
18Introduction to Custom
Templates

Behind that outside
pattern the dim shapes
get clearer every day.
It is always the same shape,
only very numerous.
—Charlotte Perkins Gilman

Every man of genius sees the
world at a different angle from
his fellows.
—Havelock Ellis

…our special individuality, as
distinguished from our generic
humanity.
—Oliver Wendell Holmes, Sr.

O b j e c t i v e s
In this chapter you’ll:

■ Use class templates to create
groups of related classes.

■ Distinguish between class
templates and class-template
specializations.

■ Learn about nontype
template parameters.

■ Learn about default template
arguments.

■ Learn about overloading
function templates.

cpphtp9_18_TEMPLATES.fm Page 765 Wednesday, January 2, 2013 8:42 AM

766 Chapter 18 Introduction to Custom Templates

18.1 Introduction
In Chapters 7, 15 and 16, you used many of the Standard Library’s prepackaged templa-
tized containers and algorithms. Function templates (which were introduced in
Chapter 6) and class templates enable you to conveniently specify a variety of related
(overloaded) functions—called function-template specializations—or a variety of related
classes—called class-template specializations, respectively. This is called generic pro-
gramming. Function templates and class templates are like stencils out of which we trace
shapes; function-template specializations and class-template specializations are like the
separate tracings that all have the same shape, but could, for example, be drawn in different
colors and textures.

In this chapter, we demonstrate how to create a custom class template and a function
template that manipulates objects of our class-template specializations. We focus on the
template capabilities you’ll need to build the custom templatized data structures that we
present in Chapter 19.1

18.2 Class Templates
It’s possible to understand the concept of a stack (a data structure into which we insert
items only at the top and retrieve those items only from the top in last-in, first-out order)
independent of the type of the items being placed in the stack. However, to instantiate a stack,
a data type must be specified. This creates a nice opportunity for software reusability—as
you already saw with the stack container adapter in Section 15.7.1. Here, we define a
stack generically then use type-specific versions of this generic stack class.

Class templates are called parameterized types, because they require one or more type
parameters to specify how to customize a generic class template to form a class-template spe-
cialization. To produce many specializations you write only one class-template definition
(as we’ll do shortly). When a particular specialization is needed, you use a concise, simple
notation, and the compiler writes the specialization source code. One Stack class tem-
plate, for example, could thus become the basis for creating many Stack class-template

18.1 Introduction
18.2 Class Templates
18.3 Function Template to Manipulate a

Class-Template Specialization Object
18.4 Nontype Parameters

18.5 Default Arguments for Template
Type Parameters

18.6 Overloading Function Templates
18.7 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. Building custom templates is an advanced topic with many features that are beyond the scope of this
book.

Software Engineering Observation 18.1
Class templates encourage software reusability by enabling a variety of type-specific class-
template specializations to be instantiated from a single class template.

cpphtp9_18_TEMPLATES.fm Page 766 Wednesday, January 2, 2013 8:42 AM

18.2 Class Templates 767

specializations (such as “Stack of doubles,” “Stack of ints,” “Stack of Employees,”
“Stack of Bills,” etc.) used in a program.

Creating Class Template Stack<T>
The Stack class-template definition in Fig. 18.1 looks like a conventional class definition,
with a few key differences. First, it’s preceded by line 7

All class templates begin with keyword template followed by a list of template parameters
enclosed in angle brackets (< and >); each template parameter that represents a type must
be preceded by either of the interchangeable keywords typename or class. The type pa-
rameter T acts as a placeholder for the Stack’s element type. The names of type parameters
must be unique inside a template definition. You need not specifically use identifier T—
any valid identifier can be used. The element type is mentioned generically throughout the
Stack class-template definition as T (lines 12, 18 and 42). The type parameter becomes
associated with a specific type when you create an object using the class template—at that
point, the compiler generates a copy of the class template in which all occurrences of the
type parameter are replaced with the specified type. Another key difference is that we did
not separate the class template’s interface from its implementation.

Common Programming Error 18.1
To create a template specialization with a user-defined type, the user-defined type must
meet the template’s requirements. For example, the template might compare objects of the
user-defined type with < to determine sorting order, or the template might call a specific
member function on an object of the user-defined type. If the user-defined type does not
overload the required operator or provide the required functions, compilation errors occur.

template< typename T >

Software Engineering Observation 18.2
Templates are typically defined in headers, which are then #included in the appropriate
client source-code files. For class templates, this means that the member functions are also
defined in the header—typically inside the class definition’s body, as we do in Fig. 18.1.

1 // Fig. 18.1: Stack.h
2 // Stack class template.
3 #ifndef STACK_H
4 #define STACK_H
5 #include <deque>
6
7
8 class Stack
9 {

10 public:
11 // return the top element of the Stack
12 T& top()
13 {
14 return stack.front();
15 } // end function template top

Fig. 18.1 | Stack class template. (Part 1 of 2.)

template< typename T >

cpphtp9_18_TEMPLATES.fm Page 767 Wednesday, January 2, 2013 8:42 AM

768 Chapter 18 Introduction to Custom Templates

Class Template Stack<T>’s Data Representation
Section 15.7.1 showed that the Standard Library’s stack adapter class can use various con-
tainers to store its elements. Of course, a stack requires insertions and deletions only at its
top. So, for example, a vector or a deque could be used to store the stack’s elements. A
vector supports fast insertions and deletions at its back. A deque supports fast insertions
and deletions at its front and its back. A deque is the default representation for the Standard
Library’s stack adapter because a deque grows more efficiently than a vector. A vector
is maintained as a contiguous block of memory—when that block is full and a new element
is added, the vector allocates a larger contiguous block of memory and copies the old ele-
ments into that new block. A deque, on the other hand, is typically implemented as list of
fixed-size, built-in arrays—new fixed-size built-in arrays are added as necessary and none
of the existing elements are copied when new items are added to the front or back. For
these reasons, we use a deque (line 42) as the underlying container for our Stack class.

Class Template Stack<T>’s Member Functions
The member-function definitions of a class template are function templates, but are not
preceded with the template keyword and template parameters in angle brackets (< and >)
when they’re defined within the class template’s body. As you can see, however, they do

16
17 // push an element onto the Stack
18
19 {
20 stack.push_front(pushValue);
21 } // end function template push
22
23 // pop an element from the stack
24
25 {
26 stack.pop_front();
27 } // end function template pop
28
29 // determine whether Stack is empty
30
31 {
32 return stack.empty();
33 } // end function template isEmpty
34
35 // return size of Stack
36
37 {
38 return stack.size();
39 } // end function template size
40
41 private:
42
43 }; // end class template Stack
44
45 #endif

Fig. 18.1 | Stack class template. (Part 2 of 2.)

void push(const T &pushValue)

void pop()

bool isEmpty() const

size_t size() const

std::deque< T > stack; // internal representation of the Stack

cpphtp9_18_TEMPLATES.fm Page 768 Wednesday, January 2, 2013 8:42 AM

18.2 Class Templates 769

use the class template’s template parameter T to represent the element type. Our Stack
class template does not define it’s own constructors—the default constructor provided by
the compiler will invoke the deque’s default constructor. We also provide the following
member functions in Fig. 18.1:

• top (lines 12–15) returns a reference to the Stack’s top element.

• push (lines 18–21) places a new element on the top of the Stack.

• pop (lines 24–27) removes the Stack’s top element.

• isEmpty (lines 30–33) returns a bool value—true if the Stack is empty and
false otherwise.

• size (lines 36–39) returns the number if elements in the Stack.

Each of these member functions delegates its responsibility to the appropriate member
function of class template deque.

Declaring a Class Template’s Member Functions Outside the Class Template Definition
Though we did not do so in our Stack class template, member-function definitions can
appear outside a class template definition. If you do this, each must begin with the tem-
plate keyword followed by the same set of template parameters as the class template. In
addition, the member functions must be qualified with the class name and scope resolu-
tion operator. For example, you can define the pop function outside the class-template def-
inition as follows:

Stack<T>:: indicates that pop is in the scope of class Stack<T>. The Standard Library’s
container classes tend to define all their member functions inside their class definitions.

Testing Class Template Stack<T>
Now, let’s consider the driver (Fig. 18.2) that exercises the Stack class template. The driv-
er begins by instantiating object doubleStack (line 9). This object is declared as a
Stack<double> (pronounced “Stack of double”). The compiler associates type double
with type parameter T in the class template to produce the source code for a Stack class
with elements of type double that actually stores its elements in a deque<double>.

Lines 16–21 invoke push (line 18) to place the double values 1.1, 2.2, 3.3, 4.4 and
5.5 onto doubleStack. Next, lines 26–30 invoke top and pop in a while loop to remove
the five values from the stack. Notice in the output of Fig. 18.2, that the values do pop off
in last-in, first-out order. When doubleStack is empty, the pop loop terminates.

template< typename T >
inline void Stack<T>::pop()
{
 stack.pop_front();
} // end function template pop

1 // Fig. 18.2: fig18_02.cpp
2 // Stack class template test program.
3 #include <iostream>
4 #include "Stack.h" // Stack class template definition

Fig. 18.2 | Stack class template test program. (Part 1 of 3.)

cpphtp9_18_TEMPLATES.fm Page 769 Wednesday, January 2, 2013 8:42 AM

770 Chapter 18 Introduction to Custom Templates

5 using namespace std;
6
7 int main()
8 {
9 // create a Stack of double

10 const size_t doubleStackSize = 5; // stack size
11 double doubleValue = 1.1; // first value to push
12
13 cout << "Pushing elements onto doubleStack\n";
14
15 // push 5 doubles onto doubleStack
16 for (size_t i = 0; i < doubleStackSize; ++i)
17 {
18 doubleStack.push(doubleValue);
19 cout << doubleValue << ' ';
20 doubleValue += 1.1;
21 } // end while
22
23 cout << "\n\nPopping elements from doubleStack\n";
24
25 // pop elements from doubleStack
26 while (!doubleStack.isEmpty()) // loop while Stack is not empty
27 {
28 cout << doubleStack.top() << ' '; // display top element
29 doubleStack.pop(); // remove top element
30 } // end while
31
32 cout << "\nStack is empty, cannot pop.\n";
33
34 // create a Stack of int
35 const size_t intStackSize = 10; // stack size
36 int intValue = 1; // first value to push
37
38 cout << "\nPushing elements onto intStack\n";
39
40 // push 10 integers onto intStack
41 for (size_t i = 0; i < intStackSize; ++i)
42 {
43 intStack.push(intValue);
44 cout << intValue++ << ' ';
45 } // end while
46
47 cout << "\n\nPopping elements from intStack\n";
48
49 // pop elements from intStack
50 while (!intStack.isEmpty()) // loop while Stack is not empty
51 {
52 cout << intStack.top() << ' '; // display top element
53 intStack.pop(); // remove top element
54 } // end while
55
56 cout << "\nStack is empty, cannot pop." << endl;
57 } // end main

Fig. 18.2 | Stack class template test program. (Part 2 of 3.)

Stack< double > doubleStack;

Stack< int > intStack;

cpphtp9_18_TEMPLATES.fm Page 770 Wednesday, January 2, 2013 8:42 AM

18.3 Function Template to Manipulate a Class-Template Specialization Object 771

Line 34 instantiates int stack intStack with the declaration

(pronounced “intStack is a Stack of int”). Lines 41–45 repeatedly invoke push (line 43)
to place values onto intStack, then lines 50–54 repeatedly invoke top and pop to remove
values from intStack until it’s empty. Once again, notice in the output that the values
pop off in last-in, first-out order.

18.3 Function Template to Manipulate a Class-Template
Specialization Object
Notice that the code in function main of Fig. 18.2 is almost identical for both the double-
Stack manipulations in lines 9–32 and the intStack manipulations in lines 34–56. This
presents another opportunity to use a function template. Figure 18.3 defines function
template testStack (lines 10–39) to perform the same tasks as main in Fig. 18.2—push a
series of values onto a Stack<T> and pop the values off a Stack<T>.

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty, cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty, cannot pop

Stack< int > intStack;

1 // Fig. 18.3: fig18_03.cpp
2 // Passing a Stack template object
3 // to a function template.
4 #include <iostream>
5 #include <string>
6 #include "Stack.h" // Stack class template definition
7 using namespace std;
8
9

10
11
12
13
14
15
16
17 {

Fig. 18.3 | Passing a Stack template object to a function template. (Part 1 of 2.)

Fig. 18.2 | Stack class template test program. (Part 3 of 3.)

// function template to manipulate Stack< T >
template< typename T >
void testStack(
 Stack< T > &theStack, // reference to Stack< T >
 const T &value, // initial value to push
 const T &increment, // increment for subsequent values
 size_t size, // number of items to push
 const string &stackName) // name of the Stack< T > object

cpphtp9_18_TEMPLATES.fm Page 771 Wednesday, January 2, 2013 8:42 AM

772 Chapter 18 Introduction to Custom Templates

Function template testStack uses T (specified at line 10) to represent the data type
stored in the Stack<T>. The function template takes five arguments (lines 12–16):

• the Stack<T> to manipulate

18 cout << "\nPushing elements onto " << stackName << '\n';
19 T pushValue = value;
20
21 // push element onto Stack
22 for (size_t i = 0; i < size; ++i)
23 {
24
25 cout << pushValue << ' ';
26 pushValue += increment;
27 } // end while
28
29 cout << "\n\nPopping elements from " << stackName << '\n';
30
31 // pop elements from Stack
32 while (!theStack.isEmpty()) // loop while Stack is not empty
33 {
34 cout << << ' ';
35
36 } // end while
37
38 cout << "\nStack is empty. Cannot pop." << endl;
39 } // end function template testStack
40
41 int main()
42 {
43 Stack< double > doubleStack;
44 const size_t doubleStackSize = 5;
45
46
47 Stack< int > intStack;
48 const size_t intStackSize = 10;
49
50 } // end main

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty, cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty, cannot pop

Fig. 18.3 | Passing a Stack template object to a function template. (Part 2 of 2.)

theStack.push(pushValue); // push element onto Stack

theStack.top()
theStack.pop(); // remove top element

testStack(doubleStack, 1.1, 1.1, doubleStackSize, "doubleStack");

testStack(intStack, 1, 1, intStackSize, "intStack");

cpphtp9_18_TEMPLATES.fm Page 772 Wednesday, January 2, 2013 8:42 AM

18.4 Nontype Parameters 773

• a value of type T that will be the first value pushed onto the Stack<T>

• a value of type T used to increment the values pushed onto the Stack<T>

• the number of elements to push onto the Stack<T>

• a string that represents the name of the Stack<T> object for output purposes

Function main (lines 41–50) instantiates an object of type Stack<double> called dou-
bleStack (line 43) and an object of type Stack<int> called intStack (line 47) and uses
these objects in lines 45 and 49. The compiler infers the type of T for testStack from the
type used to instantiate the function’s first argument (i.e., the type used to instantiate
doubleStack or intStack).

18.4 Nontype Parameters
Class template Stack of Section 18.2 used only a type parameter (Fig. 18.1, line 7) in its
template declaration. It’s also possible to use nontype template parameters, which can
have default arguments and are treated as constants. For example, the C++ standard’s ar-
ray class template begins with the template declaration:

(Recall that keywords class and typename are interchangeable in template declarations.)
So, a declaration such as

creates a 100-element array of doubles class-template specialization, then uses it to in-
stantiate the object salesFigures. The array class template encapsulates a built-in array.
When you create an array class-template specialization, the array’s built-in array data
member has the type and size specified in the declaration—in the preceding example, it
would be a built-in array of double values with 100 elements.

18.5 Default Arguments for Template Type Parameters
In addition, a type parameter can specify a default type argument. For example, the C++
standard’s stack container adapter class template begins with:

which specifies that a stack uses a deque by default to store the stack’s elements of type
T. The declaration

creates a stack of ints class-template specialization (behind the scenes) and uses it to in-
stantiate the object named values. The stack’s elements are stored in a deque<int>.

Default type parameters must be the rightmost (trailing) parameters in a template’s
type-parameter list. When you instantiate a template with two or more default arguments,
if an omitted argument is not the rightmost, then all type parameters to the right of it also
must be omitted. As of C++11, you can now use default type arguments for template type
parameters in function templates.

template < class T, size_t N >

array< double, 100 > salesFigures;

template < class T, class Container = deque< T > >

stack< int > values;

cpphtp9_18_TEMPLATES.fm Page 773 Wednesday, January 2, 2013 8:42 AM

774 Chapter 18 Introduction to Custom Templates

18.6 Overloading Function Templates
Function templates and overloading are intimately related. In Section 6.19, you learned
that when overloaded functions perform identical operations on different types of data,
they can be expressed more compactly and conveniently using function templates. You can
then write function calls with different types of arguments and let the compiler generate
separate function-template specializations to handle each function call appropriately. The
function-template specializations generated from a given function template all have the
same name, so the compiler uses overload resolution to invoke the proper function.

You may also overload function templates. For example, you can provide other func-
tion templates that specify the same function name but different function parameters. A
function template also can be overloaded by providing nontemplate functions with the
same function name but different function parameters.

Matching Process for Overloaded Functions
The compiler performs a matching process to determine what function to call when a
function is invoked. It looks at both existing functions and function templates to locate a
function or generate a function-template specialization whose function name and argu-
ment types are consistent with those of the function call. If there are no matches, the com-
piler issues an error message. If there are multiple matches for the function call, the
compiler attempts to determine the best match. If there’s more than one best match, the call
is ambiguous and the compiler issues an error message.2

18.7 Wrap-Up
This chapter discussed class templates and class-template specializations. We used a class
template to create a group of related class-template specializations that each perform iden-
tical processing on different data types. We discussed nontype template parameters. We also
discussed how to overload a function template to create a customized version that handles
a particular data type’s processing in a manner that differs from the other function-template
specializations. In the next chapter, we demonstrate how to create your own custom tem-
platized dynamic data structures, including linked lists, stacks, queues and binary trees.

2. The compiler’s process for resolving function calls is complex. The complete details are discussed in
Section 13.3.3 of the C++ standard.

Summary
Section 18.1 Introduction
• Templates enable us to specify a range of related (overloaded) functions—called function-tem-

plate specializations (p. 766)—or a range of related classes—called class-template specializations
(p. 766).

Section 18.2 Class Templates
• Class templates provide the means for describing a class generically and for instantiating classes

that are type-specific versions of this generic class.

cpphtp9_18_TEMPLATES.fm Page 774 Wednesday, January 2, 2013 8:42 AM

 Self-Review Exercises 775

• Class templates are called parameterized types (p. 766); they require type parameters to specify
how to customize a generic class template to form a specific class-template specialization.

• To use class-template specializations you write one class template. When you need a new type-
specific class, the compiler writes the source code for the class-template specialization.

• A class-template definition (p. 766) looks like a conventional class definition, but it’s preceded by
template<typename T> (or template<class T>) to indicate this is a class-template definition. T is a
type parameter that acts as a placeholder for the type of the class to create. The type T is mentioned
throughout the class definition and member-function definitions as a generic type name.

• The names of template parameters must be unique inside a template definition.

• Member-function definitions outside a class template each begin with the same template decla-
ration as their class. Then, each function definition resembles a conventional function definition,
except that the generic data in the class always is listed generically as type parameter T. The binary
scope-resolution operator is used with the class-template name to tie each member-function def-
inition to the class template’s scope.

Section 18.4 Nontype Parameters
• It’s possible to use nontype parameters (p. 773) in a class or function template declaration.

Section 18.5 Default Arguments for Template Type Parameters
• You can specify a default type argument (p. 773) for a type parameter in the type-parameter list.

Section 18.6 Overloading Function Templates
• A function template may be overloaded in several ways. We can provide other function templates

that specify the same function name but different function parameters. A function template can
also be overloaded by providing other nontemplate functions with the same function name, but
different function parameters. If both the template and non-template versions match a call, the
non-template version will be used.

Self-Review Exercises
18.1 State which of the following are true and which are false. If false, explain why.

a) Keywords typename and class as used with a template type parameter specifically mean
“any user-defined class type.”

b) A function template can be overloaded by another function template with the same
function name.

c) Template parameter names among template definitions must be unique.
d) Each member-function definition outside its corresponding class template definition

must begin with template and the same template parameters as its class template.

