk.java.net/jeps/223

1 // Fig. 37.1: MatcherMethods.java
2 // Java 9's new Matcher methods.
3 import java.util.regex.Matcher;
4 import java.util.regex.Pattern;
5
6 public class MatcherMethods {
7 public static void main(String[] args) {
8 String sentence = "a man a plan a canal panama";
9

10 System.out.printf("sentence: %s%n", sentence);
11
12 // using Matcher methods appendReplacement and appendTail
13 Pattern pattern = Pattern.compile("an"); // regex to match
14
15 // match regular expression to String and replace
16 // each match with uppercase letters
17 Matcher matcher = pattern.matcher(sentence);
18
19 // used to rebuild String
20 StringBuilder builder = new StringBuilder();
21
22 // append text to builder; convert each match to uppercase
23 while () {
24
25
26 }
27
28 // append the remainder of the original String to builder
29
30 System.out.printf(
31 "%nAfter appendReplacement/appendTail: %s%n", builder);
32

Fig. 37.1 | Java 9's new Matcher methods. (Part 1 of 2.)

matcher.find()
matcher.appendReplacement(
 builder, matcher.group().toUpperCase());

matcher.appendTail(builder);

jhtp_37_Java9OtherTopics.FM Page 4 Tuesday, April 11, 2017 1:21 PM

37.4 Regular Expressions: New Matcher Class Methods 37_5

37.4.1 Methods appendReplacement and appendTail
The new Matcher method overloads appendReplacement (lines 24–25) and appendTail
(line 29) are used with Matcher method find (line 23) and a StringBuilder in a loop to
iterate through a String and replace every-regular expression match with a specified
String. At the end of the process, the StringBuilder contains the original String’s con-
tents updated with the replacements. Lines 13–26 proceed as follows:

• Line 13 creates a Pattern to match—in this case, the literal characters "an".

• Line 17 creates a Matcher object for the String sentence (declared in line 8).
This will be used to locate the Pattern "an" in sentence.

33 // using Matcher method replaceFirst
34
35 System.out.printf("%nBefore replaceFirst: %s%n", sentence);
36
37 System.out.printf("After replaceFirst: %s%n", result);
38
39 // using Matcher method replaceAll
40
41 System.out.printf("%nBefore replaceAll: %s%n", sentence);
42
43 System.out.printf("After replaceAll: %s%n", result);
44
45 // using method results to get a Stream<MatchResult>
46 System.out.printf("%nUsing Matcher method results:%n");
47 pattern = Pattern.compile("\\w+"); // regular expression to match
48 matcher = pattern.matcher(sentence);
49 System.out.printf("The number of words is: %d%n",
50);
51
52 matcher.reset(); // reset matcher to its initial state
53 System.out.printf("Average characters per word is: %f%n",
54
55
56
57 }
58 }

sentence: a man a plan a canal panama

After appendReplacement/appendTail: a mAN a plAN a cANal pANama

Before replaceFirst: a man a plan a canal panama
After replaceFirst: a mAN a plan a canal panama

Before replaceAll: a man a plan a canal panama
After replaceAll: a mAN a plAN a cANal pANama

Using Matcher method results:
The number of words is: 7
Average characters per word is: 3.000000

Fig. 37.1 | Java 9's new Matcher methods. (Part 2 of 2.)

matcher.reset(); // reset matcher to its initial state

String result = matcher.replaceFirst(m -> m.group().toUpperCase());

matcher.reset(); // reset matcher to its initial state

result = matcher.replaceAll(m -> m.group().toUpperCase());

matcher.results().count()

matcher.results()
 .mapToInt(m -> m.group().length())
 .average().orElse(0));

jhtp_37_Java9OtherTopics.FM Page 5 Tuesday, April 11, 2017 1:21 PM

37_6 Chapter 37 Additional Java 9 Topics

• Line 20 creates the StringBuilder in which the results will be placed.

• Line 23 uses Matcher method find, to locate an occurrence of "an" in the origi-
nal String.

