e

. ‘ ég cpphtp10_18.fm Page 1 Wednesday, September 7, 2016 6:58 AM

Introduction to Custom
Templates

Objectives
In this chapter you'll:

m Use class templates to create
groups of related classes.

m Distinguish between class
templates and class-template
specializations.

m See how nontype template
parameters can be used in
place of constants declared
inside a class.

m Learn about default template
arguments.

m Learn about overloading
function templates.

4| ®

‘ @;LE cpphtp10_18.fm Page 2 Wednesday, September 7, 2016 6:58 AM

2 Chapter 18 Introduction to Custom Templates

Self-Review Exercises

18.1 State which of the following are zrue and which are false. If false, explain why.

a) Keywords typename and class as used with a template type parameter specifically mean
“any user-defined class type.”

ANS: False. Keywords typename and class in this context also allow for a type parameter

of a fundamental type.

b) A function template can be overloaded by another function template with the same
function name.

ANS: True.

¢) Template parameter names among template definitions must be unique.

ANS: False. Template parameter names among function templates need not be unique.

d) Each member-function definition outside its corresponding class template definition
must begin with template and the same template parameters as its class template.

ANS: True.

18.2 Fill in the blanks in each of the following:

a) Templates enable us to specify, with a single code segment, an entire range of related
functions called , or an entire range of related classes called

ANS: function-template specializations, class-template specializations.

b) All template definitions begin with the keyword , followed by a list of template
parameters enclosed in .

ANS: template, angle brackets (< and >).

¢) The related functions generated from a function template all have the same name, so
the compiler uses resolution to invoke the proper function.

ANS: overload.

d) Class templates also are called types.

ANS: parameterized.

e) The operator is used with a class-template name to tie each member-function
definition to the class template’s scope.

ANS: scope resolution.

Exercises
NOTE: Solutions to the programming exercises are located in the ch18solutions folder.

18.3 (Operator Overloads in Templates) Write a simple function template for predicate function
isEqualTo that compares its two arguments of the same type with the equality operator (==) and
returns true if they are equal and false otherwise. Use this function template in a program that
calls 1sEqualTo only with a variety of fundamental types. Now write a separate version of the pro-
gram that calls 1sEqualTo with a user-defined class type, but does not overload the equality operator.
What happens when you attempt to run this program? Now overload the equality operator (with
the operator function) operator==. Now what happens when you attempt to run this program?
ANS: If the user-defined class does not overload the equality operator (i.e., comment out
lines 30-33 in the solution below), the compiler would report an error indicating that
the class does not define this operator or a conversion to a type acceptable to the pre-
defined operator. Once the class overloads the equality operator, the program should
run fine.

18.5 Distinguish between the terms “function template” and “function-template specialization.”
ANS: A function template is used to instantiate function-template specializations.

ﬁ%

4| ®

‘ @;LE cpphtpl10_18.fm Page 3 Wednesday, September 7, 2016 6:58 AM

18.6

18.7

18.8

Exercises 3

Explain which is more like a stencil—a class template or a class-template specialization?

ANS: A class template can be viewed as a stencil from which class-template specializations
can be created. A class-template specialization can be viewed as a stencil from which
objects of that class can be created. So, in a way, both can be viewed as stencils.

What's the relationship between function templates and overloading?

ANS: Function templates create function-template specializations—these are overloaded
versions of a function. The main difference is at compile time, where the compiler
automatically creates the code for the template functions from the function template
rather than the programmer having to write the code.

The compiler performs a matching process to determine which function-template special-

ization to call when a function is invoked. Under what circumstances does an attempt to make a
match result in a compile error?

18.9

18.10

18.11

ment

18.12

18.13

ANS: The compiler tries to find a single best match using either an existing function or by
creating a function template specialization. If there is no single best match, the com-
piler generates an error.

Why is it appropriate to refer to a class template as a parameterized type?

ANS: When creating specializations of a class template, it is necessary to provide a type (or
possibly several types) to complete the definition of the new type being declared. For
example, when creating an "array of integers" from an Array class template, the type
int can be provided to the class template to complete the definition of an array of
integers.

Explain why a C++ program would use the statement
Array<Employee> workerList{ };

ANS: When creating class-template specializations from a class template, it is necessary to
provide a type (or possibly several types) to complete the definition of the new type
being declared. For example, when creating an "array of Employees” from an Array
class template, the type Employee is provided to the class template to complete the
definition of an array of EmpTloyees. In this case, the number of EmpTloyees is known
in advance.

Review your answer to Exercise ANS: . Explain why a C++ program might use the state-

Array<Employee> workerList;

ANS: Declares an Array object to store Employees. The default constructor is used. The
number of EmpTloyees is not known in advance.

Explain the use of the following notation in a C++ program:
template<typename T> Array<T>::Array(int s)

ANS: This notation is used to begin the definition of the Array(int) constructor for the
class template Array<T>.

Why might you use a nontype parameter with a class template for a container such as an

array or stack?

ANS: To specify at compile time the size of the container class object being declared.

4| ®