18.2 Fill in the blanks in each of the following:
a) Templates enable us to specify, with a single code segment, an entire range of related

functions called , or an entire range of related classes called .
b) All template definitions begin with the keyword , followed by a list of template

parameters enclosed in .
c) The related functions generated from a function template all have the same name, so

the compiler uses resolution to invoke the proper function.
d) Class templates also are called types.
e) The operator is used with a class-template name to tie each member-function

definition to the class template’s scope.

cpphtp9_18_TEMPLATES.fm Page 775 Wednesday, January 2, 2013 8:42 AM

776 Chapter 18 Introduction to Custom Templates

Answers to Self-Review Exercises
18.1 a) False. Keywords typename and class in this context also allow for a type parameter of a
fundamental type. b) True. c) False. Template parameter names among function templates need
not be unique. d) True.

18.2 a) function-template specializations, class-template specializations. b) template, angle
brackets (< and >). c) overload. d) parameterized. e) scope resolution.

Exercises
18.3 (Operator Overloads in Templates) Write a simple function template for predicate function
isEqualTo that compares its two arguments of the same type with the equality operator (==) and
returns true if they are equal and false otherwise. Use this function template in a program that
calls isEqualTo only with a variety of fundamental types. Now write a separate version of the pro-
gram that calls isEqualTo with a user-defined class type, but does not overload the equality operator.
What happens when you attempt to run this program? Now overload the equality operator (with
the operator function) operator==. Now what happens when you attempt to run this program?

18.4 (Array Class Template) Reimplement class Array from Figs. 10.10–10.11 as a class tem-
plate. Demonstrate the new Array class template in a program.

18.5 Distinguish between the terms “function template” and “function-template specialization.”

18.6 Explain which is more like a stencil—a class template or a class-template specialization?

18.7 What’s the relationship between function templates and overloading?

18.8 The compiler performs a matching process to determine which function-template special-
ization to call when a function is invoked. Under what circumstances does an attempt to make a
match result in a compile error?

18.9 Why is it appropriate to refer to a class template as a parameterized type?

18.10 Explain why a C++ program would use the statement

Array< Employee > workerList(100);

18.11 Review your answer to Exercise 18.10. Explain why a C++ program might use the statement

Array< Employee > workerList;

18.12 Explain the use of the following notation in a C++ program:

template< typename T > Array< T >::Array(int s)

18.13 Why might you use a nontype parameter with a class template for a container such as an
array or stack?

cpphtp9_18_TEMPLATES.fm Page 776 Wednesday, January 2, 2013 8:42 AM

19Custom Templatized
Data Structures

‘Will you walk a little faster?’
said a whiting to a snail,
‘There’s a porpoise close behind
us, and he’s treading on my tail.’
—Lewis Carroll

There is always room at the top.
—Daniel Webster

Push on—keep moving.
—Thomas Morton

I’ll turn over a new leaf.
—Miguel de Cervantes

O b j e c t i v e s
In this chapter you’ll:

■ Form linked data structures
using pointers, self-referential
classes and recursion.

■ Create and manipulate
dynamic data structures such
as linked lists, queues, stacks
and binary trees.

■ Use binary search trees for
high-speed searching and
sorting.

■ Learn important applications
of linked data structures.

■ Create reusable data
structures with class
templates, inheritance and
composition.

cpphtp9_19_DS.fm Page 777 Wednesday, January 2, 2013 8:57 AM

778 Chapter 19 Custom Templatized Data Structures

19.1 Introduction
We’ve studied fixed-size data structures—such as one- and two-dimensional template-
based arrays (Chapter 7) and built-in arrays (Chapter 8)—and various C++ Standard Li-
brary dynamic data structures (vectors in Chapter 7 and other template-based containers
in Chapter 15) that can grow and shrink during execution.

In this chapter, we demonstrate how you can create your own custom templatized
dynamic data structures. We discuss several popular and important data structures and
implement programs that create and manipulate them:

• Linked lists are collections of data items logically “lined up in a row”—insertions
and removals are made anywhere in a linked list.

• Stacks are important in compilers and operating systems: Insertions and removals
are made only at one end of a stack—its top.

• Queues represent waiting lines; insertions are made at the back (also referred to as
the tail) of a queue and removals are made from the front (also referred to as the
head) of a queue.

• Binary trees facilitate searching and sorting data, duplicate elimination and com-
piling expressions into machine code.

Each of these data structures has many other interesting applications. We use class tem-
plates, inheritance and composition to create and package these data structures for reus-
ability and maintainability. The programs employ extensive pointer manipulation. The
exercises include a rich collection of useful applications.

Always Prefer the Standard Library’s Containers, Iterators and Algorithms, if Possible
The C++ Standard Library’s containers, iterators for traversing those containers and algo-
rithms for processing the containers’ elements meet the needs of most C++ programmers.
The Standard Library code is carefully written to be correct, portable, efficient and exten-
sible. Understanding how to build custom templatized data structures will also help you
use the Standard Library containers, iterators and algorithms, more effectively.

Special Section: Building Your Own Compiler
We encourage you to attempt the optional project described in the Special Section: Build-
ing Your Own Compiler (www.deitel.com/books/cpphtp9). You’ve been using a C++
compiler to translate your programs to machine code so that you can execute these pro-
grams on your computer. In this project, you’ll actually build your own compiler. It will

19.1 Introduction
19.2 Self-Referential Classes
19.3 Linked Lists
19.4 Stacks

19.5 Queues
19.6 Trees
19.7 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Special Section: Building Your Own Compiler

cpphtp9_19_DS.fm Page 778 Wednesday, January 2, 2013 8:57 AM

19.2 Self-Referential Classes 779

read a file of statements written in a simple, yet powerful, high-level language similar to
early versions of BASIC. Your compiler will translate these statements into a file of Sim-
pletron Machine Language (SML) instructions—SML is the language you learned in the
Chapter 8 Special Section: Building Your Own Computer. Your Simpletron Simulator
program will then execute the SML program produced by your compiler! The special sec-
tion discusses the high-level language and the algorithms you’ll need to convert each type
of high-level language statement into machine code. We provide compiler-theory exercises
and in the special section suggest enhancements to both the compiler and the Simpletron
Simulator.

19.2 Self-Referential Classes
A self-referential class contains a member that points to a class object of the same class
type. For example, the definition

defines a type, Node. Type Node has two private data members—integer member data
and pointer member nextPtr. Member nextPtr points to an object of type Node—an ob-
ject of the same type as the one being declared here, hence the term self-referential class.
Member nextPtr is referred to as a link—i.e., nextPtr can “tie” an object of type Node to
another object of the same type. Type Node also has five member functions—a constructor
that receives an integer to initialize member data, a setData function to set the value of
member data, a getData function to return the value of member data, a setNextPtr
function to set the value of member nextPtr and a getNextPtr function to return the val-
ue of member nextPtr.

Self-referential class objects can be linked together to form useful data structures such
as lists, queues, stacks and trees. Figure 19.1 illustrates two self-referential class objects
linked together to form a list. Note that a slash—representing a null pointer (nullptr)—
is placed in the link member of the second self-referential class object to indicate that the
link does not point to another object. The slash is for illustration purposes only; it does not
correspond to the backslash character in C++. A null pointer normally indicates the end of
a data structure.

class Node
{
public:
 explicit Node(int); // constructor
 void setData(int); // set data member
 int getData() const; // get data member
 void setNextPtr(Node *); // set pointer to next Node
 Node *getNextPtr() const; // get pointer to next Node
private:
 int data; // data stored in this Node
 Node *nextPtr; // pointer to another object of same type
}; // end class Node

Common Programming Error 19.1
Not setting the link in the last node of a linked data structure to nullptr is a (possibly
fatal) logic error.

cpphtp9_19_DS.fm Page 779 Wednesday, January 2, 2013 8:57 AM

780 Chapter 19 Custom Templatized Data Structures

The following sections discuss lists, stacks, queues and trees. The data structures pre-
sented in this chapter are created and maintained with dynamic memory allocation
(Section 10.9), self-referential classes, class templates (Chapter 18) and function templates
(Section 6.19).

19.3 Linked Lists
A linked list is a linear collection of self-referential class objects, called nodes, connected by
pointer links—hence, the term “linked” list. A linked list is accessed via a pointer to the
list’s first node. Each subsequent node is accessed via the link-pointer member stored in the
previous node. By convention, the link pointer in the last node of a list is set to nullptr to
mark the end of the list. Data is stored in a linked list dynamically—each node is created
and destroyed as necessary. A node can contain data of any type, including objects of other
classes. If nodes contain base-class pointers to base-class and derived-class objects related by
inheritance, we can have a linked list of such nodes and process them polymorphically using
virtual function calls. Stacks and queues are also linear data structures and, as we’ll see,
can be viewed as constrained versions of linked lists. Trees are nonlinear data structures.

Linked lists provide several advantages over array objects and built-in arrays. A linked
list is appropriate when the number of data elements to be represented at one time is unpre-
dictable. Linked lists are dynamic, so the length of a list can increase or decrease as neces-
sary. The size of an array object or built-in array, however, cannot be altered, because the
array size is fixed at compile time. An array object or built-in array can become full.
Linked lists become full only when the system has insufficient memory to satisfy addi-
tional dynamic storage allocation requests.

Linked lists can be maintained in sorted order by inserting each new element at the
proper point in the list. Existing list elements do not need to be moved. Pointers merely
need to be updated to point to the correct node.

Fig. 19.1 | Two self-referential class objects linked together.

Performance Tip 19.1
An array object or built-in array can be declared to contain more elements than the num-
ber of items expected, but this can waste memory. Linked lists can provide better memory
utilization in these situations. Linked lists allow the program to adapt at runtime. Class
template vector (Section 7.10) implements a dynamically resizable array-based data
structure.

Performance Tip 19.2
Insertion and deletion in a sorted array object or built-in array can be time consuming—
all the elements following the inserted or deleted element must be shifted appropriately. A
linked list allows efficient insertion operations anywhere in the list.

15 10

cpphtp9_19_DS.fm Page 780 Wednesday, January 2, 2013 8:57 AM

19.3 Linked Lists 781

Linked-list nodes typically are not stored contiguously in memory, but logically they
appear to be contiguous. Figure 19.2 illustrates a linked list with several nodes.

Testing Our Linked List Implementation
The program of Figs. 19.3–19.5 uses a List class template to manipulate a list of integer
values and a list of floating-point values. The driver program (Fig. 19.3) has five options:

• insert a value at the beginning of the List

• insert a value at the end of the List

• delete a value from the beginning of the List

• delete a value from the end of the List

• end the List processing

The linked list implementation we present here does not allow insertions and deletions
anywhere in the linked list. We ask you to implement these operations in Exercise 19.26.
Exercise 19.20 asks you to implement a recursive function that prints a linked list back-
ward, and Exercise 19.21 asks you to implement a recursive function that searches a linked
list for a particular data item.

In Fig. 19.3, Lines 69 and 73 create List objects for types int and double, respec-
tively. Lines 70 and 74 invoke the testList function template to manipulate objects.

Performance Tip 19.3
The elements of an array object or built-in array are stored contiguously in memory. This
allows immediate access to any element, because an element’s address can be calculated
directly based on its position relative to the beginning of the array object or built-in array.
Linked lists do not afford such immediate direct access to their elements, so accessing in-
dividual elements can be considerably more expensive. The selection of a data structure is
typically based on the performance of specific operations used by a program and the order
in which the data items are maintained in the data structure. For example, if you have a
pointer to the insertion location, it’s typically more efficient to insert an item in a sorted
linked list than a sorted array object or built-in array.

Fig. 19.2 | A graphical representation of a list.

Performance Tip 19.4
Using dynamic memory allocation for data structures that grow and shrink at execution
time can save memory.

H D Q

firstPtr lastPtr

...

cpphtp9_19_DS.fm Page 781 Wednesday, January 2, 2013 8:57 AM

782 Chapter 19 Custom Templatized Data Structures

1 // Fig. 19.3: fig19_03.cpp
2 // Manipulating a linked list.
3 #include <iostream>
4 #include <string>
5 #include "List.h" // List class definition
6 using namespace std;
7
8 // display program instructions to user
9 void instructions()

10 {
11 cout << "Enter one of the following:\n"
12 << " 1 to insert at beginning of list\n"
13 << " 2 to insert at end of list\n"
14 << " 3 to delete from beginning of list\n"
15 << " 4 to delete from end of list\n"
16 << " 5 to end list processing\n";
17 } // end function instructions
18
19 // function to test a List
20 template< typename T >
21 void testList(, const string &typeName)
22 {
23 cout << "Testing a List of " << typeName << " values\n";
24 instructions(); // display instructions
25
26 int choice; // store user choice
27 T value; // store input value
28
29 do // perform user-selected actions
30 {
31 cout << "? ";
32 cin >> choice;
33
34 switch (choice)
35 {
36 case 1: // insert at beginning
37 cout << "Enter " << typeName << ": ";
38 cin >> value;
39
40
41 break;
42 case 2: // insert at end
43 cout << "Enter " << typeName << ": ";
44 cin >> value;
45
46
47 break;
48 case 3: // remove from beginning
49 if ()
50 cout << value << " removed from list\n";
51
52
53 break;

Fig. 19.3 | Manipulating a linked list. (Part 1 of 3.)

List< T > &listObject

listObject.insertAtFront(value);
listObject.print();

listObject.insertAtBack(value);
listObject.print();

listObject.removeFromFront(value)

listObject.print();

cpphtp9_19_DS.fm Page 782 Wednesday, January 2, 2013 8:57 AM

19.3 Linked Lists 783

54 case 4: // remove from end
55 if ()
56 cout << value << " removed from list\n";
57
58
59 break;
60 } // end switch
61 } while (choice < 5); // end do...while
62
63 cout << "End list test\n\n";
64 } // end function testList
65
66 int main()
67 {
68 // test List of int values
69
70 testList(integerList, "integer");
71
72 // test List of double values
73
74 testList(doubleList, "double");
75 } // end main

Testing a List of integer values
Enter one of the following:
 1 to insert at beginning of list
 2 to insert at end of list
 3 to delete from beginning of list
 4 to delete from end of list
 5 to end list processing
? 1
Enter integer: 1
The list is: 1

? 1
Enter integer: 2
The list is: 2 1

? 2
Enter integer: 3
The list is: 2 1 3

? 2
Enter integer: 4
The list is: 2 1 3 4

? 3
2 removed from list
The list is: 1 3 4

? 3
1 removed from list
The list is: 3 4

? 4
4 removed from list
The list is: 3

Fig. 19.3 | Manipulating a linked list. (Part 2 of 3.)

listObject.removeFromBack(value)

listObject.print();

List< int > integerList;

List< double > doubleList;

cpphtp9_19_DS.fm Page 783 Wednesday, January 2, 2013 8:57 AM

784 Chapter 19 Custom Templatized Data Structures

Class Template ListNode
Figure 19.3 uses class templates ListNode (Fig. 19.4) and List (Fig. 19.5). Encapsulated in
each List object is a linked list of ListNode objects. Class template ListNode (Fig. 19.4)
contains private members data and nextPtr (lines 27–28), a constructor (lines 16–20) to
initialize these members and function getData (lines 22–25) to return the data in a node.
Member data stores a value of type NODETYPE, the type parameter passed to the class tem-

? 4
3 removed from list
The list is empty

? 5
End list test

Testing a List of double values
Enter one of the following:
 1 to insert at beginning of list
 2 to insert at end of list
 3 to delete from beginning of list
 4 to delete from end of list
 5 to end list processing
? 1
Enter double: 1.1
The list is: 1.1

? 1
Enter double: 2.2
The list is: 2.2 1.1

? 2
Enter double: 3.3
The list is: 2.2 1.1 3.3

? 2
Enter double: 4.4
The list is: 2.2 1.1 3.3 4.4

? 3
2.2 removed from list
The list is: 1.1 3.3 4.4

? 3
1.1 removed from list
The list is: 3.3 4.4

? 4
4.4 removed from list
The list is: 3.3

? 4
3.3 removed from list
The list is empty

? 5
End list test

All nodes destroyed

All nodes destroyed

Fig. 19.3 | Manipulating a linked list. (Part 3 of 3.)

cpphtp9_19_DS.fm Page 784 Wednesday, January 2, 2013 8:57 AM

19.3 Linked Lists 785

plate. Member nextPtr stores a pointer to the next ListNode object in the linked list. Line
13 of the ListNode class template definition declares class List<NODETYPE> as a friend. This
makes all member functions of a given specialization of class template List friends of the cor-
responding specialization of class template ListNode, so they can access the private mem-
bers of ListNode objects of that type. We do this for performance and because these two
classes are tightly coupled—only class template List manipulates objects of class template
ListNode. Because the ListNode template parameter NODETYPE is used as the template argu-
ment for List in the friend declaration, ListNodes specialized with a particular type can be
processed only by a List specialized with the same type (e.g., a List of int values manages
ListNode objects that store int values). To use the type name List<NODETYPE> in line 13,
the compiler needs to know that class template List exists. Line 8 is a so-called forward dec-
laration of class template List. A forward declaration tells the compiler that a type exists,
even if it has not yet been defined.

Error-Prevention Tip 19.1
Assign nullptr to the link member of a new node. Pointers must be initialized before
they’re used.

1 // Fig. 19.4: ListNode.h
2 // ListNode class-template definition.
3 #ifndef LISTNODE_H
4 #define LISTNODE_H
5
6
7
8
9

10 template< typename NODETYPE >
11 class ListNode
12 {
13
14
15 public:
16 explicit ListNode(const NODETYPE &info) // constructor
17 : data(info), nextPtr(nullptr)
18 {
19 // empty body
20 } // end ListNode constructor
21
22 NODETYPE getData() const; // return data in node
23 {
24 return data;
25 } // end function getData
26 private:
27 NODETYPE data; // data
28
29 }; // end class ListNode
30
31 #endif

Fig. 19.4 | ListNode class-template definition.

// forward declaration of class List required to announce that class
// List exists so it can be used in the friend declaration at line 13
template< typename NODETYPE > class List;

friend class List< NODETYPE >; // make List a friend

ListNode< NODETYPE > *nextPtr; // next node in list

cpphtp9_19_DS.fm Page 785 Wednesday, January 2, 2013 8:57 AM

786 Chapter 19 Custom Templatized Data Structures

Class Template List
Lines 148–149 of the List class template (Fig. 19.5) declare private data members first-
Ptr and lastPtr—pointers to the List’s first and last ListNodes. The default constructor
(lines 14–18) initializes both pointers to nullptr. The destructor (lines 21–40) destroys all
of the List’s ListNode objects when the List is destroyed. The primary List functions are
insertAtFront (lines 43–54), insertAtBack (lines 57–68), removeFromFront (lines 71–88)
and removeFromBack (lines 91–117). We discuss each of these after Fig. 19.5.

Function isEmpty (lines 120–123) is called a predicate function—it does not alter the
List; rather, it determines whether the List is empty. If so, true is returned; otherwise,
false is returned. Function print (lines 126–145) displays the List’s contents. Utility
function getNewNode (lines 152–155) returns a dynamically allocated ListNode object.
This function is called from functions insertAtFront and insertAtBack.

1 // Fig. 19.5: List.h
2 // List class-template definition.
3 #ifndef LIST_H
4 #define LIST_H
5
6 #include <iostream>
7 #include "ListNode.h" // ListNode class definition
8
9 template< typename NODETYPE >

10 class List
11 {
12 public:
13 // default constructor
14
15 : firstPtr(nullptr), lastPtr(nullptr)
16 {
17 // empty body
18 } // end List constructor
19
20 // destructor
21
22 {
23 if (!isEmpty()) // List is not empty
24 {
25 std::cout << "Destroying nodes ...\n";
26
27 ListNode< NODETYPE > *currentPtr = firstPtr;
28 ListNode< NODETYPE > *tempPtr = nullptr;
29
30 while (currentPtr != nullptr) // delete remaining nodes
31 {
32 tempPtr = currentPtr;
33 std::cout << tempPtr->data << '\n';
34 currentPtr = currentPtr->nextPtr;
35 delete tempPtr;
36 } // end while
37 } // end if

Fig. 19.5 | List class-template definition. (Part 1 of 4.)