• If a match is found, method find returns true, and line 24 calls Matcher method
appendReplacement to replace "an" with "AN". The method’s second argument
calls Matcher method group to get a String representing the set of characters that
matched the regular expression (in this case, "an"). We then convert the match-
ing characters to uppercase. Method appendReplacement then appends to the
StringBuilder in the first argument all of characters up to the match in the orig-
inal String, followed by the replacement specified in the second argument.
Then, the loop-continuation condition attempts to find another match in the
original String, starting from the first character after the preceding match.

• When method find returns false, the loop terminates and line 29 uses Matcher
method appendTail to append the remaining characters of the original String
sentence to the StringBuilder.

At the end of this process for the original String "a man a plan a canal panama", the
StringBuilder contains "a mAN a plAN a cANal pANama".

37.4.2 Methods replaceFirst and replaceAll
Matcher method overloads replaceFirst (line 36) and replaceAll (line 42) replace the
first match or all matches in a String, respectively, using a Function that receives a MatchRe-
sult and returns a replacement String. Lines 36 and 42 implement interface Function with
lambdas that group the matching characters and convert them to uppercase Strings. Lines
34 and 40 call Matcher method reset so that the subsequent calls to replaceFirst and
replaceAll begin searching for matches from the first character in sentence.

37.4.3 Method results
The new Matcher method results (lines 50 and 54) returns a stream of MatchResults.
In lines 47–50, we use the regular expression \w+ to match sequences of word characters
then simply count the matches to determine the number of words in sentence. After re-
setting the Matcher (line 52), lines 54–56 use a stream to map each word to its int number
of characters (via mapToInt), then calculate the average length of each word using Int-
Stream method average.

37.5 New Stream Interface Methods
Java 9 adds several new Stream methods—takeWhile, dropWhile, iterate and ofNullable
(Fig. 37.2). All but ofNullable are also available in the numeric streams like IntStream.

1 // Fig. 37.2: StreamMethods.java
2 // Java 9's new stream methods takeWhile, dropWhile, iterate
3 // and ofNullable.

Fig. 37.2 | Java 9’s new stream methods takeWhile, dropWhile, iterate and ofNullable.
(Part 1 of 3.)

jhtp_37_Java9OtherTopics.FM Page 6 Tuesday, April 11, 2017 1:21 PM

37.5 New Stream Interface Methods 37_7

4 import java.util.stream.Collectors;
5 import java.util.stream.IntStream;
6 import java.util.stream.Stream;
7
8 public class StreamMethods {
9 public static void main(String[] args) {

10 int[] values = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
11
12 System.out.printf("Array values contains: %s%n",
13
14
15);
16
17 // take the largest stream prefix of elements less than 6
18 System.out.println("Demonstrating takeWhile and dropWhile:");
19 System.out.printf("Elements less than 6: %s%n",
20
21
22
23);
24
25 // drop the largest stream prefix of elements less than 6
26 System.out.printf("Elements 6 or greater: %s%n",
27
28
29
30);
31
32 // use iterate to generate stream of powers of 3 less than 10000
33 System.out.printf("%nDemonstrating iterate:%n");
34 System.out.printf("Powers of 3 less than 10,000: %s%n",
35
36
37
38
39 // demonstrating ofNullable
40 System.out.printf("%nDemonstrating ofNullable:%n");
41 System.out.printf("Number of stream elements: %d%n",
42);
43 System.out.printf("Number of stream elements: %d%n",
44);
45 }
46 }

Array values contains: 1 2 3 4 5 6 7 8 9 10
Demonstrating takeWhile and dropWhile:
Elements less than 6: 1 2 3 4 5
Elements 6 or greater: 6 7 8 9 10

Demonstrating iterate:
Powers of 3 less than 10,000: 3 9 27 81 243 729 2187 6561

Fig. 37.2 | Java 9’s new stream methods takeWhile, dropWhile, iterate and ofNullable.
(Part 2 of 3.)