List()

~List()

cpphtp9_19_DS.fm Page 786 Wednesday, January 2, 2013 8:57 AM

19.3 Linked Lists 787

38
39 std::cout << "All nodes destroyed\n\n";
40 } // end List destructor
41
42 // insert node at front of list
43
44 {
45 ListNode< NODETYPE > *newPtr = getNewNode(value); // new node
46
47 if (isEmpty()) // List is empty
48 firstPtr = lastPtr = newPtr; // new list has only one node
49 else // List is not empty
50 {
51 newPtr->nextPtr = firstPtr; // point new node to old 1st node
52 firstPtr = newPtr; // aim firstPtr at new node
53 } // end else
54 } // end function insertAtFront
55
56 // insert node at back of list
57
58 {
59 ListNode< NODETYPE > *newPtr = getNewNode(value); // new node
60
61 if (isEmpty()) // List is empty
62 firstPtr = lastPtr = newPtr; // new list has only one node
63 else // List is not empty
64 {
65 lastPtr->nextPtr = newPtr; // update previous last node
66 lastPtr = newPtr; // new last node
67 } // end else
68 } // end function insertAtBack
69
70 // delete node from front of list
71
72 {
73 if (isEmpty()) // List is empty
74 return false; // delete unsuccessful
75 else
76 {
77 ListNode< NODETYPE > *tempPtr = firstPtr; // hold item to delete
78
79 if (firstPtr == lastPtr)
80 firstPtr = lastPtr = nullptr; // no nodes remain after removal
81 else
82 firstPtr = firstPtr->nextPtr; // point to previous 2nd node
83
84 value = tempPtr->data; // return data being removed
85 delete tempPtr; // reclaim previous front node
86 return true; // delete successful
87 } // end else
88 } // end function removeFromFront
89

Fig. 19.5 | List class-template definition. (Part 2 of 4.)

void insertAtFront(const NODETYPE &value)

void insertAtBack(const NODETYPE &value)

bool removeFromFront(NODETYPE &value)

cpphtp9_19_DS.fm Page 787 Wednesday, January 2, 2013 8:57 AM

788 Chapter 19 Custom Templatized Data Structures

90 // delete node from back of list
91
92 {
93 if (isEmpty()) // List is empty
94 return false; // delete unsuccessful
95 else
96 {
97 ListNode< NODETYPE > *tempPtr = lastPtr; // hold item to delete
98
99 if (firstPtr == lastPtr) // List has one element
100 firstPtr = lastPtr = nullptr; // no nodes remain after removal
101 else
102 {
103 ListNode< NODETYPE > *currentPtr = firstPtr;
104
105 // locate second-to-last element
106 while (currentPtr->nextPtr != lastPtr)
107 currentPtr = currentPtr->nextPtr; // move to next node
108
109 lastPtr = currentPtr; // remove last node
110 currentPtr->nextPtr = nullptr; // this is now the last node
111 } // end else
112
113 value = tempPtr->data; // return value from old last node
114 delete tempPtr; // reclaim former last node
115 return true; // delete successful
116 } // end else
117 } // end function removeFromBack
118
119 // is List empty?
120
121 {
122 return firstPtr == nullptr;
123 } // end function isEmpty
124
125 // display contents of List
126
127 {
128 if (isEmpty()) // List is empty
129 {
130 std::cout << "The list is empty\n\n";
131 return;
132 } // end if
133
134 ListNode< NODETYPE > *currentPtr = firstPtr;
135
136 std::cout << "The list is: ";
137
138 while (currentPtr != nullptr) // get element data
139 {
140 std::cout << currentPtr->data << ' ';
141 currentPtr = currentPtr->nextPtr;
142 } // end while

Fig. 19.5 | List class-template definition. (Part 3 of 4.)

bool removeFromBack(NODETYPE &value)

bool isEmpty() const

void print() const

cpphtp9_19_DS.fm Page 788 Wednesday, January 2, 2013 8:57 AM

19.3 Linked Lists 789

Member Function insertAtFront
Over the next several pages, we discuss each of the member functions of class List in de-
tail. Function insertAtFront (Fig. 19.5, lines 43–54) places a new node at the front of
the list. The function consists of several steps:

1. Call function getNewNode (line 45), passing it value, which is a constant refer-
ence to the node value to be inserted.

2. Function getNewNode (lines 152–155) uses operator new to create a new list node
and return a pointer to this newly allocated node, which is assigned to newPtr in
insertAtFront (line 45).

3. If the list is empty (line 47), firstPtr and lastPtr are set to newPtr (line 48)—
i.e., the first and last node are the same node.

4. If the list is not empty (line 49), then the node pointed to by newPtr is threaded
into the list by copying firstPtr to newPtr->nextPtr (line 51), so that the new
node points to what used to be the first node of the list, and copying newPtr to
firstPtr (line 52), so that firstPtr now points to the new first node of the list.

Figure 19.6 illustrates function insertAtFront. Part (a) shows the list and the new
node before calling insertAtFront. The dashed arrows in part (b) illustrate Step 4 of the
insertAtFront operation that enables the node containing 12 to become the new list front.

Member Function insertAtBack
Function insertAtBack (Fig. 19.5, lines 57–68) places a new node at the back of the list.
The function consists of several steps:

1. Call function getNewNode (line 59), passing it value, which is a constant refer-
ence to the node value to be inserted.

2. Function getNewNode (lines 152–155) uses operator new to create a new list node
and return a pointer to this newly allocated node, which is assigned to newPtr in
insertAtBack (line 59).

143
144 std::cout << "\n\n";
145 } // end function print
146
147 private:
148
149
150
151 // utility function to allocate new node
152
153 {
154 return new ListNode< NODETYPE >(value);
155 } // end function getNewNode
156 }; // end class List
157
158 #endif

Fig. 19.5 | List class-template definition. (Part 4 of 4.)

ListNode< NODETYPE > *firstPtr; // pointer to first node
ListNode< NODETYPE > *lastPtr; // pointer to last node

ListNode< NODETYPE > *getNewNode(const NODETYPE &value)

cpphtp9_19_DS.fm Page 789 Wednesday, January 2, 2013 8:57 AM

790 Chapter 19 Custom Templatized Data Structures

3. If the list is empty (line 61), then both firstPtr and lastPtr are set to newPtr
(line 62).

4. If the list is not empty (line 63), then the node pointed to by newPtr is threaded
into the list by copying newPtr into lastPtr->nextPtr (line 65), so that the new
node is pointed to by what used to be the last node of the list, and copying newPtr
to lastPtr (line 66), so that lastPtr now points to the new last node of the list.

Figure 19.7 illustrates an insertAtBack operation. Part (a) of the figure shows the list
and the new node before the operation. The dashed arrows in part (b) illustrate Step 4 of
function insertAtBack that enables a new node to be added to the end of a list that’s not
empty.

Fig. 19.6 | Operation insertAtFront represented graphically.

Fig. 19.7 | Operation insertAtBack represented graphically.

7 11

firstPtr(a)

(b)

12

newPtr

7 11

firstPtr

12

newPtr

12 7 11 5

lastPtr newPtr

12 7 11 5

lastPtr newPtr

(a) firstNode

(b) firstNode

cpphtp9_19_DS.fm Page 790 Wednesday, January 2, 2013 8:57 AM

19.3 Linked Lists 791

Member Function removeFromFront
Function removeFromFront (Fig. 19.5, lines 71–88) removes the front node of the list and
copies the node value to the reference parameter. The function returns false if an attempt
is made to remove a node from an empty list (lines 73–74) and returns true if the removal
is successful. The function consists of several steps:

1. Assign tempPtr the address to which firstPtr points (line 77). Eventually,
tempPtr will be used to delete the node being removed.

2. If firstPtr is equal to lastPtr (line 79), i.e., if the list has only one element pri-
or to the removal attempt, then set firstPtr and lastPtr to nullptr (line 80)
to dethread that node from the list (leaving the list empty).

3. If the list has more than one node prior to removal, then leave lastPtr as is and
set firstPtr to firstPtr->nextPtr (line 82); i.e., modify firstPtr to point to
what was the second node prior to removal (and is now the new first node).

4. After all these pointer manipulations are complete, copy to reference parameter
value the data member of the node being removed (line 84).

5. Now delete the node pointed to by tempPtr (line 85).

6. Return true, indicating successful removal (line 86).

Figure 19.8 illustrates function removeFromFront. Part (a) illustrates the list before
the removal operation. Part (b) shows the actual pointer manipulations for removing the
front node from a nonempty list.

Fig. 19.8 | Operation removeFromFront represented graphically.

12 7 11 5

(a) firstPtr lastPtr

12 7 11 5

(b) firstPtr

tempPtr

lastPtr

cpphtp9_19_DS.fm Page 791 Wednesday, January 2, 2013 8:57 AM

792 Chapter 19 Custom Templatized Data Structures

Member Function removeFromBack
Function removeFromBack (Fig. 19.5, lines 91–117) removes the back node of the list and
copies the node value to the reference parameter. The function returns false if an attempt
is made to remove a node from an empty list (lines 93–94) and returns true if the removal
is successful. The function consists of several steps:

1. Assign to tempPtr the address to which lastPtr points (line 97). Eventually,
tempPtr will be used to delete the node being removed.

2. If firstPtr is equal to lastPtr (line 99), i.e., if the list has only one element pri-
or to the removal attempt, then set firstPtr and lastPtr to nullptr (line 100)
to dethread that node from the list (leaving the list empty).

3. If the list has more than one node prior to removal, then assign currentPtr the
address to which firstPtr points (line 103) to prepare to “walk the list.”

4. Now “walk the list” with currentPtr until it points to the node before the last
node. This node will become the last node after the remove operation completes.
This is done with a while loop (lines 106–107) that keeps replacing currentPtr
by currentPtr->nextPtr, while currentPtr->nextPtr is not lastPtr.

5. Assign lastPtr to the address to which currentPtr points (line 109) to dethread
the back node from the list.

6. Set currentPtr->nextPtr to nullptr (line 110) in the new last node of the list.

7. After all the pointer manipulations are complete, copy to reference parameter
value the data member of the node being removed (line 113).

8. Now delete the node pointed to by tempPtr (line 114).

9. Return true (line 115), indicating successful removal.

Figure 19.9 illustrates removeFromBack. Part (a) of the figure illustrates the list before
the removal operation. Part (b) of the figure shows the actual pointer manipulations.

Member Function print
Function print (lines 126–145) first determines whether the list is empty (line 128). If so,
it prints "The list is empty" and returns (lines 130–131). Otherwise, it iterates through
the list and outputs the value in each node. The function initializes currentPtr as a copy
of firstPtr (line 134), then prints the string "The list is: " (line 136). While current-
Ptr is not nullptr (line 138), currentPtr->data is printed (line 140) and currentPtr is
assigned the value of currentPtr->nextPtr (line 141). Note that if the link in the last
node of the list does not have the value nullptr, the printing algorithm will erroneously
attempt to print past the end of the list. Our printing algorithm here is identical for linked
lists, stacks and queues (because we base each of these data structures on the same linked
list infrastructure).

Circular Linked Lists and Double Linked Lists
The kind of linked list we’ve been discussing is a singly linked list—the list begins with a
pointer to the first node, and each node contains a pointer to the next node “in sequence.”
This list terminates with a node whose pointer member has the value nullptr. A singly
linked list may be traversed in only one direction.

cpphtp9_19_DS.fm Page 792 Wednesday, January 2, 2013 8:57 AM

19.3 Linked Lists 793

A circular, singly linked list (Fig. 19.10) begins with a pointer to the first node, and
each node contains a pointer to the next node. The “last node” does not contain nullptr;
rather, the pointer in the last node points back to the first node, thus closing the “circle.”

A doubly linked list (Fig. 19.11)—such as the Standard Library list class tem-
plate—allows traversals both forward and backward. Such a list is often implemented with
two “start pointers”—one that points to the first element of the list to allow front-to-back
traversal of the list and one that points to the last element to allow back-to-front traversal.
Each node has both a forward pointer to the next node in the list in the forward direction
and a backward pointer to the next node in the list in the backward direction. If your list
contains an alphabetized telephone directory, for example, a search for someone whose
name begins with a letter near the front of the alphabet might best begin from the front
of the list. Searching for someone whose name begins with a letter near the end of the
alphabet might best begin from the back of the list.

Fig. 19.9 | Operation removeFromBack represented graphically.

Fig. 19.10 | Circular, singly linked list.

currentPtr

12 7 11 5

lastPtr

12 7 11 5

tempPtr

currentPtr lastPtr

(a) firstNode

(b) firstNode

12 7 11 5

firstPtr

cpphtp9_19_DS.fm Page 793 Wednesday, January 2, 2013 8:57 AM

794 Chapter 19 Custom Templatized Data Structures

In a circular, doubly linked list (Fig. 19.12), the forward pointer of the last node
points to the first node, and the backward pointer of the first node points to the last node,
thus closing the “circle.”

19.4 Stacks
You learned the notion of a stack in Section 6.12, Section 15.7.1, stack Adapter and
Section 18.2. Recall that a nodes can be added to a stack and removed from a stack only
at its top, so a stack is referred to as a last-in, first-out (LIFO) data structure. One way to
implement a stack is as a constrained version of a linked list. In such an implementation,
the link member in the last node of the stack is set to nullptr to indicate the bottom of
the stack.

The primary member functions used to manipulate a stack are push and pop. Func-
tion push inserts a new node at the top of the stack. Function pop removes a node from the
top of the stack, stores the popped value in a reference variable that’s passed to the calling
function and returns true if the pop operation was successful (false otherwise).

Applications of Stacks
Stacks have many interesting applications:

• In Section 6.12, you learned that when a function call is made, the called func-
tion must know how to return to its caller, so the return address is pushed onto
a stack. If a series of function calls occurs, the successive return values are pushed
onto the stack in last-in, first-out order, so that each function can return to its

Fig. 19.11 | Doubly linked list.

Fig. 19.12 | Circular, doubly linked list.

12 7 11 5

firstPtr lastPtr

12 7 11 5

firstPtr lastPtr

cpphtp9_19_DS.fm Page 794 Wednesday, January 2, 2013 8:57 AM

19.4 Stacks 795

caller. Stacks support recursive function calls in the same manner as conventional
nonrecursive calls.

• Stacks provide the memory for, and store the values of, automatic variables on
each invocation of a function. When the function returns to its caller or throws
an exception, the destructor (if any) for each local object is called, the space for
that function’s automatic variables is popped off the stack and those variables are
no longer known to the program.

• Stacks are used by compilers in the process of evaluating expressions and gener-
ating machine-language code. The exercises explore several applications of stacks,
including using them to develop your own complete working compiler.

Taking Advantage of the Relationship Between Stack and List
We’ll take advantage of the close relationship between lists and stacks to implement a stack
class primarily by reusing our List class template. First, we’ll implement the Stack class
template via private inheritance from our List class template. Then we’ll implement an
identically performing Stack class template through composition by including a List ob-
ject as a private member of a Stack class template.

Implementing a Class Template Stack Class Based By Inheriting from List
The program of Figs. 19.13–19.14 creates a Stack class template (Fig. 19.13) primarily
through private inheritance (line 9) of the List class template of Fig. 19.5. We want the
Stack to have member functions push (lines 13–16), pop (lines 19–22), isStackEmpty
(lines 25–28) and printStack (lines 31–34). Note that these are essentially the insertAt-
Front, removeFromFront, isEmpty and print functions of the List class template. Of
course, the List class template contains other member functions (i.e., insertAtBack and
removeFromBack) that we would not want to make accessible through the public interface
to the Stack class. So when we indicate that the Stack class template is to inherit from the
List class template, we specify private inheritance. This makes all the List class tem-
plate’s member functions private in the Stack class template. When we implement the
Stack’s member functions, we then have each of these call the appropriate member func-
tion of the List class—push calls insertAtFront (line 15), pop calls removeFromFront
(line 21), isStackEmpty calls isEmpty (line 27) and printStack calls print (line 33)—
this is referred to as delegation.

1 // Fig. 19.13: Stack.h
2 // Stack class-template definition.
3 #ifndef STACK_H
4 #define STACK_H
5
6
7
8 template< typename STACKTYPE >
9 class Stack :

10 {

Fig. 19.13 | Stack class-template definition. (Part 1 of 2.)

#include "List.h" // List class definition

private List< STACKTYPE >

cpphtp9_19_DS.fm Page 795 Wednesday, January 2, 2013 8:57 AM

796 Chapter 19 Custom Templatized Data Structures

Dependent Names in Class Templates
The explicit use of this on lines 27 and 33 is required so the compiler can properly resolve
identifiers in template definitions. A dependent name is an identifier that depends on a
template parameter. For example, the call to removeFromFront (line 21) depends on the
argument data which has a type that’s dependent on the template parameter STACKTYPE.
Resolution of dependent names occurs when the template is instantiated. In contrast, the
identifier for a function that takes no arguments like isEmpty or print in the List super-
class is a non-dependent name. Such identifiers are normally resolved at the point where
the template is defined. If the template has not yet been instantiated, then the code for the
function with the non-dependent name does not yet exist and some compilers will generate
compilation errors. Adding the explicit use of this-> in lines 27 and 33 makes the calls to
the base class’s member functions dependent on the template parameter and ensures that
the code will compile properly.

Testing the Stack Class Template
The stack class template is used in main (Fig. 19.14) to instantiate integer stack intStack
of type Stack< int > (line 9). Integers 0 through 2 are pushed onto intStack (lines 14–
18), then popped off intStack (lines 23–28). The program uses the Stack class template
to create doubleStack of type Stack< double > (line 30). Values 1.1, 2.2 and 3.3 are
pushed onto doubleStack (lines 36–41), then popped off doubleStack (lines 46–51).

11 public:
12 // push calls the List function insertAtFront
13 void push(const STACKTYPE &data)
14 {
15
16 } // end function push
17
18 // pop calls the List function removeFromFront
19 bool pop(STACKTYPE &data)
20 {
21
22 } // end function pop
23
24 // isStackEmpty calls the List function isEmpty
25 bool isStackEmpty() const
26 {
27
28 } // end function isStackEmpty
29
30 // printStack calls the List function print
31 void printStack() const
32 {
33
34 } // end function print
35 }; // end class Stack
36
37 #endif

Fig. 19.13 | Stack class-template definition. (Part 2 of 2.)

insertAtFront(data);

return removeFromFront(data);

return this->isEmpty();

this->print();

cpphtp9_19_DS.fm Page 796 Wednesday, January 2, 2013 8:57 AM

19.4 Stacks 797

1 // Fig. 19.14: fig19_14.cpp
2 // A simple stack program.
3 #include <iostream>
4 #include "Stack.h" // Stack class definition
5 using namespace std;
6
7 int main()
8 {
9 Stack< int > intStack; // create Stack of ints

10
11 cout << "processing an integer Stack" << endl;
12
13 // push integers onto intStack
14 for (int i = 0; i < 3; ++i)
15 {
16
17
18 } // end for
19
20 int popInteger; // store int popped from stack
21
22 // pop integers from intStack
23 while ()
24 {
25
26 cout << popInteger << " popped from stack" << endl;
27
28 } // end while
29
30
31 double value = 1.1;
32
33 cout << "processing a double Stack" << endl;
34
35 // push floating-point values onto doubleStack
36 for (int j = 0; j < 3; ++j)
37 {
38
39
40 value += 1.1;
41 } // end for
42
43 double popDouble; // store double popped from stack
44
45 // pop floating-point values from doubleStack
46 while ()
47 {
48
49 cout << popDouble << " popped from stack" << endl;
50
51 } // end while
52 } // end main

Fig. 19.14 | A simple stack program. (Part 1 of 2.)

intStack.push(i);
intStack.printStack();

!intStack.isStackEmpty()

intStack.pop(popInteger);

intStack.printStack();

Stack< double > doubleStack; // create Stack of doubles

doubleStack.push(value);
doubleStack.printStack();

!doubleStack.isStackEmpty()

doubleStack.pop(popDouble);

doubleStack.printStack();

cpphtp9_19_DS.fm Page 797 Wednesday, January 2, 2013 8:57 AM

798 Chapter 19 Custom Templatized Data Structures

Implementing a Class Template Stack Class With Composition of a List Object
Another way to implement a Stack class template is by reusing the List class template
through composition. Figure 19.15 is a new implementation of the Stack class template
that contains a List< STACKTYPE > object called stackList (line 38). This version of the
Stack class template uses class List from Fig. 19.5. To test this class, use the driver pro-
gram in Fig. 19.14, but include the new header—Stackcomposition.h in line 4 of that
file. The output of the program is identical for both versions of class Stack.

processing an integer Stack
The list is: 0

The list is: 1 0

The list is: 2 1 0

2 popped from stack
The list is: 1 0

1 popped from stack
The list is: 0

0 popped from stack
The list is empty

processing a double Stack
The list is: 1.1

The list is: 2.2 1.1

The list is: 3.3 2.2 1.1

3.3 popped from stack
The list is: 2.2 1.1

2.2 popped from stack
The list is: 1.1

1.1 popped from stack
The list is empty

All nodes destroyed

All nodes destroyed

1 // Fig. 19.15: Stackcomposition.h
2 // Stack class template with a composed List object.
3 #ifndef STACKCOMPOSITION_H
4 #define STACKCOMPOSITION_H
5

Fig. 19.15 | Stack class template with a composed List object. (Part 1 of 2.)