IntStream.of(values)
 .mapToObj(String::valueOf)
 .collect(Collectors.joining(" "))

IntStream.of(values)
 .takeWhile(e -> e < 6)
 .mapToObj(String::valueOf)
 .collect(Collectors.joining(" "))

IntStream.of(values)
 .dropWhile(e -> e < 6)
 .mapToObj(String::valueOf)
 .collect(Collectors.joining(" "))

IntStream.iterate(3, n -> n < 10_000, n -> n * 3)
 .mapToObj(String::valueOf)
 .collect(Collectors.joining(" ")));

Stream.ofNullable(null).count()

Stream.ofNullable("red").count()

jhtp_37_Java9OtherTopics.FM Page 7 Tuesday, April 11, 2017 1:21 PM

37_8 Chapter 37 Additional Java 9 Topics

37.5.1 Stream Methods takeWhile and dropWhile
Lines 19–30 demonstrate methods takeWhile and dropWhile, which based on a Predi-
cate include or omit stream elements, respectively. These methods are meant for use on
ordered streams. Unlike filter, which processes all of the stream’s elements, each of these
new methods process elements only until its Predicate argument becomes false.

The stream pipeline in lines 19–23 takes ints from the beginning of the stream while
each int is less than 6. The predicate returns true only for the first five stream elements—
as soon as the Predicate returns false, the remaining elements of the original stream are
ignored. For the five elements that remain in the stream, we map each to a String and
returns a String containing the elements separated by spaces.

The stream pipeline in lines 26–30 drops ints from the beginning of the stream while
each int is less than 6. The resulting stream contains the elements beginning with the first
one that was 6 or greater. For the elements that remain in the stream, we map each element
to a String and collect the results into a String containing the elements separated by spaces.

37.5.2 Stream Method iterate
In Section 4.8, we showed a while loop that calculated the powers of 3 less than 100. Lines
34–37 show how to use the new overload of Stream method iterate to generate a stream
of ints containing the powers of 3 less than 10,000. The new overload takes as its arguments

• a seed value which becomes the stream’s first element,

• a Predicate that determines when to stop producing elements, and

• a UnaryOperator that’s invoked initially on the seed value, then on each prior val-
ue that iterate produces until the Predicate becomes false.

In this case, the seed value is 3, the Predicate indicates that iterate should continue pro-
ducing elements while the last element produced is less than 10,000, and the UnaryOper-
ator multiplies the prior element’s value by 3 to produce the next element. Then we map

Demonstrating ofNullable:
Number of stream elements: 0
Number of stream elements: 1

Error-Prevention Tip 37.1
Invoke takeWhile and dropWhile only on ordered streams. If these methods are called on
an unordered stream, the stream may return any subset of the matching elements, includ-
ing none at all, thus giving you potentially unexpected results.

Performance Tip 37.1
According to the Stream interface documentation, you may encounter performance issues
for the takeWhile and dropWhile methods on ordered parallel pipelines. For more infor-
mation, see http://download.java.net/java/jdk9/docs/api/java/util/stream/
Stream.html.

Fig. 37.2 | Java 9’s new stream methods takeWhile, dropWhile, iterate and ofNullable.
(Part 3 of 3.)

jhtp_37_Java9OtherTopics.FM Page 8 Tuesday, April 11, 2017 1:21 PM

37.6 Modules in JShell 37_9

each element to a String and collect the results into a String containing the elements sep-
arated by spaces.

37.5.3 Stream Method ofNullable
The new Stream static method ofNullable receives a reference to an object and, if the
reference is not null, returns a one-element stream containing the object; otherwise, it re-
turns an empty stream. Lines 42 and 44 show mechanical examples demonstrating an
empty stream and a one-element stream, respectively.

Method ofNullable typically would be used to ensure that a reference is not null,
before performing operations in a stream pipeline. Consider a company employee data-
base. A program could query the database to locate all the Employees in a given department
and store them as a collection in a Department object referenced by the variable depart-
ment. If the query were performed for a nonexistent department, the reference would be
null. Rather than first checking whether department is null, then performing a task as in

you can instead use code like the following:

Here we assume that class Deparment contains a public method streamEmployees that
returns a stream of Employees. If department is not null, the pipeline would flatMap the
Department object into a stream of Employees for further processing. If department were
null, ofNullable would return an empty stream, so the pipeline would simply terminate.

37.6 Modules in JShell
In Section 25.10, we demonstrated how to add your custom classes to the JShell classpath,
so that you can then interact with them in JShell. Here we show how to do that with the
com.deitel.timelibrary module from Section 36.4. For the purpose of this section,
open a command window and change to the TimeApp folder in the ch36 examples folder,
then start jshell.

Adding a Module to the JShell Session
The /env command can specify the module path and the specific modules that JShell
should load from that path. To add the com.deitel.timelibrary module, execute the
following command:

The -module-path option indicates where the modules you wish to load are located (in
this case the jars folder in the folder from which you executed JShell). The -add-modules
option indicates the specific modules to load (in this case, com.deitel.timelibrary).

if (department != null) {
 // do something
}

Stream.ofNullable(department)
 .flatmap(Department::streamEmployees)
 ... // do something with each Employee

jshell> /env -module-path jars -add-modules com.deitel.timelibrary
| Setting new options and restoring state.

jshell>

jhtp_37_Java9OtherTopics.FM Page 9 Tuesday, April 11, 2017 1:21 PM

37_10 Chapter 37 Additional Java 9 Topics

Importing a Class from a Module’s Exported Package(s)
Once the module is loaded, you may import types from any of the module’s exported
packages. The following command imports the module’s Time1 class:

Using the Imported Class
At this point, you can use class Time1, just as you used other classes in Chapter 25. Create
a Time1 object,

Next, inspect its members with auto-completion by typing "time." and pressing Tab:

View just the members that begin with "to" by typing "to" then pressing Tab:

Finally, type "U" then press Tab to auto-complete toUniversalString(), then press Enter
to invoke the method and assign the 24-hour-clock-format String to an implicitly de-
clared variable:

37.7 JavaFX 9 Skin APIs
In Chapter 22, JavaFX Graphics and Multimedia, we demonstrated how to format JavaFX
objects using Cascading Style Sheets (CSS) technology which was originally developed for
styling the elements in web pages. CSS allows you to specify presentation (e.g., fonts, spac-
ing, sizes, colors, positioning) separately from the GUI’s structure and content (layout con-
tainers, shapes, text, GUI components, etc.). If a JavaFX GUI’s presentation is determined
entirely by a style sheet (which specifies the rules for styling the GUI), you can simply swap
in a new style sheet—sometimes called a theme or a skin—to change the GUI’s appearance.

jshell> import com.deitel.timelibrary.Time1

jshell>

jshell> Time1 time = new Time1()
time ==> 12:00:00 AM

jshell>

jshell> time.
equals(getClass() hashCode()
notify() notifyAll()
setTime(toString() toUniversalString()
wait(

jshell> time.

jshell> time.to
toString() toUniversalString()

jshell> time.to

jshell> time.toUniversalString()
$3 ==> "00:00:00"

jshell>

jhtp_37_Java9OtherTopics.FM Page 10 Tuesday, April 11, 2017 1:21 PM

37.8 Other GUI and Graphics Enhancements 37_11

Each JavaFX control also has a skin class that determines its default appearance and
how the user can interact with the control. In JavaFX 8, these skin classes were defined as
internal APIs, but many developers extended these classes to create custom skins.

As part of Java 9 modularization, JavaFX 9 makes the skin classes public APIs in the
javafx.scene.control.skin package, as described by JEP 253:

The new skin classes are direct or indirect subclasses of class SkinBase (package ja-
vafx.scene.control). You can extend the appropriate skin class to customize the look-
and-feel for a given type of control. You can then specify the fully qualified name of your
skin class for a given control via the JavaFX CSS property -fx-skin.

Generally CSS is the easiest way to control the look of your JavaFX GUIs. For precise
control over every aspect of a control, including the control’s size, position, mouse and key-
board interactions and more, extend SkinBase or one of its many new control-specific sub-
classes in package javafx.scene.control.skin.

37.8 Other GUI and Graphics Enhancements
In addition to the changes mentioned in Section 13.8 and 37.7, JSR 379 includes en-
hanced image support and additional desktop integration features.