Fig. 19.14 | A simple stack program. (Part 2 of 2.)

cpphtp9_19_DS.fm Page 798 Wednesday, January 2, 2013 8:57 AM

19.5 Queues 799

19.5 Queues
Recall that queue nodes are removed only from the head of the queue and are inserted only
at the tail of the queue. For this reason, a queue is referred to as a first-in, first-out (FIFO)
data structure. The insert and remove operations are known as enqueue and dequeue.

Applications of Queues
Queues have many applications in computer systems.

• Computers that have a single processor can service only one user at a time. Entries
for the other users are placed in a queue. Each entry gradually advances to the
front of the queue as users receive service. The entry at the front of the queue is
the next to receive service.

6 #include "List.h" // List class definition
7
8 template< typename STACKTYPE >
9 class Stack

10 {
11 public:
12 // no constructor; List constructor does initialization
13
14 // push calls stackList object's insertAtFront member function
15 void push(const STACKTYPE &data)
16 {
17
18 } // end function push
19
20 // pop calls stackList object's removeFromFront member function
21 bool pop(STACKTYPE &data)
22 {
23
24 } // end function pop
25
26 // isStackEmpty calls stackList object's isEmpty member function
27 bool isStackEmpty() const
28 {
29
30 } // end function isStackEmpty
31
32 // printStack calls stackList object's print member function
33 void printStack() const
34 {
35
36 } // end function printStack
37 private:
38
39 }; // end class Stack
40
41 #endif

Fig. 19.15 | Stack class template with a composed List object. (Part 2 of 2.)

stackList.insertAtFront(data);

return stackList.removeFromFront(data);

return stackList.isEmpty();

stackList.print();

List< STACKTYPE > stackList; // composed List object

cpphtp9_19_DS.fm Page 799 Wednesday, January 2, 2013 8:57 AM

800 Chapter 19 Custom Templatized Data Structures

• Queues are also used to support print spooling. For example, a single printer might
be shared by all users of a network. Many users can send print jobs to the printer,
even when the printer is already busy. These print jobs are placed in a queue until
the printer becomes available. A program called a spooler manages the queue to en-
sure that, as each print job completes, the next print job is sent to the printer.

• Information packets also wait in queues in computer networks. Each time a packet
arrives at a network node, it must be routed to the next node on the network along
the path to the packet’s final destination. The routing node routes one packet at a
time, so additional packets are enqueued until the router can route them.

• A file server in a computer network handles file access requests from many clients
throughout the network. Servers have a limited capacity to service requests from
clients. When that capacity is exceeded, client requests wait in queues.

Implementing a Class Template Queue Class Based By Inheriting from List
The program of Figs. 19.16–19.17 creates a Queue class template (Fig. 19.16) through pri-
vate inheritance (line 9) of the List class template from Fig. 19.5. The Queue has member
functions enqueue (Fig. 19.16, lines 13–16), dequeue (lines 19–22), isQueueEmpty (lines
25–28) and printQueue (lines 31–34). These are essentially the insertAtBack, remove-
FromFront, isEmpty and print functions of the List class template. Of course, the List
class template contains other member functions that we do not want to make accessible
through the public interface to the Queue class. So when we indicate that the Queue class
template is to inherit the List class template, we specify private inheritance. This makes all
the List class template’s member functions private in the Queue class template. When we
implement the Queue’s member functions, we have each of these call the appropriate mem-
ber function of the list class—enqueue calls insertAtBack (line 15), dequeue calls remove-
FromFront (line 21), isQueueEmpty calls isEmpty (line 27) and printQueue calls print (line
33). As with the Stack example in Fig. 19.13, this delegation requires explicit use of the this
pointer in isQueueEmpty and printQueue to avoid compilation errors.

1 // Fig. 19.16: Queue.h
2 // Queue class-template definition.
3 #ifndef QUEUE_H
4 #define QUEUE_H
5
6
7
8 template< typename QUEUETYPE >
9 class Queue :

10 {
11 public:
12 // enqueue calls List member function insertAtBack
13 void enqueue(const QUEUETYPE &data)
14 {
15
16 } // end function enqueue
17

Fig. 19.16 | Queue class-template definition. (Part 1 of 2.)

#include "List.h" // List class definition

private List< QUEUETYPE >

insertAtBack(data);

cpphtp9_19_DS.fm Page 800 Wednesday, January 2, 2013 8:57 AM

19.5 Queues 801

Testing the Queue Class Template
Figure 19.17 uses the Queue class template to instantiate integer queue intQueue of type
Queue<int> (line 9). Integers 0 through 2 are enqueued to intQueue (lines 14–18), then
dequeued from intQueue in first-in, first-out order (lines 23–28). Next, the program in-
stantiates queue doubleQueue of type Queue< double > (line 30). Values 1.1, 2.2 and 3.3
are enqueued to doubleQueue (lines 36–41), then dequeued from doubleQueue in first-in,
first-out order (lines 46–51).

18 // dequeue calls List member function removeFromFront
19 bool dequeue(QUEUETYPE &data)
20 {
21
22 } // end function dequeue
23
24 // isQueueEmpty calls List member function isEmpty
25 bool isQueueEmpty() const
26 {
27
28 } // end function isQueueEmpty
29
30 // printQueue calls List member function print
31 void printQueue() const
32 {
33
34 } // end function printQueue
35 }; // end class Queue
36
37 #endif

1 // Fig. 19.17: fig19_17.cpp
2 // Queue-processing program.
3 #include <iostream>
4 #include "Queue.h" // Queue class definition
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "processing an integer Queue" << endl;
12
13 // enqueue integers onto intQueue
14 for (int i = 0; i < 3; ++i)
15 {
16
17
18 } // end for
19

Fig. 19.17 | Queue-processing program. (Part 1 of 3.)

Fig. 19.16 | Queue class-template definition. (Part 2 of 2.)

return removeFromFront(data);

return this->isEmpty();

this->print();

Queue< int > intQueue; // create Queue of integers

intQueue.enqueue(i);
intQueue.printQueue();

cpphtp9_19_DS.fm Page 801 Wednesday, January 2, 2013 8:57 AM

802 Chapter 19 Custom Templatized Data Structures

20 int dequeueInteger; // store dequeued integer
21
22 // dequeue integers from intQueue
23 while ()
24 {
25
26 cout << dequeueInteger << " dequeued" << endl;
27
28 } // end while
29
30
31 double value = 1.1;
32
33 cout << "processing a double Queue" << endl;
34
35 // enqueue floating-point values onto doubleQueue
36 for (int j = 0; j < 3; ++j)
37 {
38
39
40 value += 1.1;
41 } // end for
42
43 double dequeueDouble; // store dequeued double
44
45 // dequeue floating-point values from doubleQueue
46 while ()
47 {
48
49 cout << dequeueDouble << " dequeued" << endl;
50
51 } // end while
52 } // end main

processing an integer Queue
The list is: 0

The list is: 0 1

The list is: 0 1 2

0 dequeued
The list is: 1 2

1 dequeued
The list is: 2

2 dequeued
The list is empty

processing a double Queue
The list is: 1.1

The list is: 1.1 2.2

The list is: 1.1 2.2 3.3

Fig. 19.17 | Queue-processing program. (Part 2 of 3.)

!intQueue.isQueueEmpty()

intQueue.dequeue(dequeueInteger);

intQueue.printQueue();

Queue< double > doubleQueue; // create Queue of doubles

doubleQueue.enqueue(value);
doubleQueue.printQueue();

!doubleQueue.isQueueEmpty()

doubleQueue.dequeue(dequeueDouble);

doubleQueue.printQueue();

cpphtp9_19_DS.fm Page 802 Wednesday, January 2, 2013 8:57 AM

19.6 Trees 803

19.6 Trees
Linked lists, stacks and queues are linear data structures. A tree is a nonlinear, two-dimen-
sional data structure. Tree nodes contain two or more links. This section discusses binary
trees (Fig. 19.18)—trees whose nodes all contain two links (none, one or both of which
may have the value nullptr).

Basic Terminology
For this discussion, refer to nodes A, B, C and D in Fig. 19.18. The root node (node B) is
the first node in a tree. Each link in the root node refers to a child (nodes A and D). The
left child (node A) is the root node of the left subtree (which contains only node A), and
the right child (node D) is the root node of the right subtree (which contains nodes D and
C). The children of a given node are called siblings (e.g., nodes A and D are siblings). A node
with no children is a leaf node (e.g., nodes A and C are leaf nodes). Computer scientists
normally draw trees from the root node down—the opposite of how trees grow in nature.

Binary Search Trees
A binary search tree (with no duplicate node values) has the characteristic that the values in
any left subtree are less than the value in its parent node, and the values in any right subtree

1.1 dequeued
The list is: 2.2 3.3

2.2 dequeued
The list is: 3.3

3.3 dequeued
The list is empty

All nodes destroyed

All nodes destroyed

Fig. 19.18 | A graphical representation of a binary tree.

Fig. 19.17 | Queue-processing program. (Part 3 of 3.)

root node pointer

left subtree
of node

containing B

right subtree
of node
containing B

B

A D

C

cpphtp9_19_DS.fm Page 803 Wednesday, January 2, 2013 8:57 AM

804 Chapter 19 Custom Templatized Data Structures

are greater than the value in its parent node. Figure 19.19 illustrates a binary search tree
with 9 values. Note that the shape of the binary search tree that corresponds to a set of data
can vary, depending on the order in which the values are inserted into the tree.

Implementing the Binary Search Tree Program
The program of Figs. 19.20–19.22 creates a binary search tree and traverses it (i.e., walks
through all its nodes) three ways—using recursive inorder, preorder and postorder travers-
als. We explain these traversal algorithms shortly.

Testing the Tree Class Template
We begin our discussion with the driver program (Fig. 19.20), then continue with the im-
plementations of classes TreeNode (Fig. 19.21) and Tree (Fig. 19.22). Function main
(Fig. 19.20) begins by instantiating integer tree intTree of type Tree< int > (line 10).
The program prompts for 10 integers, each of which is inserted in the binary tree by calling
insertNode (line 19). The program then performs preorder, inorder and postorder traversals
(these are explained shortly) of intTree (lines 23, 26 and 29, respectively). The program
then instantiates floating-point tree doubleTree of type Tree< double > (line 31). The
program prompts for 10 double values, each of which is inserted in the binary tree by call-
ing insertNode (line 41). The program then performs preorder, inorder and postorder
traversals of doubleTree (lines 45, 48 and 51, respectively).

Fig. 19.19 | A binary search tree.

1 // Fig. 19.20: fig19_20.cpp
2 // Creating and traversing a binary tree.
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8 int main()
9 {

10
11
12 cout << "Enter 10 integer values:\n";
13

Fig. 19.20 | Creating and traversing a binary tree. (Part 1 of 3.)

47

25

11 43 65

77

31 44 68

#include "Tree.h" // Tree class definition

Tree< int > intTree; // create Tree of int values

cpphtp9_19_DS.fm Page 804 Wednesday, January 2, 2013 8:57 AM

19.6 Trees 805

14 // insert 10 integers to intTree
15 for (int i = 0; i < 10; ++i)
16 {
17 int intValue = 0;
18 cin >> intValue;
19
20 } // end for
21
22 cout << "\nPreorder traversal\n";
23
24
25 cout << "\nInorder traversal\n";
26
27
28 cout << "\nPostorder traversal\n";
29
30
31
32
33 cout << fixed << setprecision(1)
34 << "\n\n\nEnter 10 double values:\n";
35
36 // insert 10 doubles to doubleTree
37 for (int j = 0; j < 10; ++j)
38 {
39 double doubleValue = 0.0;
40 cin >> doubleValue;
41
42 } // end for
43
44 cout << "\nPreorder traversal\n";
45
46
47 cout << "\nInorder traversal\n";
48
49
50 cout << "\nPostorder traversal\n";
51
52 cout << endl;
53 } // end main

Enter 10 integer values:
50 25 75 12 33 67 88 6 13 68

Preorder traversal
50 25 12 6 13 33 75 67 68 88
Inorder traversal
6 12 13 25 33 50 67 68 75 88
Postorder traversal
6 13 12 33 25 68 67 88 75 50

Enter 10 double values:
39.2 16.5 82.7 3.3 65.2 90.8 1.1 4.4 89.5 92.5

Fig. 19.20 | Creating and traversing a binary tree. (Part 2 of 3.)

intTree.insertNode(intValue);

intTree.preOrderTraversal();

intTree.inOrderTraversal();

intTree.postOrderTraversal();

Tree< double > doubleTree; // create Tree of double values

doubleTree.insertNode(doubleValue);

doubleTree.preOrderTraversal();

doubleTree.inOrderTraversal();

doubleTree.postOrderTraversal();

cpphtp9_19_DS.fm Page 805 Wednesday, January 2, 2013 8:57 AM

806 Chapter 19 Custom Templatized Data Structures

Class Template TreeNode
The TreeNode class template (Fig. 19.21) definition declares Tree<NODETYPE> as its
friend (line 13). This makes all member functions of a given specialization of class tem-
plate Tree (Fig. 19.22) friends of the corresponding specialization of class template
TreeNode, so they can access the private members of TreeNode objects of that type. Be-
cause the TreeNode template parameter NODETYPE is used as the template argument for
Tree in the friend declaration, TreeNodes specialized with a particular type can be pro-
cessed only by a Tree specialized with the same type (e.g., a Tree of int values manages
TreeNode objects that store int values).

Lines 30–32 declare a TreeNode’s private data—the node’s data value, and pointers
leftPtr (to the node’s left subtree) and rightPtr (to the node’s right subtree). The con-
structor (lines 16–22) sets data to the value supplied as a constructor argument and sets
pointers leftPtr and rightPtr to nullptr (thus initializing this node to be a leaf node).
Member function getData (lines 25–28) returns the data value.

Preorder traversal
39.2 16.5 3.3 1.1 4.4 82.7 65.2 90.8 89.5 92.5
Inorder traversal
1.1 3.3 4.4 16.5 39.2 65.2 82.7 89.5 90.8 92.5
Postorder traversal
1.1 4.4 3.3 16.5 65.2 89.5 92.5 90.8 82.7 39.2

1 // Fig. 19.21: TreeNode.h
2 // TreeNode class-template definition.
3 #ifndef TREENODE_H
4 #define TREENODE_H
5
6 // forward declaration of class Tree
7 template< typename NODETYPE > class Tree;
8
9 // TreeNode class-template definition

10 template< typename NODETYPE >
11 class TreeNode
12 {
13
14 public:
15 // constructor
16 TreeNode(const NODETYPE &d)
17 : leftPtr(nullptr), // pointer to left subtree
18 data(d), // tree node data
19 rightPtr(nullptr) // pointer to right substree
20 {
21 // empty body
22 } // end TreeNode constructor
23

Fig. 19.21 | TreeNode class-template definition. (Part 1 of 2.)

Fig. 19.20 | Creating and traversing a binary tree. (Part 3 of 3.)

friend class Tree< NODETYPE >;

cpphtp9_19_DS.fm Page 806 Wednesday, January 2, 2013 8:57 AM

19.6 Trees 807

Class Template Tree
Class template Tree (Fig. 19.22) has as private data rootPtr (line 42), a pointer to the
tree’s root node. The Tree constructor (lines 14–15) initializes rootPtr to nullptr to in-
dicate that the tree is initially empty. The class’s public member functions are insertNode
(lines 18–21) that inserts a new node in the tree and preOrderTraversal (lines 24–27),
inOrderTraversal (lines 30–33) and postOrderTraversal (lines 36–39), each of which
walks the tree in the designated manner. Each of these member functions calls its own re-
cursive utility function to perform the appropriate operations on the internal representa-
tion of the tree, so the program is not required to access the underlying private data to
perform these functions. Remember that the recursion requires us to pass in a pointer that
represents the next subtree to process.

24 // return copy of node's data
25 NODETYPE getData() const
26 {
27 return data;
28 } // end getData function
29 private:
30
31 NODETYPE data;
32
33 }; // end class TreeNode
34
35 #endif

1 // Fig. 19.22: Tree.h
2 // Tree class-template definition.
3 #ifndef TREE_H
4 #define TREE_H
5
6 #include <iostream>
7 #include "TreeNode.h"
8
9 // Tree class-template definition

10 template< typename NODETYPE > class Tree
11 {
12 public:
13 // constructor
14 Tree()
15 : rootPtr(nullptr) { /* empty body */ }
16
17 // insert node in Tree
18 void insertNode(const NODETYPE &value)
19 {
20 insertNodeHelper(, value);
21 } // end function insertNode
22

Fig. 19.22 | Tree class-template definition. (Part 1 of 3.)

Fig. 19.21 | TreeNode class-template definition. (Part 2 of 2.)

TreeNode< NODETYPE > *leftPtr; // pointer to left subtree

TreeNode< NODETYPE > *rightPtr; // pointer to right subtree

&rootPtr

cpphtp9_19_DS.fm Page 807 Wednesday, January 2, 2013 8:57 AM

808 Chapter 19 Custom Templatized Data Structures

23 // begin preorder traversal of Tree
24 void preOrderTraversal() const
25 {
26 preOrderHelper(rootPtr);
27 } // end function preOrderTraversal
28
29 // begin inorder traversal of Tree
30 void inOrderTraversal() const
31 {
32 inOrderHelper(rootPtr);
33 } // end function inOrderTraversal
34
35 // begin postorder traversal of Tree
36 void postOrderTraversal() const
37 {
38 postOrderHelper(rootPtr);
39 } // end function postOrderTraversal
40
41 private:
42
43
44 // utility function called by insertNode; receives a pointer
45 // to a pointer so that the function can modify pointer's value
46 void insertNodeHelper(
47 , const NODETYPE &value)
48 {
49 // subtree is empty; create new TreeNode containing value
50 if (== nullptr)
51 = new TreeNode< NODETYPE >(value);
52 else // subtree is not empty
53 {
54 // data to insert is less than data in current node
55 if (value < ()->data)
56 insertNodeHelper(&(()->leftPtr), value);
57 else
58 {
59 // data to insert is greater than data in current node
60 if (value > ()->data)
61 insertNodeHelper(&(()->rightPtr), value);
62 else // duplicate data value ignored
63 cout << value << " dup" << endl;
64 } // end else
65 } // end else
66 } // end function insertNodeHelper
67
68 // utility function to perform preorder traversal of Tree
69 void (TreeNode< NODETYPE > *ptr) const
70 {
71 if (ptr != nullptr)
72 {
73
74

Fig. 19.22 | Tree class-template definition. (Part 2 of 3.)

TreeNode< NODETYPE > *rootPtr;

TreeNode< NODETYPE > **ptr

*ptr
*ptr

*ptr
*ptr

*ptr
*ptr

preOrderHelper

cout << ptr->data << ' '; // process node
preOrderHelper(ptr->leftPtr); // traverse left subtree

cpphtp9_19_DS.fm Page 808 Wednesday, January 2, 2013 8:57 AM

19.6 Trees 809

Tree Member Function insertNodeHelper
The Tree class’s utility function insertNodeHelper (lines 46–66) is called by insertNode
(lines 18–21) to recursively insert a node into the tree. A node can only be inserted as a leaf
node in a binary search tree. If the tree is empty, a new TreeNode is created, initialized and
inserted in the tree (lines 50–51).