37.8.1 Multi-Resolution Images
Apps often display different versions of an image, based on a device’s screen size and reso-
lution. Java 9 adds support for multi-resolution images in which a single image actually
represents a set of images and class Graphics (package java.awt) can choose the appro-
priate resolution to use, based on the device. For more information, visit:

37.8.2 TIFF Image I/O
The Image I/O framework provides APIs for loading and saving images. The framework
supports plug-ins for different image formats, with PNG and JPEG required to be sup-
ported on all Java implementations. As of Java 9, all implementations are also required to
support the TIFF (also called TIF) format—macOS uses TIFF as one of its standard image
formats and various other platforms also support it. For more information on the Image
I/O framework, visit:

For more information on the new TIFF support, visit:

Portability Tip 37.1
Due to strong encapsulation, the JavaFX 8 internal skin APIs are no longer accessible in
Java 9. If you created custom skins based on these pre-Java-9 APIs, your code will no lon-
ger compile in Java 9, and any existing compiled code will not run in the Java 9 JRE.

http://openjdk.java.net/jeps/253

http://openjdk.java.net/jeps/251

https://docs.oracle.com/javase/8/docs/technotes/guides/imageio/

http://openjdk.java.net/jeps/262

jhtp_37_Java9OtherTopics.FM Page 11 Tuesday, April 11, 2017 1:21 PM

37_12 Chapter 37 Additional Java 9 Topics

37.8.3 Platform-Specific Desktop Features
In Java 9, various internal APIs that were used for operating-system-specific desktop inte-
gration—such as interacting with the dock in macOS—are no longer accessible due to the
module system’s strong encapsulation. JEP 272 adds new public APIs to expose this capa-
bility for macOS and to provide similar capabilities for other operating systems (such as
Windows and Linux). Other features that will be provided include

• login/logout and screen lock/unlock event listeners so a Java app can respond to
those events

• getting the user’s attention via the dock or task bar with blinking or bouncing app
icons and

• displaying progress bars in a dock or task bar.

For more information, visit:

37.9 Security Related Java 9 Topics
It’s important for developers to be aware of Java security enhancements. In this section,
we provide brief mentions of a few Java 9 security-related features and where you can learn
more about each.

37.9.1 Filter Incoming Serialization Data
Java’s object serialization mechanism enables programs to create serialized objects—se-
quences of bytes that include each object’s data, as well as information about the object’s
type and the types of the object’s data. After a serialized object has been output, it can be
read into a program and deserialized—that is, the type information and bytes that repre-
sent the object are used to recreate the object in memory.

Deserialization has the potential for security problems. For example, if the bytes being
deserialized are read from a network connection, an attacker could intercept the bytes and
inject invalid data. If you do not validate the data after deserialization, it’s possible that the
object would be in an invalid state that could affect the program’s execution. In addition,
the deserialization mechanism enables any serialized object to be deserialized, provided
that its type definition is available to the runtime. If the object being deserialized contains
an array, an attacker potentially could inject an arbitrarily large number of elements,
potentially using all of the app’s available memory.

JEP 290, Filter Incoming Serialization Data:

is a security enhancement to object serialization that enables programs to add filters that
can restrict which types can be deserialized, validate array lengths and more.

37.9.2 Create PKCS12 Keystores by Default
A keystore maintains security certificates that are used in encryption. Java has used a cus-
tom keystore since Java 1.2 (1998). By default, Java 9 now uses the popular and extensible

http://openjdk.java.net/jeps/272

http://openjdk.java.net/jeps/290

jhtp_37_Java9OtherTopics.FM Page 12 Tuesday, April 11, 2017 1:21 PM

37.10 Other Java 9 Topics 37_13

PKCS12 keystore, which is more secure and will enable Java systems to interoperate with
other systems that support the same standard. For more information, visit:

37.9.3 Datagram Transport Layer Security (DTLS)
Datagrams provide a connectionless mechanism to communicate information over a net-
work. Java 9 adds support for the Datagram Transport Layer Security (DTLS) protocol
which provides secure communication via datagrams. For more information, visit:

37.9.4 OCSP Stapling for TLS
X.509 security certificates are used in public-key cryptography. JEP 249 is a security and
performance enhancement for checking whether an X.509 security certificate is still valid.
For details, visit:

37.9.5 TLS Application-Layer Protocol Negotiation Extension
This is a security enhancement to the javax.net.ssl package to enable applications to
choose from a list of protocols for communicating with one another over a secure connec-
tion. For more details, visit

37.10 Other Java 9 Topics
In this section, we provide brief mentions of various other features of JSR 379. At the time
of this writing during Java 9’s early access stage, only limited documentation was available
to us. So we concentrated on the information from the JSRs and JEPs. In a few cases, we
did not comment on certain new Java 9 features. These include:

• JEP 193: Variable Handles (http://openjdk.java.net/jeps/193),

• JEP 268: XML Catalogs (http://openjdk.java.net/jeps/268) and

• JEP 274: Enhanced Method Handles (http://openjdk.java.net/jeps/274).

37.10.1 Indify String Concatenation
JEP 280, Indify String Concatenation, is a behind-the-scenes enhancement to javac that’s
geared to improving String concatenation performance in the future. The goal is to enable
such performance enhancements to be developed and added to future Java implementa-
tions without having to modify the bytecodes javac produces. For more information, visit:

37.10.2 Platform Logging API and Service
Developers commonly use logging frameworks for tracking information that helps them
with debugging, maintenance and evolution of their systems, analytics, detecting security

http://openjdk.java.net/jeps/229

http://openjdk.java.net/jeps/219

http://openjdk.java.net/jeps/249

http://openjdk.java.net/jeps/244

http://openjdk.java.net/jeps/280

jhtp_37_Java9OtherTopics.FM Page 13 Tuesday, April 11, 2017 1:21 PM

37_14 Chapter 37 Additional Java 9 Topics

breaches and more. JEP 264, Platform Logging API and Service, adds a logging API for
use by platform classes in the java.base module. Developers can then implement a service
provider that routes logging messages to their preferred logging framework. For more in-
formation, visit

37.10.3 Process API Updates
Java 9 includes enhancements to the APIs that enable Java programs to interact with
operating-system-specific processes without having to use platform-specific native code
written in C or C++. Some enhancements include access to a process’s ID, arguments, start
time, total CPU time and name, and terminating and monitoring processes from Java
apps. For more information, visit:

37.10.4 Spin-Wait Hints
Section 23.7 introduced a multithreading technique in which a thread that’s waiting to
aquire a lock on an object uses a loop to determine whether the lock is available and, if
not, waits. Each time the thread is notified to check again, the loop repeats this process
until the lock is acquired. This technique is known as a spin-wait loop. Java 9 adds a new
API that enables such a loop to notify the JVM that it is a spin-wait loop. On some hard-
ware platforms, the JVM can use this information to improve performance and reduce
power consumption (especially crucial for battery-powered mobile devices). For more in-
formation, visit:

37.10.5 UTF-8 Property Resource Bundles
Class ResourceBundle (package java.util) enables programs to load locale-specific in-
formation, such as Strings in different spoken languages. This technique is commonly
used to localize apps for users in different regions. Java 9 upgrades class ResourceBundle
to support resources that are encoded in UTF-8 format (https://en.wikipedia.org/
wiki/UTF-8). For more information, visit:

37.10.6 Use CLDR Locale Data by Default
CLDR—the Unicode Common Locale Data Repository (http://cldr.unicode.org)—
is an extensive repository of locale-specific information that developers can use when
internationalizing their apps. Data in the repository includes information on

• date, time, number and currency formatting

• translations for the names of spoken languages, countries, regions, months, days, etc.

• language-specific information like capitalization, gender rules, sorting rules, etc.

• country information, and more.

http://openjdk.java.net/jeps/264

http://openjdk.java.net/jeps/102

http://openjdk.java.net/jeps/285

http://openjdk.java.net/jeps/226

jhtp_37_Java9OtherTopics.FM Page 14 Tuesday, April 11, 2017 1:21 PM

37.10 Other Java 9 Topics 37_15

CLDR support was included with Java 8, but is now the default in Java 9. For more in-
formation, visit:

37.10.7 Elide Deprecation Warnings on Import Statements
Many company coding guidelines require code to compile without warnings. In JDK 8, if
you imported a deprecated type or statically imported a deprecated member of a type, the
compiler would issue warnings, even if those types or members were never used in your
code. Java allows you to prevent deprecation warnings in your code via the @Suppress-
Warnings annotation, but this cannot be applied to import declarations. For this reason,
it was not possible to prevent certain compile-time warnings. JDK 9 no longer produces
such warnings on import declarations. For more information, visit:

37.10.8 Multi-Release JAR Files
Even with Java 9’s release, many people and organizations will continue using older ver-
sions of Java—some for many years. In one session at the 2016 JavaOne conference, at-
tendees were asked which Java versions they were using. Several developers indicated their
companies were still using versions as old as Java 1.4, which was released more than 15
years ago.

Library vendors often support multiple Java versions. Prior to Java 9, this required
providing separate JAR files specific to each Java version. JDK 9 provides support for
multi-release JAR files—a single JAR may contain multiple versions of the same class that
are geared to different Java verions. In addition, these multi-release JAR files may contain
module descriptors for use with the Java Platform Module System (Chapter 36). For more
information, visit:

37.10.9 Unicode 8
Java 9 supports the latest version of the Unicode Standard (unicode.org)—Unicode 8.
Appropriate changes have been made to classes String and Character, as well as several
other classes dependent on Unicode. For more details, visit:

37.10.10 Concurrency Enhancements
JEP 266, More Concurrency Updates, adds features in three categories:

• Support for reactive streams—a technique for asynchronous stream processing—
via class Flow and its nested interfaces. For a reactive streams overview and links
to various other resources, visit:

• Various improvements that the Java team accumulated since Java 8.

• Additional methods in class CompletableFuture (listed below).

http://openjdk.java.net/jeps/252

http://openjdk.java.net/jeps/211

http://openjdk.java.net/jeps/238

http://openjdk.java.net/jeps/267

 https://en.wikipedia.org/wiki/Reactive_Streams

jhtp_37_Java9OtherTopics.FM Page 15 Tuesday, April 11, 2017 1:21 PM

37_16 Chapter 37 Additional Java 9 Topics

New Methods of Class CompletableFuture
Section 23.14 introduced class CompletableFuture, which enables you to asynchronously
execute Runnables that perform tasks or Suppliers that return values. Java 9 enhances Com-
pletableFuture with the following methods:

• newIncompleteFuture

• defaultExecutor

• copy

• minimalCompletionStage

• completeAsync

• orTimeout

• completeOnTimeout

• delayedExecutor

• completedStage

• failedFuture

• failedStage

For more information on the concurrency enhancements, visit:

and see the online Java 9 documentation for java.util.concurrent (which includes class
CompletableFuture’s methods) and related packages in the java.base module:

37.11 Items Removed from the JDK and Java 9
To help prepare the Java Platform for modularization, Java 9 removed several items from
both the platform and its APIs. These are listed in JSR 379, Sections 8 and 9:

Removed Platform Features
JSR 379 Section 8 lists the platform changes. These include removal of the Java extensions
mechanism. Prior to Java 9, the extensions mechanism allowed you to place a library’s JAR
file in a special JRE folder to make the library available to all Java apps on that computer.
Classes in that folder were guaranteed to load before app-specific classes, so this was some-
times used to upgrade libraries with newer versions. In Java 9, the extensions mechanism
is replaced with upgradeable modules:

Upgradable modules are used primarily for standard technologies that evolve inde-
pendently of the Java SE platform, but are bundled with the platform, such as JAXB—the
Java Architecture for XML Binding. When a new JAXB version is released, its module can

http://openjdk.java.net/jeps/266

http://download.java.net/java/jdk9/docs/api/overview-summary.html

http://cr.openjdk.java.net/~iris/se/9/java-se-9-pr-spec-01/java-se-
9-spec.html

http://openjdk.java.net/projects/jigsaw/goals-reqs/03#upgradeable-
modules

jhtp_37_Java9OtherTopics.FM Page 16 Tuesday, April 11, 2017 1:21 PM

37.12 Items Proposed for Removal from Future Java Versions 37_17

be placed in the java command’s --upgrade-module-path. The runtime will then use the
new version, rather than the earlier version that was bundled with the platform.