If the tree is not empty, the program compares the value to be inserted with the data
value in the root node. If the insert value is smaller (line 55), the program recursively calls
insertNodeHelper (line 56) to insert the value in the left subtree. If the insert value is larger
(line 60), the program recursively calls insertNodeHelper (line 61) to insert the value in
the right subtree. If the value to be inserted is identical to the data value in the root node,
the program prints the message " dup" (line 63) and returns without inserting the duplicate
value into the tree. Note that insertNode passes the address of rootPtr to insertNode-
Helper (line 20) so it can modify the value stored in rootPtr (i.e., the address of the root
node). To receive a pointer to rootPtr (which is also a pointer), insertNodeHelper’s first
argument is declared as a pointer to a pointer to a TreeNode.

Tree Traversal Functions
Member functions preOrderTraversal (lines 24–27), inOrderTraversal (lines 30–33)
and postOrderTraversal (lines 36–39) traverse the tree and print the node values. For
the purpose of the following discussion, we use the binary search tree in Fig. 19.23.

75
76 } // end if
77 } // end function preOrderHelper
78
79 // utility function to perform inorder traversal of Tree
80 void (TreeNode< NODETYPE > *ptr) const
81 {
82 if (ptr != nullptr)
83 {
84
85
86
87 } // end if
88 } // end function inOrderHelper
89
90 // utility function to perform postorder traversal of Tree
91 void (TreeNode< NODETYPE > *ptr) const
92 {
93 if (ptr != nullptr)
94 {
95
96
97
98 } // end if
99 } // end function postOrderHelper
100 }; // end class Tree
101
102 #endif

Fig. 19.22 | Tree class-template definition. (Part 3 of 3.)

preOrderHelper(ptr->rightPtr); // traverse right subtree

inOrderHelper

inOrderHelper(ptr->leftPtr); // traverse left subtree
cout << ptr->data << ' '; // process node
inOrderHelper(ptr->rightPtr); // traverse right subtree

postOrderHelper

postOrderHelper(ptr->leftPtr); // traverse left subtree
postOrderHelper(ptr->rightPtr); // traverse right subtree
cout << ptr->data << ' '; // process node

cpphtp9_19_DS.fm Page 809 Wednesday, January 2, 2013 8:57 AM

810 Chapter 19 Custom Templatized Data Structures

Inorder Traversal Algorithm
Function inOrderTraversal invokes utility function inOrderHelper (lines 80–88) to
perform the inorder traversal of the binary tree. The steps for an inorder traversal are:

1. Traverse the left subtree with an inorder traversal. (This is performed by the call
to inOrderHelper at line 84.)

2. Process the value in the node—i.e., print the node value (line 85).

3. Traverse the right subtree with an inorder traversal. (This is performed by the call
to inOrderHelper at line 86.)

The value in a node is not processed until the values in its left subtree are processed, be-
cause each call to inOrderHelper immediately calls inOrderHelper again with the pointer
to the left subtree. The inorder traversal of the tree in Fig. 19.23 is

The inorder traversal of a binary search tree prints the node values in ascending order.
The process of creating a binary search tree actually sorts the data—thus, this process is
called the binary tree sort.

Preorder Traversal Algorithm
Function preOrderTraversal invokes utility function preOrderHelper (lines 69–77) to
perform the preorder traversal of the binary tree. The steps for a preorder traversal are:

1. Process the value in the node (line 73).

2. Traverse the left subtree with a preorder traversal. (This is performed by the call
to preOrderHelper at line 74.)

3. Traverse the right subtree with a preorder traversal. (This is performed by the call
to preOrderHelper at line 75.)

The value in each node is processed as the node is visited. After the value in a given node
is processed, the values in the left subtree are processed. Then the values in the right subtree
are processed. The preorder traversal of the tree in Fig. 19.23 is

Postorder Traversal Algorithm
Function postOrderTraversal invokes utility function postOrderHelper (lines 91–99)
to perform the postorder traversal of the binary tree. The steps for a postorder traversal are:

1. Traverse the left subtree with a postorder traversal. (This is performed by the call
to postOrderHelper at line 95.)

Fig. 19.23 | A binary search tree.

6 13 17 27 33 42 48

27 13 6 17 42 33 48

27

13

6 17 33 48

42

cpphtp9_19_DS.fm Page 810 Wednesday, January 2, 2013 8:57 AM

19.7 Wrap-Up 811

2. Traverse the right subtree with a postorder traversal. (This is performed by the call
to postOrderHelper at line 96.)

3. Process the value in the node (line 97).

The value in each node is not printed until the values of its children are printed. The post-
OrderTraversal of the tree in Fig. 19.23 is

Duplicate Elimination
The binary search tree facilitates duplicate elimination. As the tree is being created, an at-
tempt to insert a duplicate value will be recognized, because a duplicate will follow the
same “go left” or “go right” decisions on each comparison as the original value did when
it was inserted in the tree. Thus, the duplicate will eventually be compared with a node
containing the same value. The duplicate value may be discarded at this point.

Searching a binary tree for a value that matches a key value is also fast. If the tree is
balanced, then each branch contains about half the number of nodes in the tree. Each
comparison of a node to the search key eliminates half the nodes.This is called an O(log n)
algorithm (Big O notation is discussed in Chapter 20). So a binary search tree with n ele-
ments would require a maximum of log2n comparisons either to find a match or to deter-
mine that no match exists. This means, for example, that when searching a (balanced)
1000-element binary search tree, no more than 10 comparisons need to be made, because
210 > 1000. When searching a (balanced) 1,000,000-element binary search tree, no more
than 20 comparisons need to be made, because 220 > 1,000,000.

Overview of the Binary Tree Exercises
In the exercises, algorithms are presented for several other binary tree operations such as
deleting an item from a binary tree, printing a binary tree in a two-dimensional tree format
and performing a level-order traversal of a binary tree. The level-order traversal of a binary
tree visits the nodes of the tree row by row, starting at the root node level. On each level
of the tree, the nodes are visited from left to right. Other binary tree exercises include al-
lowing a binary search tree to contain duplicate values, inserting string values in a binary
tree and determining how many levels are contained in a binary tree.

19.7 Wrap-Up
In this chapter, you learned that linked lists are collections of data items that are “linked
up in a chain.” You also learned that a program can perform insertions and deletions any-
where in a linked list (though our implementation performed insertions and deletions only
at the ends of the list). We demonstrated that the stack and queue data structures are con-
strained versions of lists. For stacks, you saw that insertions and deletions are made only
at the top. For queues, you saw that insertions are made at the tail and deletions are made
from the head. We also presented the binary tree data structure. You saw a binary search
tree that facilitated high-speed searching and sorting of data and efficient duplicate elimi-
nation. You learned how to create these data structures for reusability (as templates) and
maintainability. In the next chapter, we study various searching and sorting techniques
and implement them as function templates.

6 17 13 33 48 42 27

cpphtp9_19_DS.fm Page 811 Wednesday, January 2, 2013 8:57 AM

812 Chapter 19 Custom Templatized Data Structures

Summary
Section 19.1 Introduction
• Dynamic data structures (p. 778) grow and shrink during execution.

• Linked lists (p. 778) are collections of data items “lined up in a row”—insertions and removals
are made anywhere in a linked list.

• Stacks (p. 778) are important in compilers and operating systems: Insertions and removals are
made only at one end of a stack—its top (p. 778).

• Queues (p. 778) represent waiting lines; insertions are made at the back (also referred to as the
tail; p. 778) of a queue and removals are made from the front (also referred to as the head;
p. 778).

• Binary trees (p. 778) facilitate high-speed searching and sorting of data, efficient duplicate elim-
ination, representation of file-system directories and compilation of expressions into machine
code.

Section 19.2 Self-Referential Classes
• A self-referential class (p. 779) contains a pointer that points to an object of the same class type.

• Self-referential class objects can be linked together to form useful data structures such as lists,
queues, stacks and trees.

Section 19.3 Linked Lists
• A linked list is a linear collection of self-referential class objects, called nodes, connected by point-

er links (p. 780)—hence, the term “linked” list.

• A linked list is accessed via a pointer to the first node of the list. Each subsequent node is accessed
via the link-pointer member stored in the previous node and the last node contains a null pointer.

• Linked lists, stacks and queues are linear data structures (p. 780). Trees are nonlinear data struc-
tures (p. 780).

• A linked list is appropriate when the number of data elements to be represented is unpredictable.

• Linked lists are dynamic, so the length of a list can increase or decrease as necessary.

• A singly linked list begins with a pointer to the first node, and each node contains a pointer to
the next node “in sequence.”

• A circular, singly linked list (p. 793) begins with a pointer to the first node, and each node con-
tains a pointer to the next node. The “last node” does not contain a null pointer; rather, the
pointer in the last node points back to the first node, thus closing the “circle.”

• A doubly linked list (p. 793) allows traversals both forward and backward.

• A doubly linked list is often implemented with two “start pointers”—one that points to the first
element to allow front-to-back traversal of the list and one that points to the last element to allow
back-to-front traversal. Each node has a pointer to both the next and previous nodes.

• In a circular, doubly linked list (p. 794), the forward pointer of the last node points to the first
node, and the backward pointer of the first node points to the last node, thus closing the “circle.”

Section 19.4 Stacks
• A stack data structure allows nodes to be added to and removed from the stack only at the top.

• A stack is referred to as a last-in, first-out (LIFO) data structure.

• Function push inserts a new node at the top of the stack. Function pop removes a node from the
top of the stack.

cpphtp9_19_DS.fm Page 812 Wednesday, January 2, 2013 8:57 AM

 Self-Review Exercises 813

• A dependent name (p. 796) is an identifier that depends on the value of a template parameter.
Resolution of dependent names occurs when the template is instantiated.

• Non-dependent names (p. 796) are resolved at the point where the template is defined.

Section 19.5 Queues
• A queue is similar to a supermarket checkout line—the first person in line is serviced first, and

other customers enter the line at the end and wait to be serviced.

• Queue nodes are removed only from a queue’s head and are inserted only at its tail.

• A queue is referred to as a first-in, first-out (FIFO) data structure. The insert and remove oper-
ations are known as enqueue and dequeue (p. 799).

Section 19.6 Trees
• Binary trees (p. 803) are trees whose nodes all contain two links (none, one or both of which may

have the value nullptr).

• The root node (p. 803) is the first node in a tree.

• Each link in the root node refers to a child. The left child is the root node of the left subtree
(p. 803), and the right child is the root node of the right subtree (p. 803).

• The children of a single node are called siblings (p. 803). A node with no children is called a leaf
node (p. 803).

• A binary search tree (p. 803) (with no duplicate node values) has the characteristic that the values
in any left subtree are less than the value in its parent node (p. 803), and the values in any right
subtree are greater than the value in its parent node.

• A node can only be inserted as a leaf node in a binary search tree.

• An inorder traversal (p. 804) of a binary tree traverses the left subtree, processes the value in the
root node then traverses the right subtree. The value in a node is not processed until the values
in its left subtree are processed. An inorder traversal of a binary search tree processes the nodes
in sorted order.

• A preorder traversal (p. 804) processes the value in the root node, traverses the left subtree, then
traverses the right subtree. The value in each node is processed as the node is encountered.

• A postorder traversal (p. 804) traverses the left subtree, traverses the right subtree, then processes
the root node’s value. The value in each node is not processed until the values in both subtrees
are processed.

• The binary search tree helps eliminate duplicate data (p. 811). As the tree is being created, an
attempt to insert a duplicate value will be recognized and the duplicate value may be discarded.

• The level-order traversal (p. 811) of a binary tree visits the nodes of the tree row by row, starting
at the root node level. On each level of the tree, the nodes are visited from left to right.

Self-Review Exercises
19.1 Fill in the blanks in each of the following:

a) A self- class is used to form dynamic data structures that can grow and shrink
at execution time

b) The operator is used to dynamically allocate memory and construct an object;
this operator returns a pointer to the object.

c) A(n) is a constrained version of a linked list in which nodes can be inserted
and deleted only from the start of the list and node values are returned in last-in, first-
out order.

cpphtp9_19_DS.fm Page 813 Wednesday, January 2, 2013 8:57 AM

814 Chapter 19 Custom Templatized Data Structures

d) A function that does not alter a linked list, but looks at the list to determine whether it’s
empty, is an example of a(n) function.

e) A queue is referred to as a(n) data structure, because the first nodes inserted
are the first nodes removed.

f) The pointer to the next node in a linked list is referred to as a(n) .
g) The operator is used to destroy an object and release dynamically allocated

memory.
h) A(n) is a constrained version of a linked list in which nodes can be inserted

only at the end of the list and deleted only from the start of the list.
i) A(n) is a nonlinear, two-dimensional data structure that contains nodes with

two or more links.
j) A stack is referred to as a(n) data structure, because the last node inserted is

the first node removed.
k) The nodes of a(n) tree contain two link members.
l) The first node of a tree is the node.
m) Each link in a tree node points to a(n) or of that node.
n) A tree node that has no children is called a(n) node.
o) The four traversal algorithms we mentioned in the text for binary search trees are

, , and .

19.2 What are the differences between a linked list and a stack?

19.3 What are the differences between a stack and a queue?

19.4 Perhaps a more appropriate title for this chapter would have been “Reusable Data Struc-
tures.” Comment on how each of the following entities or concepts contributes to the reusability of
data structures:

a) classes
b) class templates
c) inheritance
d) private inheritance
e) composition

19.5 Provide the inorder, preorder and postorder traversals of the binary search tree of Fig. 19.24.

Answers to Self-Review Exercises
19.1 a) referential. b) new. c) stack. d) predicate. e) first-in, first-out (FIFO). f) link. g) delete.
h) queue. i) tree. j.) last-in, first-out (LIFO). k) binary. l) root. m) child or subtree. n) leaf.
o) inorder, preorder, postorder and level order.

19.2 It’s possible to insert a node anywhere in a linked list and remove a node from anywhere in
a linked list. Nodes in a stack may only be inserted at the top of the stack and removed from the top
of a stack.

Fig. 19.24 | A 15-node binary search tree.

49

28

18 40 71 97

83

11 19 32 44 69 72 92 99

cpphtp9_19_DS.fm Page 814 Wednesday, January 2, 2013 8:57 AM

 Exercises 815

19.3 A queue data structure allows nodes to be removed only from the head of the queue and
inserted only at the tail of the queue. A queue is referred to as a first-in, first-out (FIFO) data struc-
ture. A stack data structure allows nodes to be added to the stack and removed from the stack only
at the top. A stack is referred to as a last-in, first-out (LIFO) data structure.

19.4 a) Classes allow us to instantiate as many data structure objects of a certain type (i.e., class)
as we wish.

b) Class templates enable us to instantiate related classes, each based on different type pa-
rameters—we can then generate as many objects of each template class as we like.

c) Inheritance enables us to reuse code from a base class in a derived class, so that the de-
rived-class data structure is also a base-class data structure (with public inheritance, that
is).

d) Private inheritance enables us to reuse portions of the code from a base class to form a
derived-class data structure; because the inheritance is private, all public base-class
member functions become private in the derived class. This enables us to prevent cli-
ents of the derived-class data structure from accessing base-class member functions that
do not apply to the derived class.

e) Composition enables us to reuse code by making a class object data structure a member
of a composed class; if we make the class object a private member of the composed
class, then the class object’s public member functions are not available through the
composed object’s interface.

19.5 The inorder traversal is

11 18 19 28 32 40 44 49 69 71 72 83 92 97 99

The preorder traversal is

49 28 18 11 19 40 32 44 83 71 69 72 97 92 99

The postorder traversal is

11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

Exercises
19.6 (Concatenating Lists) Write a program that concatenates two linked list objects of charac-
ters. The program should include function concatenate, which takes references to both list objects
as arguments and concatenates the second list to the first list.

19.7 (Merging Ordered Lists) Write a program that merges two ordered list objects of integers
into a single ordered list object of integers. Function merge should receive references to each of the
list objects to be merged and a reference to a list object into which the merged elements will be
placed.

19.8 (Summing and Averaging Elements in a List) Write a program that inserts 25 random in-
tegers from 0 to 100 in order in a linked list object. The program should calculate the sum of the
elements and the floating-point average of the elements.

19.9 (Copying a List in Reverse Order) Write a program that creates a linked list object of 10
characters and creates a second list object containing a copy of the first list, but in reverse order.

19.10 (Printing a Sentence in Reverse Order with a Stack) Write a program that inputs a line of
text and uses a stack object to print the line reversed.

19.11 (Palindrome Testing with Stacks) Write a program that uses a stack object to determine if
a string is a palindrome (i.e., the string is spelled identically backward and forward). The program
should ignore spaces and punctuation.

cpphtp9_19_DS.fm Page 815 Wednesday, January 2, 2013 8:57 AM

816 Chapter 19 Custom Templatized Data Structures

19.12 (Infix-to-Postfix Conversion) Stacks are used by compilers to help in the process of evaluating
expressions and generating machine language code. In this and the next exercise, we investigate how
compilers evaluate arithmetic expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9 in which the operator (+ or / here) is
written between its operands—this is called infix notation. Computers “prefer” postfix notation in
which the operator is written to the right of its two operands. The preceding infix expressions
would appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, a compiler would first convert the expression to post-
fix notation and evaluate the postfix version of the expression. Each of these algorithms requires
only a single left-to-right pass of the expression. Each algorithm uses a stack object in support of its
operation, and in each algorithm the stack is used for a different purpose.

In this exercise, you’ll write a C++ version of the infix-to-postfix conversion algorithm. In the
next exercise, you’ll write a C++ version of the postfix expression evaluation algorithm. Later in the
chapter, you’ll discover that code you write in this exercise can help you implement a complete
working compiler.

Write a program that converts an ordinary infix arithmetic expression (assume a valid
expression is entered) with single-digit integers such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression is

6 2 + 5 * 8 4 / -

The program should read the expression into string infix and use modified versions of the stack
functions implemented in this chapter to help create the postfix expression in string postfix. The
algorithm for creating a postfix expression is as follows:

1) Push a left parenthesis '(' onto the stack.
2) Append a right parenthesis ')' to the end of infix.
3) While the stack is not empty, read infix from left to right and do the following:

If the current character in infix is a digit, copy it to the next element of postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator,

Pop operators (if there are any) at the top of the stack while they have equal or
higher precedence than the current operator, and insert the popped
operators in postfix.

Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis

Pop operators from the top of the stack and insert them in postfix until a left
parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.
The following arithmetic operations are allowed in an expression:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus

[Note: We assume left-to-right associativity for all operators for the purpose of this exercise.] The
stack should be maintained with stack nodes, each containing a data member and a pointer to the
next stack node.

Some of the functional capabilities you may want to provide are:
a) function convertToPostfix that converts the infix expression to postfix notation

cpphtp9_19_DS.fm Page 816 Wednesday, January 2, 2013 8:57 AM

 Exercises 817

b) function isOperator that determines whether c is an operator
c) function precedence that determines whether the precedence of operator1 is greater

than or equal to the precedence of operator2, and, if so, returns true.
d) function push that pushes a value onto the stack
e) function pop that pops a value off the stack
f) function stackTop that returns the top value of the stack without popping the stack
g) function isEmpty that determines if the stack is empty
h) function printStack that prints the stack

19.13 (Postfix Evaluation) Write a program that evaluates a postfix expression (assume it’s valid)
such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of digits and operators into a string.
Using modified versions of the stack functions implemented earlier in this chapter, the program
should scan the expression and evaluate it. The algorithm is as follows:

1) While you have not reached the end of the string, read the expression from left to right.
If the current character is a digit,

Push its integer value onto the stack (the integer value of a digit character is its
value in the computer’s character set minus the value of '0' in the
computer’s character set).

Otherwise, if the current character is an operator,
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.

2) When you reach the end of the string, pop the top value of the stack. This is the result
of the postfix expression.