Removed Methods
JSR 379 Section 9 lists methods that have been removed from various Java classes to help
modularize the platform. According to the JSR, these methods were infrequently used, but
keeping them would have required placing the packages of the java.desktop module into
the java.base module, resulting in a much larger minimal runtime size. This would not
make sense, because many apps do not require the java.desktop module’s GUI and desk-
top integration capabilities.

37.12 Items Proposed for Removal from Future Java
Versions
The Java Platform has been in use for more than 20 years. Over that time, some APIs have
been deprecated in favor of newer ones—often to fix bugs, to improve security or simply
because an improved API was added that rendered the prior ones obsolete. Yet, many dep-
recated APIs—some from as far back as Java 1.2, which was released in December 1998—
have remained available in every new version of Java, mostly for backward compatibility.

37.12.1 Enhanced Deprecation
JEP 277

adds new features to the @Deprecated annotation that enable developers to provide more
information about deprecated APIs, including whether or not the API is scheduled to be
removed in a future release. These enhanced annotations are now used throughout the
Java 9 APIs and pointed out in the online API documentation to highlight features you
should no longer use and that you should expect to be removed from future versions. For
example, everything in the java.applet package is now deprecated (Section 37.12.4), so
when you view the package’s documentation at

you’ll see deprecation notes in the package’s description and for each type in the package.
In addition, if you use the types in your code, you’ll get warnings at compile time.

37.12.2 Items Likely to Be Removed in Future Java Versions
JSR 379, Section 10 lists the various packages, classes, fields and methods that are likely
to be removed from future Java versions. The JSR indicates that these packages evolve sep-
arately from the Java SE Platform or are part of the Java EE Platform specification. Ac-
cording to the JSR, the classes, fields and methods proposed for removal typically do not
work, are not useful or have been rendered obsolete by newer APIs.

http://openjdk.java.net/jeps/277

http://download.java.net/java/jdk9/docs/api/java/applet/package-
summary.html

jhtp_37_Java9OtherTopics.FM Page 17 Tuesday, April 11, 2017 1:21 PM

37_18 Chapter 37 Additional Java 9 Topics

37.12.3 Finding Deprecated Features
Each page in the online Java API documentation

now includes a DEPRECATED link so you can view the Deprecated API list containing the
deprecated APIs:

When you click a given item, its documentation generally mentions why it was deprecated
and what you should use instead.

37.12.4 Java Applets
As of Java 9 the Java Applet API is deprecated, per JEP 289 (http://openjdk.java.net/
jeps/289). Previously this enabled Java to run in web browsers via a plug-in. Though this
API has not been proposed for removal yet, it could be in a future Java version. Most pop-
ular web browsers removed Java plug-in support due to security issues.

37.13 Wrap-Up
In this chapter, we briefly recapped the Java 9 features covered in earlier chapters, then dis-
cussed various additional Java 9 topics. We presented the fundamentals of Java’s new ver-
sion numbering scheme. We demonstrated the new regular-expression Matcher methods
appendReplacement, appendTail, replaceFirst, replaceAll and results. We also
demonstrated the new Stream methods takeWhile and dropWhile and the new iterate
overload. We discussed the Java 9 JavaFX changes, including the new public skin APIs
and other GUI and graphics enhancements. You saw how to use modules in JShell.

We overviewed the Java 9 security-related changes and various other Java 9 features.
We discussed the capabilities that are no longer available in JDK 9 and Java 9. Finally, we
discussed the packages, classes and methods proposed for removal from future Java ver-
sions.

http://download.java.net/java/jdk9/docs/api/overview-summary.html

http://download.java.net/java/jdk9/docs/api/deprecated-list.html

Error-Prevention Tip 37.2
Avoid using deprecated features in new code. Also, if you maintain or evolve legacy Java
code, you should carefully study the Deprecated API list and consider replacing the listed
items with the alternatives specified in the online Java documentation. This will help en-
sure that your code continues to compile and execute correctly in future Java versions.

jhtp_37_Java9OtherTopics.FM Page 18 Tuesday, April 11, 2017 1:21 PM