[Note: In Step 2 above, if the operator is '/', the top of the stack is 2 and the next element in the
stack is 8, then pop 2 into x, pop 8 into y, evaluate 8 / 2 and push the result, 4, back onto the stack.
This note also applies to operator '–'.] The arithmetic operations allowed in an expression are

+ addition
– subtraction
* multiplication
/ division
^ exponentiation
% modulus

[Note: We assume left-to-right associativity for all operators for the purpose of this exercise.] The
stack should be maintained with stack nodes that contain an int data member and a pointer to the
next stack node. You may want to provide the following functional capabilities:

a) function evaluatePostfixExpression that evaluates the postfix expression
b) function calculate that evaluates the expression op1 operator op2
c) function push that pushes a value onto the stack
d) function pop that pops a value off the stack
e) function isEmpty that determines if the stack is empty
f) function printStack that prints the stack

19.14 (Postfix Evaluation Enhanced) Modify the postfix evaluator program of Exercise 19.13 so
that it can process integer operands larger than 9.

19.15 (Supermarket Simulation) Write a program that simulates a checkout line at a supermarket.
The line is a queue object. Customers (i.e., customer objects) arrive in random integer intervals of
1–4 minutes. Also, each customer is served in random integer intervals of 1–4 minutes. Obviously,

cpphtp9_19_DS.fm Page 817 Wednesday, January 2, 2013 8:57 AM

818 Chapter 19 Custom Templatized Data Structures

the rates need to be balanced. If the average arrival rate is larger than the average service rate, the
queue will grow infinitely. Even with “balanced” rates, randomness can still cause long lines. Run
the supermarket simulation for a 12-hour day (720 minutes) using the following algorithm:

1) Choose a random integer from 1 to 4 to determine the minute at which the first cus-
tomer arrives.

2) At the first customer’s arrival time:
Determine customer’s service time (random integer from 1 to 4);
Begin servicing the customer;
Schedule arrival time of next customer (random integer 1 to 4 added to the current time).

3) For each minute of the day:
If the next customer arrives,

Say so, enqueue the customer, and schedule the arrival time of the next
customer;

If service was completed for the last customer;
Say so, dequeue next customer to be serviced and determine customer’s

service completion time (random integer from 1 to 4 added to the
current time).

Now run your simulation for 720 minutes, and answer each of the following:
a) What’s the maximum number of customers in the queue at any time?
b) What’s the longest wait any one customer experiences?
c) What happens if the arrival interval is changed from 1–4 minutes to 1–3 minutes?

19.16 (Allowing Duplicates in Binary Trees) Modify the program of Figs. 19.20–19.22 to allow
the binary tree object to contain duplicates.

19.17 (Binary Tree of Strings) Write a program based on Figs. 19.20–19.22 that inputs a line of
text, tokenizes the sentence into separate words (you may want to use the istringstream library
class), inserts the words in a binary search tree and prints the inorder, preorder and postorder tra-
versals of the tree. Use an OOP approach.

19.18 (Duplicate Elimination) In this chapter, we saw that duplicate elimination is straightfor-
ward when creating a binary search tree. Describe how you’d perform duplicate elimination using
only a one-dimensional array. Compare the performance of array-based duplicate elimination with
the performance of binary-search-tree-based duplicate elimination.

19.19 (Depth of a Binary Tree) Write a function depth that receives a binary tree and determines
how many levels it has.

19.20 (Recursively Print a List Backward) Write a member function printListBackward that re-
cursively outputs the items in a linked list object in reverse order. Write a test program that creates
a sorted list of integers and prints the list in reverse order.

19.21 (Recursively Search a List) Write a member function searchList that recursively searches a
linked list object for a specified value. The function should return a pointer to the value if it’s found;
otherwise, nullptr should be returned. Use your function in a test program that creates a list of in-
tegers. The program should prompt the user for a value to locate in the list.

19.22 (Binary Tree Delete) Deleting items from binary search trees is not as straightforward as the
insertion algorithm. There are three cases that are encountered when deleting an item—the item is
contained in a leaf node (i.e., it has no children), the item is contained in a node that has one child
or the item is contained in a node that has two children.

If the item to be deleted is contained in a leaf node, the node is deleted and the pointer in the
parent node is set to nullptr.

cpphtp9_19_DS.fm Page 818 Wednesday, January 2, 2013 8:57 AM

 Exercises 819

If the item to be deleted is contained in a node with one child, the pointer in the parent node
is set to point to the child node and the node containing the data item is deleted. This causes the
child node to take the place of the deleted node in the tree.

The last case is the most difficult. When a node with two children is deleted, another node in
the tree must take its place. However, the pointer in the parent node cannot be assigned to point to
one of the children of the node to be deleted. In most cases, the resulting binary search tree would
not adhere to the following characteristic of binary search trees (with no duplicate values): The val-
ues in any left subtree are less than the value in the parent node, and the values in any right subtree are
greater than the value in the parent node.

Which node is used as a replacement node to maintain this characteristic? Either the node con-
taining the largest value in the tree less than the value in the node being deleted, or the node con-
taining the smallest value in the tree greater than the value in the node being deleted. Let’s consider
the node with the smaller value. In a binary search tree, the largest value less than a parent’s value is
located in the left subtree of the parent node and is guaranteed to be contained in the rightmost
node of the subtree. This node is located by walking down the left subtree to the right until the
pointer to the right child of the current node is nullptr. We are now pointing to the replacement
node, which is either a leaf node or a node with one child to its left. If the replacement node is a
leaf node, the steps to perform the deletion are as follows:

1) Store the pointer to the node to be deleted in a temporary pointer variable (this pointer
is used to delete the dynamically allocated memory).

2) Set the pointer in the parent of the node being deleted to point to the replacement node.
3) Set the pointer in the parent of the replacement node to nullptr.
4) Set the pointer to the right subtree in the replacement node to point to the right subtree

of the node to be deleted.
5) Delete the node to which the temporary pointer variable points.

The deletion steps for a replacement node with a left child are similar to those for a replace-
ment node with no children, but the algorithm also must move the child into the replacement
node’s position in the tree. If the replacement node is a node with a left child, the steps to perform
the deletion are as follows:

1) Store the pointer to the node to be deleted in a temporary pointer variable.
2) Set the pointer in the parent of the node being deleted to point to the replacement node.
3) Set the pointer in the parent of the replacement node to point to the left child of the

replacement node.
4) Set the pointer to the right subtree in the replacement node to point to the right subtree

of the node to be deleted.
5) Delete the node to which the temporary pointer variable points.

Write member function deleteNode, which takes as its arguments a pointer to the root node
of the tree object and the value to be deleted. The function should locate in the tree the node con-
taining the value to be deleted and use the algorithms discussed here to delete the node. The func-
tion should print a message that indicates whether the value is deleted. Modify the program of
Figs. 19.20–19.22 to use this function. After deleting an item, call the inOrder, preOrder and
postOrder traversal functions to confirm that the delete operation was performed correctly.

19.23 (Binary Tree Search) Write member function binaryTreeSearch, which attempts to locate a
specified value in a binary search tree object. The function should take as arguments a pointer to the
binary tree’s root node and a search key to locate. If the node containing the search key is found, the
function should return a pointer to that node; otherwise, the function should return a nullptr pointer.

19.24 (Level-Order Binary Tree Traversal) The program of Figs. 19.20–19.22 illustrated three re-
cursive methods of traversing a binary tree—inorder, preorder and postorder traversals. This exer-
cise presents the level-order traversal of a binary tree, in which the node values are printed level by
level, starting at the root node level. The nodes on each level are printed from left to right. The level-

cpphtp9_19_DS.fm Page 819 Wednesday, January 2, 2013 8:57 AM

820 Chapter 19 Custom Templatized Data Structures

order traversal is not a recursive algorithm. It uses a queue object to control the output of the nodes.
The algorithm is as follows:

1) Insert the root node in the queue
2) While there are nodes left in the queue,

Get the next node in the queue
Print the node’s value
If the pointer to the left child of the node is not nullptr

Insert the left child node in the queue
If the pointer to the right child of the node is not nullptr

Insert the right child node in the queue.
Write member function levelOrder to perform a level-order traversal of a binary tree object.

Modify the program of Figs. 19.20–19.22 to use this function. [Note: You’ll also need to modify
and incorporate the queue-processing functions of Fig. 19.16 in this program.]

19.25 (Printing Trees) Write a recursive member function outputTree to display a binary tree ob-
ject on the screen. The function should output the tree row by row, with the top of the tree at the
left of the screen and the bottom of the tree toward the right of the screen. Each row is output verti-
cally. For example, the binary tree illustrated in Fig. 19.24 is output as shown in Fig. 19.25. Note
that the rightmost leaf node appears at the top of the output in the rightmost column and the root
node appears at the left of the output. Each column of output starts five spaces to the right of the
previous column. Function outputTree should receive an argument totalSpaces representing the
number of spaces preceding the value to be output (this variable should start at zero, so the root
node is output at the left of the screen). The function uses a modified inorder traversal to output
the tree—it starts at the rightmost node in the tree and works back to the left. The algorithm is as
follows:

While the pointer to the current node is not nullptr
Recursively call outputTree with the current node’s right subtree and totalSpaces + 5
Use a for structure to count from 1 to totalSpaces and output spaces
Output the value in the current node
Set the pointer to the current node to point to the left subtree of the current node
Increment totalSpaces by 5.

19.26 (Insert/Delete Anywhere in a Linked List) Our linked list class template allowed insertions
and deletions at only the front and the back of the linked list. These capabilities were convenient
for us when we used private inheritance and composition to produce a stack class template and a
queue class template with a minimal amount of code by reusing the list class template. Actually,

99
97

92
83

72
71

69
49

44
40

32
28

19
18

11

Fig. 19.25 | Outputting the binary tree illustrated in Fig. 19.24.

cpphtp9_19_DS.fm Page 820 Wednesday, January 2, 2013 8:57 AM

 Special Section: Building Your Own Compiler 821

linked lists are more general than those we provided. Modify the linked list class template we devel-
oped in this chapter to handle insertions and deletions anywhere in the list.

19.27 (List and Queues without Tail Pointers) Our implementation of a linked list (Figs. 19.4–
19.5) used both a firstPtr and a lastPtr. The lastPtr was useful for the insertAtBack and re-
moveFromBack member functions of the List class. The insertAtBack function corresponds to the
enqueue member function of the Queue class. Rewrite the List class so that it does not use a lastPtr.
Thus, any operations on the tail of a list must begin searching the list from the front. Does this affect
our implementation of the Queue class (Fig. 19.16)?

19.28 (Performance of Binary Tree Sorting and Searching) One problem with the binary tree sort
is that the order in which the data is inserted affects the shape of the tree—for the same collection
of data, different orderings can yield binary trees of dramatically different shapes. The performance
of the binary tree sorting and searching algorithms is sensitive to the shape of the binary tree. What
shape would a binary tree have if its data were inserted in increasing order? in decreasing order?
What shape should the tree have to achieve maximal searching performance?

19.29 (Indexed Lists) As presented in the text, linked lists must be searched sequentially. For large
lists, this can result in poor performance. A common technique for improving list searching perfor-
mance is to create and maintain an index to the list. An index is a set of pointers to various key places
in the list. For example, an application that searches a large list of names could improve performance
by creating an index with 26 entries—one for each letter of the alphabet. A search operation for a
last name beginning with "Y" would first search the index to determine where the "Y" entries begin
and “jump into” the list at that point and search linearly until the desired name was found. This
would be much faster than searching the linked list from the beginning. Use the List class of
Figs. 19.4–19.5 as the basis of an IndexedList class. Write a program that demonstrates the opera-
tion of indexed lists. Be sure to include member functions insertInIndexedList, searchIn-
dexedList and deleteFromIndexedList.

Special Section: Building Your Own Compiler
In Exercises 8.15–8.17, we introduced Simpletron Machine Language (SML), and you imple-
mented a Simpletron computer simulator to execute SML programs. In Exercises 19.30–19.34, we
build a compiler that converts programs written in a high-level programming language to SML.
This section “ties” together the entire programming process. You’ll write programs in this new
high-level language, compile them on the compiler you build and run them on the simulator you
built in Exercise 8.16. You should make every effort to implement your compiler in an object-ori-
ented manner. [Note: Due to the size of the descriptions for Exercises 19.30–19.34, we’ve posted
them in a PDF document located at www.deitel.com/books/cpphtp9/.]

cpphtp9_19_DS.fm Page 821 Wednesday, January 2, 2013 8:57 AM

20 Searching and Sorting

With sobs and tears
he sorted out
Those of the largest size …
—Lewis Carroll

Attempt the end, and never
stand to doubt;
Nothing’s so hard, but search
will find it out.
—Robert Herrick

‘Tis in my memory lock’d,
And you yourself shall keep the
key of it.
—William Shakespeare

O b j e c t i v e s
In this chapter you’ll:

■ Search for a given value in an
array using linear search
and binary search.

■ Use Big O notation to
express the efficiency of
searching and sorting
algorithms and to compare
their performance.

■ Sort an array using
insertion sort, selection sort
and the recursive merge sort
algorithms.

■ Understand the nature of
algorithms of constant, linear
and quadratic runtime.

cpphtp9_20_SearchSort.fm Page 822 Wednesday, January 2, 2013 9:03 AM

20.1 Introduction 823

20.1 Introduction
Searching data involves determining whether a value (referred to as the search key) is pres-
ent in the data and, if so, finding the value’s location. Two popular search algorithms are
the simple linear search (Section 20.2.1) and the faster but more complex binary search
(Section 20.2.2).

Sorting places data in ascending or descending order, based on one or more sort keys.
A list of names could be sorted alphabetically, bank accounts could be sorted by account
number, employee payroll records could be sorted by social security number, and so on.
You’ll learn about insertion sort (Section 20.3.1), selection sort (Section 20.3.2) and the
more efficient, but more complex merge sort (Section 20.3.3). Figure 20.1 summarizes the
searching and sorting algorithms discussed in the book’s examples and exercises. This
chapter also introduces Big O notation, which is used to characterize an algorithm’s worst-
case runtime—that is, how hard an algorithm may have to work to solve a problem.

A Note About This Chapter’s Examples
The searching and sorting algorithms in this chapter are implemented as function tem-
plates that manipulate objects of the array class template. To help you visualize how cer-
tain algorithms work, some of the examples display array-element values throughout the
searching or sorting process. These output statements slow an algorithm’s performance
and would not be included in industrial-strength code.

20.1 Introduction
20.2 Searching Algorithms

20.2.1 Linear Search
20.2.2 Binary Search

20.3 Sorting Algorithms
20.3.1 Insertion Sort
20.3.2 Selection Sort
20.3.3 Merge Sort (A Recursive Implementation)

20.4 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Algorithm Location Algorithm Location

Searching Algorithms Sorting Algorithms

Linear search Section 20.2.1 Insertion sort Section 20.3.1

Binary search Section 20.2.2 Selection sort Section 20.3.2

Recursive linear search Exercise 20.8 Recursive merge sort Section 20.3.3

Recursive binary search Exercise 20.9 Bubble sort Exercises 20.5–20.6

Binary tree search Section 19.6 Bucket sort Exercise 20.7

Linear search (linked list) Exercise 19.21 Recursive quicksort Exercise 20.10

binary_search standard
library function

Section 16.3.6 Binary tree sort Section 19.6

sort standard
library function

Section 16.3.6

Heap sort Section 16.3.12

Fig. 20.1 | Searching and sorting algorithms in this text.

cpphtp9_20_SearchSort.fm Page 823 Wednesday, January 2, 2013 9:03 AM

824 Chapter 20 Searching and Sorting

20.2 Searching Algorithms
Looking up a phone number, accessing a website and checking a word’s definition in a dic-
tionary all involve searching through large amounts of data. A searching algorithm finds
an element that matches a given search key, if such an element does, in fact, exist. There
are, however, a number of things that differentiate search algorithms from one another.
The major difference is the amount of effort they require to complete the search. One way
to describe this effort is with Big O notation. For searching and sorting algorithms, this is
particularly dependent on the number of data elements.

In Section 20.2.1, we present the linear search algorithm then discuss the algorithm’s
efficiency as measured by Big O notation. In Section 20.2.2, we introduce the binary search
algorithm, which is much more efficient but more complex to implement.

20.2.1 Linear Search
In this section, we discuss the simple linear search for determining whether an unsorted
array (i.e., an array with element values that are in no particular order) contains a spec-
ified search key. Exercise 20.8 at the end of this chapter asks you to implement a recursive
version of the linear search.

Function Template linearSearch
Function template linearSearch (Fig. 20.2, lines 10–18) compares each element of an
array with a search key (line 14). Because the array is not in any particular order, it’s just
as likely that the search key will be found in the first element as the last. On average, there-
fore, the program must compare the search key with half of the array’s elements. To de-
termine that a value is not in the array, the program must compare the search key to every
array element. Linear search works well for small or unsorted arrays. However, for large
arrays, linear searching is inefficient. If the array is sorted (e.g., its elements are in ascending
order), you can use the high-speed binary search technique (Section 20.2.2).

1 // Fig. 20.2: LinearSearch.cpp
2 // Linear search of an array.
3 #include <iostream>
4 #include <array>
5 using namespace std;
6
7
8
9

10
11
12
13
14
15
16
17
18

Fig. 20.2 | Linear search of an array. (Part 1 of 2.)

// compare key to every element of array until location is
// found or until end of array is reached; return location of
// element if key is found or -1 if key is not found
template < typename T, size_t size >
int linearSearch(const array< T, size > &items, const T& key)
{
 for (size_t i = 0; i < items.size(); ++i)
 if (key == items[i]) // if found,
 return i; // return location of key

 return -1; // key not found
} // end function linearSearch

cpphtp9_20_SearchSort.fm Page 824 Wednesday, January 2, 2013 9:03 AM

20.2 Searching Algorithms 825

Big O: Constant Runtime
Suppose an algorithm simply tests whether the first element of an array is equal to the
second element. If the array has 10 elements, this algorithm requires only one compari-
son. If the array has 1000 elements, the algorithm still requires only one comparison. In
fact, the algorithm is independent of the number of array elements. This algorithm is said
to have a constant runtime, which is represented in Big O notation as O(1). An algorithm
that’s O(1) does not necessarily require only one comparison. O(1) just means that the
number of comparisons is constant—it does not grow as the size of the array increases. An
algorithm that tests whether the first element of an array is equal to any of the next three
elements will always require three comparisons, but in Big O notation it’s still considered
O(1). O(1) is often pronounced “on the order of 1” or more simply “order 1.”

Big O: Linear Runtime
An algorithm that tests whether the first element of an array is equal to any of the other
elements of the array requires at most n – 1 comparisons, where n is the number of ele-
ments in the array. If the array has 10 elements, the algorithm requires up to nine com-
parisons. If the array has 1000 elements, the algorithm requires up to 999 comparisons.
As n grows larger, the n part of the expression n – 1 “dominates,” and subtracting one be-

19
20 int main()
21 {
22 const size_t arraySize = 100; // size of array
23 array< int, arraySize > arrayToSearch; // create array
24
25 for (size_t i = 0; i < arrayToSearch.size(); ++i)
26 arrayToSearch[i] = 2 * i; // create some data
27
28 cout << "Enter integer search key: ";
29 int searchKey; // value to locate
30 cin >> searchKey;
31
32 // attempt to locate searchKey in arrayToSearch
33
34
35 // display results
36 if (element != -1)
37 cout << "Found value in element " << element << endl;
38 else
39 cout << "Value not found" << endl;
40 } // end main

Enter integer search key: 36
Found value in element 18

Enter integer search key: 37
Value not found

Fig. 20.2 | Linear search of an array. (Part 2 of 2.)

int element = linearSearch(arrayToSearch, searchKey);

cpphtp9_20_SearchSort.fm Page 825 Wednesday, January 2, 2013 9:03 AM

826 Chapter 20 Searching and Sorting

comes inconsequential. Big O is designed to highlight these dominant terms and ignore
terms that become unimportant as n grows. For this reason, an algorithm that requires a
total of n – 1 comparisons (such as the one we described in this paragraph) is said to be
O(n) and is referred to as having a linear runtime. O(n) is often pronounced “on the order
of n” or more simply “order n.”

Big O: Quadratic Runtime
Now suppose you have an algorithm that tests whether any element of an array is dupli-
cated elsewhere in the array. The first element must be compared with all the other ele-
ments. The second element must be compared with all the other elements except the first
(it was already compared to the first). The third element then must be compared with all
the other elements except the first two. In the end, this algorithm will end up making
(n – 1) + (n – 2) + … + 2 + 1 or n2/2 – n/2 comparisons. As n increases, the n2 term dom-
inates and the n term becomes inconsequential. Again, Big O notation highlights the n2

term, leaving n2/2. As we’ll soon see, even constant factors, such as the 1/2 here, are omit-
ted in Big O notation.

Big O is concerned with how an algorithm’s runtime grows in relation to the number
of items processed. Suppose an algorithm requires n2 comparisons. With four elements, the
algorithm will require 16 comparisons; with eight elements, 64 comparisons. With this
algorithm, doubling the number of elements quadruples the number of comparisons. Con-
sider a similar algorithm requiring n2/2 comparisons. With four elements, the algorithm
will require eight comparisons; with eight elements, 32 comparisons. Again, doubling the
number of elements quadruples the number of comparisons. Both of these algorithms
grow as the square of n, so Big O ignores the constant, and both algorithms are considered
to be O(n2), which is referred to as quadratic runtime and pronounced “on the order of
n-squared” or more simply “order n-squared.”

O(n2) Performance
When n is small, O(n2) algorithms (running on today’s billions-of-operations-per-second
personal computers) will not noticeably affect performance. But as n grows, you’ll start to
notice the performance degradation. An O(n2) algorithm running on a million-element
array would require a trillion “operations” (where each could actually require several ma-
chine instructions to execute). This could require hours to execute. A billion-element ar-
ray would require a quintillion operations, a number so large that the algorithm could
take decades! Unfortunately, O(n2) algorithms tend to be easy to write. In this chapter,
you’ll see algorithms with more favorable Big O measures. Such efficient algorithms often
take a bit more cleverness and effort to create, but their superior performance can be worth
the extra effort, especially as n gets large.

Linear Search’s Runtime
The linear search algorithm runs in O(n) time. The worst case in this algorithm is that every
element must be checked to determine whether the search key is in the array. If the ar-
ray’s size doubles, the number of comparisons that the algorithm must perform also dou-
bles. Linear search can provide outstanding performance if the element matching the
search key happens to be at or near the front of the array. But we seek algorithms that
perform well, on average, across all searches, including those where the element matching
the search key is near the end of the array. If a program needs to perform many searches

cpphtp9_20_SearchSort.fm Page 826 Wednesday, January 2, 2013 9:03 AM

20.2 Searching Algorithms 827

on large arrays, it may be better to implement a different, more efficient algorithm, such
as the binary search which we consider in the next section.

20.2.2 Binary Search
The binary search algorithm is more efficient than the linear search algorithm, but it re-
quires that the array first be sorted. This is only worthwhile when the array, once sorted,
will be searched a great many times—or when the searching application has stringent perfor-
mance requirements. The first iteration of this algorithm tests the middle array element. If
this matches the search key, the algorithm ends. Assuming the array is sorted in ascending
order, then if the search key is less than the middle element, the search key cannot match any
element in the array’s second half so the algorithm continues with only the first half (i.e.,
the first element up to, but not including, the middle element). If the search key is greater
than the middle element, the search key cannot match any element in the array’s first half
so the algorithm continues with only the second half (i.e., the element after the middle ele-
ment through the last element). Each iteration tests the middle value of the array’s remain-
ing elements. If the element does not match the search key, the algorithm eliminates half of
the remaining elements. The algorithm ends either by finding an element that matches the
search key or by reducing the sub-array to zero size.

Binary Search of 15 Integer Values
As an example, consider the sorted 15-element array

and the search key 65. A binary search first checks whether the middle element (51) is the
search key. The search key (65) is larger than 51, so 51 is eliminated from consideration
along with the first half of the array (all elements smaller than 51.) Next, the algorithm
checks whether 81 (the middle element of the remaining elements) matches the search key.
The search key (65) is smaller than 81, so 81 is eliminated from consideration along with
the elements larger than 81. After just two tests, the algorithm has narrowed the number
of elements to check to three (56, 65 and 77). The algorithm then checks 65 (which
matches the search key), and returns the element’s index (9). In this case, the algorithm
required just three comparisons to determine whether the array contained the search key.
Using a linear search algorithm would have required 10 comparisons. [Note: In this exam-
ple, we’ve chosen to use an array with 15 elements, so that there will always be an obvious
middle element in the array. With an even number of elements, the middle of the array
lies between two elements. We implement the algorithm to choose the element with the
higher index number.]

Binary Search Example
Figure 20.3 implements and demonstrates the binary-search algorithm. Throughout the
program’s execution, we use function template displayElements (lines 11–22) to display
the portion of the array that’s currently being searched.

Performance Tip 20.1
Sometimes the simplest algorithms perform poorly. Their virtue is that they’re easy to pro-
gram, test and debug. Sometimes more complex algorithms are required to maximize per-
formance.

2 3 5 10 27 30 34 51 56 65 77 81 82 93 99

cpphtp9_20_SearchSort.fm Page 827 Wednesday, January 2, 2013 9:03 AM

828 Chapter 20 Searching and Sorting

1 // Fig 20.3: BinarySearch.cpp
2 // Binary search of an array.
3 #include <algorithm>
4 #include <array>
5 #include <ctime>
6 #include <iostream>
7 #include <random>
8 using namespace std;
9

10 // display array elements from index low through index high
11 template < typename T, size_t size >
12 void displayElements(const array< T, size > &items,
13 size_t low, size_t high)
14 {
15 for (size_t i = 0; i < items.size() && i < low; ++i)
16 cout << " "; // display spaces for alignment
17
18 for (size_t i = low; i < items.size() && i <= high; ++i)
19 cout << items[i] << " "; // display element
20
21 cout << endl;
22 } // end function displayElements
23
24
25
26
27
28
29
30
31
32
33
34
35 // display remaining elements of array to be searched
36 displayElements(items, low, high);
37
38 // output spaces for alignment
39 for (int i = 0; i < middle; ++i)
40 cout << " ";
41
42 cout << " * " << endl; // indicate current middle
43
44
45
46
47
48
49
50
51
52
53

Fig. 20.3 | Binary search of an array. (Part 1 of 3.)

// perform a binary search on the data
template < typename T, size_t size >
int binarySearch(const array< T, size > &items, const T& key)
{
 int low = 0; // low index of elements to search
 int high = items.size() - 1; // high index of elements to search
 int middle = (low + high + 1) / 2; // middle element
 int location = -1; // key's index; -1 if not found

 do // loop to search for element
 {

 // if the element is found at the middle
 if (key == items[middle])
 location = middle; // location is the current middle
 else if (key < items[middle]) // middle is too high
 high = middle - 1; // eliminate the higher half
 else // middle element is too low
 low = middle + 1; // eliminate the lower half

 middle = (low + high + 1) / 2; // recalculate the middle
} while ((low <= high) && (location == -1));

cpphtp9_20_SearchSort.fm Page 828 Wednesday, January 2, 2013 9:03 AM

20.2 Searching Algorithms 829

54
55 return location; // return location of key
56 } // end function binarySearch
57
58 int main()
59 {
60 // use the default random-number generation engine to produce
61 // uniformly distributed pseudorandom int values from 10 to 99
62 default_random_engine engine(
63 static_cast<unsigned int>(time(nullptr)));
64 uniform_int_distribution<unsigned int> randomInt(10, 99);
65
66 const size_t arraySize = 15; // size of array
67 array< int, arraySize > arrayToSearch; // create array
68
69 // fill arrayToSearch with random values
70 for (int &item : arrayToSearch)
71 item = randomInt(engine);
72
73
74
75 // display arrayToSearch's values
76 displayElements(arrayToSearch, 0, arrayToSearch.size() - 1);
77
78 // get input from user
79 cout << "\nPlease enter an integer value (-1 to quit): ";
80 int searchKey; // value to locate
81 cin >> searchKey; // read an int from user
82 cout << endl;
83
84 // repeatedly input an integer; -1 terminates the program
85 while (searchKey != -1)
86 {
87 // use binary search to try to find integer
88
89
90 // return value of -1 indicates integer was not found
91 if (position == -1)
92 cout << "The integer " << searchKey << " was not found.\n";
93 else
94 cout << "The integer " << searchKey
95 << " was found in position " << position << ".\n";
96
97 // get input from user
98 cout << "\n\nPlease enter an integer value (-1 to quit): ";
99 cin >> searchKey; // read an int from user
100 cout << endl;
101 } // end while
102 } // end main

Fig. 20.3 | Binary search of an array. (Part 2 of 3.)

sort(arrayToSearch.begin(), arrayToSearch.end()); // sort the array

int position = binarySearch(arrayToSearch, searchKey);

cpphtp9_20_SearchSort.fm Page 829 Wednesday, January 2, 2013 9:03 AM

830 Chapter 20 Searching and Sorting

Function Template binarySearch
Lines 25–56 define function template binarySearch, which has two parameters—a refer-
ence to the array to search and a reference to the search key. Lines 28–30 calculate the
low end index, high end index and middle index of the portion of the array that the al-
gorithm is currently searching. When binarySearch is first called, low is 0, high is the
array’s size minus 1 and middle is the average of these two values. Line 31 initializes
location to -1—the value that binarySearch returns if the search key is not found. Lines
33–53 loop until low is greater than high (indicating that the element was not found) or
location does not equal -1 (indicating that the search key was found). Line 45 tests
whether the value in the middle element is equal to key. If so, line 46 assigns the middle
index to location. Then the loop terminates and location is returned to the caller. Each
iteration of the loop that does not find the search key tests a single value (line 45) and elim-
inates half of the remaining values in the array (line 48 or 50).

10 23 27 48 52 55 58 60 62 63 68 72 75 92 97

Please enter an integer value (-1 to quit): 48

10 23 27 48 52 55 58 60 62 63 68 72 75 92 97
 *
10 23 27 48 52 55 58
 *
The integer 48 was found in position 3.

Please enter an integer value (-1 to quit): 92

10 23 27 48 52 55 58 60 62 63 68 72 75 92 97
 *
 62 63 68 72 75 92 97
 *
 75 92 97
 *
The integer 92 was found in position 13.

Please enter an integer value (-1 to quit): 22

10 23 27 48 52 55 58 60 62 63 68 72 75 92 97
 *
10 23 27 48 52 55 58
 *
10 23 27
 *
10
 *
The integer 22 was not found.

Please enter an integer value (-1 to quit): -1

Fig. 20.3 | Binary search of an array. (Part 3 of 3.)

cpphtp9_20_SearchSort.fm Page 830 Wednesday, January 2, 2013 9:03 AM

20.3 Sorting Algorithms 831

Function main
Lines 62–64 set up a random-number generator for int values from 10–99. Lines 66–71 cre-
ate an array and fill it with random ints. Recall that the binary search algorithm requires a
sorted array, so line 73 calls the Standard Library function sort to sort arrayToSearch’s el-
ements into ascending order. Line 76 displays arrayToSearch’s sorted contents.

Lines 85–101 loop until the user enters the value -1. For each search key the user
enters, the program performs a binary search of arrayToSearch to determine whether it
contains the search key. The first line of output from this program shows arrayToSearch’s
contents in ascending order. When the user instructs the program to search for 48, the pro-
gram first tests the middle element, which is 60 (as indicated by *). The search key is less
than 60, so the program eliminates the second half of the array and tests the middle ele-
ment from the first half of the array. The search key equals 48, so the program returns the
index 3 after performing just two comparisons. The output also shows the results of
searching for the values 92 and 22.

Efficiency of Binary Search
In the worst-case scenario, searching a sorted array of 1023 elements will take only 10
comparisons when using a binary search. Repeatedly dividing 1023 by 2 (because, after
each comparison, we can eliminate from consideration half of the remaining elements) and
rounding down (because we also remove the middle element) yields the values 511, 255,
127, 63, 31, 15, 7, 3, 1 and 0. The number 1023 (210 – 1) is divided by 2 only 10 times
to get the value 0, which indicates that there are no more elements to test. Dividing by 2
is equivalent to one comparison in the binary search algorithm. Thus, an array of
1,048,575 (220 – 1) elements takes a maximum of 20 comparisons to find the key, and an
array of approximately one billion elements takes a maximum of 30 comparisons to find
the key. This is a tremendous performance improvement over the linear search. For a one-
billion-element array, this is a difference between an average of 500 million comparisons
for the linear search and a maximum of only 30 comparisons for the binary search! The
maximum number of comparisons needed for the binary search of any sorted array is the
exponent of the first power of 2 greater than the number of elements in the array, which
is represented as log2 n. All logarithms grow at roughly the same rate, so in Big O notation
the base can be omitted. This results in a Big O of O(log n) for a binary search, which is
also known as logarithmic runtime and pronounced “on the order of log n” or more sim-
ply “order log n.”

20.3 Sorting Algorithms
Sorting data (i.e., placing the data into some particular order, such as ascending or descend-
ing) is one of the most important computing applications. A bank sorts all of its checks by
account number so that it can prepare individual bank statements at the end of each
month. Telephone companies sort their lists of accounts by last name and, further, by first
name to make it easy to find phone numbers. Virtually every organization must sort some
data, and often, massive amounts of it. Sorting data is an intriguing, computer-intensive
problem that has attracted intense research efforts.

An important point to understand about sorting is that the end result—the sorted array—
will be the same no matter which algorithm you use to sort the array. Your algorithm choice

cpphtp9_20_SearchSort.fm Page 831 Wednesday, January 2, 2013 9:03 AM

832 Chapter 20 Searching and Sorting

affects only the algorithm’s runtime and memory use. The next two sections, introduce the
selection sort and insertion sort—simple algorithms to implement, but inefficient. In each
case, we examine the efficiency of the algorithms using Big O notation. We then present
the merge sort algorithm, which is much faster but is more difficult to implement.

20.3.1 Insertion Sort
Figure 20.4 uses insertion sort—a simple, but inefficient, sorting algorithm—to sort a 10-
element array’s values into ascending order. Function template insertionSort (lines 9–
28) implements the algorithm.

1 // Fig. 20.4: InsertionSort.cpp
2 // Sorting an array into ascending order with insertion sort.
3 #include <array>
4 #include <iomanip>
5 #include <iostream>
6 using namespace std;
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 int main()
31 {
32 const size_t arraySize = 10; // size of array
33 array < int, arraySize > data =
34 { 34, 56, 4, 10, 77, 51, 93, 30, 5, 52 };
35
36 cout << "Unsorted array:\n";
37
38 // output original array
39 for (size_t i = 0; i < arraySize; ++i)
40 cout << setw(4) << data[i];

Fig. 20.4 | Sorting an array into ascending order with insertion sort. (Part 1 of 2.)

// sort an array into ascending order
template < typename T, size_t size >
void insertionSort(array< T, size > &items)
{
 // loop over the elements of the array
 for (size_t next = 1; next < items.size(); ++next)
 {
 T insert = items[next]; // save value of next item to insert
 size_t moveIndex = next; // initialize location to place element

 // search for the location in which to put the current element
 while ((moveIndex > 0) && (items[moveIndex - 1] > insert))
 {
 // shift element one slot to the right
 items[moveIndex] = items[moveIndex - 1];
 --moveIndex;
 } // end while

 items[moveIndex] = insert; // place insert item back into array
 } // end for
} // end function insertionSort

cpphtp9_20_SearchSort.fm Page 832 Wednesday, January 2, 2013 9:03 AM

20.3 Sorting Algorithms 833

Insertion Sort Algorithm
The algorithm’s first iteration takes the array’s second element and, if it’s less than the first
element, swaps it with the first element (i.e., the algorithm inserts the second element in front
of the first element). The second iteration looks at the third element and inserts it into the
correct position with respect to the first two elements, so all three elements are in order. At
the ith iteration of this algorithm, the first i elements in the original array will be sorted.

First Iteration
Lines 33–34 declare and initialize the array named data with the following values:

Line 42 passes the array to the insertionSort function, which receives the array in pa-
rameter items. The function first looks at items[0] and items[1], whose values are 34
and 56, respectively. These two elements are already in order, so the algorithm contin-
ues—if they were out of order, the algorithm would swap them.

Second Iteration
In the second iteration, the algorithm looks at the value of items[2] (that is, 4). This value
is less than 56, so the algorithm stores 4 in a temporary variable and moves 56 one element
to the right. The algorithm then determines that 4 is less than 34, so it moves 34 one ele-
ment to the right. At this point, the algorithm has reached the beginning of the array, so
it places 4 in items[0]. The array now is

Third Iteration and Beyond
In the third iteration, the algorithm places the value of items[3] (that is, 10) in the correct
location with respect to the first four array elements. The algorithm compares 10 to 56
and moves 56 one element to the right because it’s larger than 10. Next, the algorithm
compares 10 to 34, moving 34 right one element. When the algorithm compares 10 to 4,
it observes that 10 is larger than 4 and places 10 in items[1]. The array now is

41
42
43
44 cout << "\nSorted array:\n";
45
46 // output sorted array
47 for (size_t i = 0; i < arraySize; ++i)
48 cout << setw(4) << data[i];
49
50 cout << endl;
51 } // end main

Unsorted array:
 34 56 4 10 77 51 93 30 5 52
Sorted array:
 4 5 10 30 34 51 52 56 77 93

34 56 4 10 77 51 93 30 5 52

4 34 56 10 77 51 93 30 5 52

Fig. 20.4 | Sorting an array into ascending order with insertion sort. (Part 2 of 2.)

insertionSort(data); // sort the array

cpphtp9_20_SearchSort.fm Page 833 Wednesday, January 2, 2013 9:03 AM

834 Chapter 20 Searching and Sorting

Using this algorithm, after the ith iteration, the first i + 1 array elements are sorted. They
may not be in their final locations, however, because the algorithm might encounter small-
er values later in the array.

Function Template insertionSort
Function template insertionSort performs the sorting in lines 13–27, which iterates over
the array’s elements. In each iteration, line 15 temporarily stores in variable insert the
value of the element that will be inserted into the array’s sorted portion. Line 16 declares
and initializes the variable moveIndex, which keeps track of where to insert the element.
Lines 19–24 loop to locate the correct position where the element should be inserted. The
loop terminates either when the program reaches the array’s first element or when it
reaches an element that’s less than the value to insert. Line 22 moves an element to the
right, and line 23 decrements the position at which to insert the next element. After the
while loop ends, line 26 inserts the element into place. When the for statement in lines
13–27 terminates, the array’s elements are sorted.

Big O: Efficiency of Insertion Sort
Insertion sort is simple, but inefficient, sorting algorithm. This becomes apparent when sort-
ing large arrays. Insertion sort iterates n – 1 times, inserting an element into the appropri-
ate position in the elements sorted so far. For each iteration, determining where to insert
the element can require comparing the element to each of the preceding elements—n – 1
comparisons in the worst case. Each individual repetition statement runs in O(n) time. To
determine Big O notation, nested statements mean that you must multiply the number of
comparisons. For each iteration of an outer loop, there will be a certain number of itera-
tions of the inner loop. In this algorithm, for each O(n) iteration of the outer loop, there
will be O(n) iterations of the inner loop, resulting in a Big O of O(n * n) or O(n2).

20.3.2 Selection Sort
Figure 20.5 uses the selection sort algorithm—another easy-to-implement, but ineffi-
cient, sorting algorithm—to sort a 10-element array’s values into ascending order. Func-
tion template selectionSort (lines 9–27) implements the algorithm.

4 10 34 56 77 51 93 30 5 52

1 // Fig. 20.5: fig08_13.cpp
2 // Sorting an array into ascending order with selection sort.
3 #include <array>
4 #include <iomanip>
5 #include <iostream>
6 using namespace std;
7
8
9

10
11

Fig. 20.5 | Sorting an array into ascending order with selection sort. (Part 1 of 2.)

// sort an array into ascending order
template < typename T, size_t size >
void selectionSort(array< T, size > &items)
{

cpphtp9_20_SearchSort.fm Page 834 Wednesday, January 2, 2013 9:03 AM

20.3 Sorting Algorithms 835

Selection Sort Algorithm
The algorithm’s first iteration selects the smallest element value and swaps it with the first
element’s value. The second iteration selects the second-smallest element value (which is
the smallest of the remaining elements) and swaps it with the second element’s value. The
algorithm continues until the last iteration selects the second-largest element and swaps it
with the second-to-last element’s value, leaving the largest value in the last element. After

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 int main()
30 {
31 const size_t arraySize = 10;
32 array < int, arraySize > data =
33 { 34, 56, 4, 10, 77, 51, 93, 30, 5, 52 };
34
35 cout << "Unsorted array:\n";
36
37 // output original array
38 for (size_t i = 0; i < arraySize; ++i)
39 cout << setw(4) << data[i];
40
41
42
43 cout << "\nSorted array:\n";
44
45 // output sorted array
46 for (size_t i = 0; i < arraySize; ++i)
47 cout << setw(4) << data[i];
48
49 cout << endl;
50 } // end main

Unsorted array:
 34 56 4 10 77 51 93 30 5 52
Sorted array:
 4 5 10 30 34 51 52 56 77 93

Fig. 20.5 | Sorting an array into ascending order with selection sort. (Part 2 of 2.)

 // loop over size - 1 elements
 for (size_t i = 0; i < items.size() - 1; ++i)
 {
 size_t indexOfSmallest = i; // will hold index of smallest element

 // loop to find index of smallest element
 for (size_t index = i + 1; index < items.size(); ++index)
 if (items[index] < items[indexOfSmallest])
 indexOfSmallest = index;

 // swap the elements at positions i and indexOfSmallest
 T hold = items[i];
 items[i] = items[indexOfSmallest];
 items[indexOfSmallest] = hold;
 } // end for
} // end function insertionSort

selectionSort(data); // sort the array

cpphtp9_20_SearchSort.fm Page 835 Wednesday, January 2, 2013 9:03 AM

836 Chapter 20 Searching and Sorting

the ith iteration, the smallest i values will be sorted into increasing order in the first i array
elements.

First Iteration
Lines 32–33 declare and initialize the array named data with the following values:

The selection sort first determines the smallest value (4) in the array, which is in element
2. The algorithm swaps 4 with the value in element 0 (34), resulting in

Second Iteration
The algorithm then determines the smallest value of the remaining elements (all elements
except 4), which is 5, contained in element 8. The program swaps the 5 with the 56 in
element 1, resulting in

Third Iteration
On the third iteration, the program determines the next smallest value, 10, and swaps it
with the value in element 2 (34).

The process continues until the array is fully sorted.

After the first iteration, the smallest element is in the first position; after the second itera-
tion, the two smallest elements are in order in the first two positions and so on.

Function Template selectionSort
Function template selectionSort performs the sorting in lines 13–26. The loop iterates
size - 1 times. Line 15 declares and initializes the variable indexOfSmallest, which stores
the index of the smallest element in the unsorted portion of the array. Lines 18–20 iterate
over the remaining array elements. For each element, line 19 compares the current element’s
value to the value at indexOfSmallest. If the current element is smaller, line 20 assigns the
current element’s index to indexOfSmallest. When this loop finishes, indexOfSmallest
contains the index of the smallest element remaining in the array. Lines 23–25 then swap
the elements at positions i and indexOfSmallest, using the temporary variable hold to store
items[i]’s value while that element is assigned items[indexOfSmallest].

Efficiency of Selection Sort
The selection sort algorithm iterates n – 1 times, each time swapping the smallest remaining
element into its sorted position. Locating the smallest remaining element requires n – 1 com-
parisons during the first iteration, n – 2 during the second iteration, then n – 3, … , 3, 2, 1.
This results in a total of n(n – 1)/2 or (n2 – n)/2 comparisons. In Big O notation, smaller
terms drop out and constants are ignored, leaving a Big O of O(n2). Can we develop sorting
algorithms that perform better than O(n2)?

34 56 4 10 77 51 93 30 5 52

4 56 34 10 77 51 93 30 5 52

4 5 34 10 77 51 93 30 56 52

4 5 10 34 77 51 93 30 56 52

4 5 10 30 34 51 52 56 77 93

cpphtp9_20_SearchSort.fm Page 836 Wednesday, January 2, 2013 9:03 AM

20.3 Sorting Algorithms 837

20.3.3 Merge Sort (A Recursive Implementation)
Merge sort is an efficient sorting algorithm but is conceptually more complex than insertion
sort and selection sort. The merge sort algorithm sorts an array by splitting it into two
equal-sized sub-arrays, sorting each sub-array then merging them into one larger array.
With an odd number of elements, the algorithm creates the two sub-arrays such that one
has one more element than the other.

Merge sort performs the merge by looking at each sub-array’s first element, which is
also the smallest element in that sub-array. Merge sort takes the smallest of these and
places it in the first element of merged sorted array. If there are still elements in the sub-
array, merge sort looks at the second element in that sub-array (which is now the smallest
element remaining) and compares it to the first element in the other sub-array. Merge
sort continues this process until the merged array is filled. Once a sub-array has no more
elements, the merge copies the other array’s remaining elements into the merged array.

Sample Merge
Suppose the algorithm has already merged smaller arrays to create sorted arrays A:

and B:

Merge sort merges these arrays into a sorted array. The smallest value in A is 4 (located
in the zeroth element of A). The smallest value in B is 5 (located in the zeroth element of
B). In order to determine the smallest element in the larger array, the algorithm compares
4 and 5. The value from A is smaller, so 4 becomes the value of the first element in the
merged array. The algorithm continues by comparing 10 (the value of the second element
in A) to 5 (the value of the first element in B). The value from B is smaller, so 5 becomes
the value of the second element in the larger array. The algorithm continues by compar-
ing 10 to 30, with 10 becoming the value of the third element in the array, and so on.

Recursive Implementation
Our merge sort implementation is recursive. The base case is an array with one element.
Such an array is, of course, sorted, so merge sort immediately returns when it’s called with
a one-element array. The recursion step splits an array of two or more elements into two
equal-sized sub-arrays, recursively sorts each sub-array, then merges them into one larg-
er, sorted array. [Again, if there is an odd number of elements, one sub-array is one ele-
ment larger than the other.]

Demonstrating Merge Sort
Figure 20.6 implements and demonstrates the merge sort algorithm. Throughout the pro-
gram’s execution, we use function template displayElements (lines 10–21) to display the
portions of the array that are currently being split and merged. Function templates
mergeSort (lines 24–49) and merge (lines 52–98) implement the merge sort algorithm.
Function main (lines 100–125) creates an array, populates it with random integers, exe-
cutes the algorithm (line 120) and displays the sorted array. The output from this program
displays the splits and merges performed by merge sort, showing the progress of the sort
at each step of the algorithm.

4 10 34 56 77

5 30 51 52 93

cpphtp9_20_SearchSort.fm Page 837 Wednesday, January 2, 2013 9:03 AM

838 Chapter 20 Searching and Sorting

1 // Fig 20.6: Fig20_06.cpp
2 // Sorting an array into ascending order with merge sort.
3 #include <array>
4 #include <ctime>
5 #include <iostream>
6 #include <random>
7 using namespace std;
8
9 // display array elements from index low through index high

10 template < typename T, size_t size >
11 void displayElements(const array< T, size > &items,
12 size_t low, size_t high)
13 {
14 for (size_t i = 0; i < items.size() && i < low; ++i)
15 cout << " "; // display spaces for alignment
16
17 for (size_t i = low; i < items.size() && i <= high; ++i)
18 cout << items[i] << " "; // display element
19
20 cout << endl;
21 } // end function displayElements
22
23 // split array, sort subarrays and merge subarrays into sorted array
24
25
26 {
27 // test base case; size of array equals 1
28
29 {
30
31
32
33 // output split step
34 cout << "split: ";
35 displayElements(items, low, high);
36 cout << " ";
37 displayElements(items, low, middle1);
38 cout << " ";
39 displayElements(items, middle2, high);
40 cout << endl;
41
42 // split array in half; sort each half (recursive calls)
43
44
45
46 // merge two sorted arrays after split calls return
47
48 } // end if
49 } // end function mergeSort
50

Fig. 20.6 | Sorting an array into ascending order with merge sort. (Part 1 of 4.)

template < typename T, size_t size >
void mergeSort(array< T, size > &items, size_t low, size_t high)

if ((high - low) >= 1) // if not base case

int middle1 = (low + high) / 2; // calculate middle of array
int middle2 = middle1 + 1; // calculate next element over

mergeSort(items, low, middle1); // first half of array
mergeSort(items, middle2, high); // second half of array

merge(items, low, middle1, middle2, high);

cpphtp9_20_SearchSort.fm Page 838 Wednesday, January 2, 2013 9:03 AM

20.3 Sorting Algorithms 839

51 // merge two sorted subarrays into one sorted subarray
52
53
54
55 {
56
57
58
59
60
61 // output two subarrays before merging
62 cout << "merge: ";
63 displayElements(items, left, middle1);
64 cout << " ";
65 displayElements(items, middle2, right);
66 cout << endl;
67
68 // merge arrays until reaching end of either
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90 // copy values back into original array
91
92
93
94 // output merged array
95 cout << " ";
96 displayElements(items, left, right);
97 cout << endl;
98 } // end function merge
99
100 int main()
101 {
102 // use the default random-number generation engine to produce
103 // uniformly distributed pseudorandom int values from 10 to 99

Fig. 20.6 | Sorting an array into ascending order with merge sort. (Part 2 of 4.)

template < typename T, size_t size >
void merge(array< T, size > &items,
 size_t left, size_t middle1, size_t middle2, size_t right)

size_t leftIndex = left; // index into left subarray
size_t rightIndex = middle2; // index into right subarray
size_t combinedIndex = left; // index into temporary working array
array< T, size > combined; // working array

while (leftIndex <= middle1 && rightIndex <= right)
{
 // place smaller of two current elements into result
 // and move to next space in array
 if (items[leftIndex] <= items[rightIndex])
 combined[combinedIndex++] = items[leftIndex++];
 else
 combined[combinedIndex++] = items[rightIndex++];
} // end while

if (leftIndex == middle2) // if at end of left array
{
 while (rightIndex <= right) // copy in rest of right array
 combined[combinedIndex++] = items[rightIndex++];
} // end if
else // at end of right array
{
 while (leftIndex <= middle1) // copy in rest of left array
 combined[combinedIndex++] = items[leftIndex++];
} // end else

for (size_t i = left; i <= right; ++i)
 items[i] = combined[i];

cpphtp9_20_SearchSort.fm Page 839 Wednesday, January 2, 2013 9:03 AM

840 Chapter 20 Searching and Sorting

104 default_random_engine engine(
105 static_cast<unsigned int>(time(nullptr)));
106 uniform_int_distribution<unsigned int> randomInt(10, 99);
107
108 const size_t arraySize = 10; // size of array
109 array< int, arraySize > data; // create array
110
111 // fill data with random values
112 for (int &item : data)
113 item = randomInt(engine);
114
115 // display data's values before mergeSort
116 cout << "Unsorted array:" << endl;
117 displayElements(data, 0, data.size() - 1);
118 cout << endl;
119
120
121
122 // display data's values after mergeSort
123 cout << "Sorted array:" << endl;
124 displayElements(data, 0, data.size() - 1);
125 } // end main

Unsorted array:
 30 47 22 67 79 18 60 78 26 54

split: 30 47 22 67 79 18 60 78 26 54
 30 47 22 67 79
 18 60 78 26 54

split: 30 47 22 67 79
 30 47 22
 67 79

split: 30 47 22
 30 47
 22

split: 30 47
 30
 47

merge: 30
 47
 30 47

merge: 30 47
 22
 22 30 47

split: 67 79
 67
 79

Fig. 20.6 | Sorting an array into ascending order with merge sort. (Part 3 of 4.)

mergeSort(data, 0, data.size() - 1); // sort the array data

cpphtp9_20_SearchSort.fm Page 840 Wednesday, January 2, 2013 9:03 AM

20.3 Sorting Algorithms 841

Function mergeSort
Recursive function mergeSort (lines 24–49) receives as parameters the array to sort and
the low and high indices of the range of elements to sort. Line 28 tests the base case. If the
high index minus the low index is 0 (i.e., a one-element sub-array), the function simply
returns. If the difference between the indices is greater than or equal to 1, the function
splits the array in two—lines 30–31 determine the split point. Next, line 43 recursively
calls function mergeSort on the array’s first half, and line 44 recursively calls function
mergeSort on the array’s second half. When these two function calls return, each half is

merge: 67
 79
 67 79

merge: 22 30 47
 67 79
 22 30 47 67 79

split: 18 60 78 26 54
 18 60 78
 26 54

split: 18 60 78
 18 60
 78

split: 18 60
 18
 60

merge: 18
 60
 18 60

merge: 18 60
 78
 18 60 78

split: 26 54
 26
 54

merge: 26
 54
 26 54

merge: 18 60 78
 26 54
 18 26 54 60 78

merge: 22 30 47 67 79
 18 26 54 60 78
 18 22 26 30 47 54 60 67 78 79

Sorted array:
 18 22 26 30 47 54 60 67 78 79

Fig. 20.6 | Sorting an array into ascending order with merge sort. (Part 4 of 4.)

cpphtp9_20_SearchSort.fm Page 841 Wednesday, January 2, 2013 9:03 AM

842 Chapter 20 Searching and Sorting

sorted. Line 47 calls function merge (lines 52–98) on the two halves to combine the two
sorted arrays into one larger sorted array.

Function merge
Lines 69–77 in function merge loop until the program reaches the end of either sub-array.
Line 73 tests which element at the beginning of the two sub-arrays is smaller. If the ele-
ment in the left sub-array is smaller or both are equal, line 74 places it in position in the
combined array. If the element in the right sub-array is smaller, line 76 places it in po-
sition in the combined array. When the while loop completes, one entire sub-array is in
the combined array, but the other sub-array still contains data. Line 79 tests whether the
left sub-array has reached the end. If so, lines 81–82 fill the combined array with the el-
ements of the right sub-array. If the left sub-array has not reached the end, then the right
sub-array must have reached the end, and lines 86–87 fill the combined array with the
elements of the left sub-array. Finally, lines 91–92 copy the combined array into the
original array.

Efficiency of Merge Sort
Merge sort is a far more efficient algorithm than either insertion sort or selection sort—al-
though that may be difficult to believe when looking at the busy output in Fig. 20.6. Con-
sider the first (nonrecursive) call to function mergeSort (line 120). This results in two
recursive calls to function mergeSort with sub-arrays that are each approximately half the
original array’s size, and a single call to function merge. The call to merge requires, at worst,
n – 1 comparisons to fill the original array, which is O(n). (Recall that each array element
is chosen by comparing one element from each of the sub-arrays.) The two calls to function
mergeSort result in four more recursive calls to function mergeSort—each with a sub-array
approximately one-quarter the size of the original array—and two calls to function merge.
These two calls to function merge each require, at worst, n/2 – 1 comparisons, for a total
number of comparisons of O(n). This process continues, each call to mergeSort generating
two additional calls to mergeSort and a call to merge, until the algorithm has split the array
into one-element sub-arrays. At each level, O(n) comparisons are required to merge the sub-
arrays. Each level splits the size of the arrays in half, so doubling the size of the array re-
quires one more level. Quadrupling the size of the array requires two more levels. This pat-
tern is logarithmic and results in log2 n levels. This results in a total efficiency of O(n log n).

Summary of Searching and Sorting Algorithm Efficiencies
Figure 20.7 summarizes the searching and sorting algorithms we cover in this chapter and
lists the Big O for each. Figure 20.8 lists the Big O categories we’ve covered in this chapter
along with a number of values for n to highlight the differences in the growth rates.

Algorithm Location Big O

Searching Algorithms

Linear search Section 20.2.1 O(n)

Binary search Section 20.2.2 O(log n)

Fig. 20.7 | Searching and sorting algorithms with Big O values. (Part 1 of 2.)

cpphtp9_20_SearchSort.fm Page 842 Wednesday, January 2, 2013 9:03 AM

20.4 Wrap-Up 843

20.4 Wrap-Up
This chapter discussed searching and sorting data. We began by discussing searching. We
first presented the simple, but inefficient linear search algorithm. Then, we presented the bi-
nary search algorithm, which is faster but more complex than linear search. Next, we dis-
cussed sorting data. You learned two simple, but inneficient sorting techniques—insertion
sort and selection sort. Then, we presented the merge sort algorithm, which is more efficient
than either the insertion sort or the selection sort. Throughout the chapter we also intro-
duced Big O notation, which helps you express the efficiency of an algorithm by measuring
the worst-case runtime of an algorithm. Big O is useful for comparing algorithms so that you
can choose the most efficient one. In the next chapter, we discuss typical string-manipulation
operations provided by class template basic_string. We also introduce string stream-pro-
cessing capabilities that allow strings to be input from and output to memory.

Recursive linear search Exercise 20.8 O(n)

Recursive binary search Exercise 20.9 O(log n)

Sorting Algorithms

Insertion sort Section 20.3.1 O(n2)

Selection sort Section 20.3.2 O(n2)

Merge sort Section 20.3.3 O(n log n)

Bubble sort Exercises 20.5–20.6 O(n2)

Quicksort Exercise 20.10 Worst case: O(n2)
Average case: O(n log n)

n
Approximate
decimal value O(log n) O(n) O(n log n) O(n2)

210 1000 10 210 210 ⋅ 10 220

220 1,000,000 20 220 220 ⋅ 20 240

230 1,000,000,000 30 230 230 ⋅ 30 260

Fig. 20.8 | Approximate number of comparisons for common Big O notations.

Algorithm Location Big O

Fig. 20.7 | Searching and sorting algorithms with Big O values. (Part 2 of 2.)

Summary
Section 20.1 Introduction
• Searching data involves determining whether a search key (p. 823) is present in the data and, if

so, returning its location.

• Sorting (p. 823) involves arranging data into order.

cpphtp9_20_SearchSort.fm Page 843 Wednesday, January 2, 2013 9:03 AM

844 Chapter 20 Searching and Sorting

• One way to describe the efficiency of an algorithm is with Big O notation (p. 823), which indi-
cates how much work an algorithm must do to solve a problem.

Section 20.2 Searching Algorithms
• A key difference among searching algorithms is the amount of effort they require to return a result.

Section 20.2.1 Linear Search
• The linear search (p. 824) compares each array element with a search key. Because the array is

not in any particular order, it’s just as likely that the value will be found in the first element as
the last. On average, the algorithm must compare the search key with half the array elements.
To determine that a value is not in the array, the algorithm must compare the search key to every
element in the array.

• Big O describes how an algorithm’s effort varies depending on the number of elements in the data.

• An algorithm that’s O(1) has a constant runtime (p. 825)—the number of comparisons does not
grow as the size of the array increases.

• An O(n) algorithm is referred to as having a linear runtime (p. 826).

• Big O highlights dominant factors and ignores terms that are unimportant with high values of n.

• Big O notation represents the growth rate of algorithm runtimes, so constants are ignored.

• The linear search algorithm runs in O(n) time.

• In the worst case for linear search every element must be checked to determine whether the search
element exists. This occurs if the search key is the last element in the array or is not present.

Section 20.2.2 Binary Search
• Binary search (p. 827) is more efficient than linear search, but it requires that the array first be

sorted. This is worthwhile only when the array, once sorted, will be searched many times.

• The first iteration of binary search tests the middle element. If this is the search key, the algorithm
returns its location. If the search key is less than the middle element, binary search continues with
the first half of the array. If the search key is greater than the middle element, binary search con-
tinues with the second half. Each iteration tests the middle value of the remaining array and, if
the element is not found, eliminates from consideration half of the remaining elements.

• Binary search is more efficient than linear search, because with each comparison it eliminates
from consideration half of the elements in the array.

• Binary search runs in O(log n) (p. 831) time.

• If the size of the array is doubled, binary search requires only one extra comparison to complete.

Section 20.3.1 Insertion Sort
• The first iteration of an insertion sort (p. 832) takes the second element and, if it’s less than the

first element, swaps it with the first element (i.e., the algorithm inserts the second element in front
of the first element). The second iteration looks at the third element and inserts it into the correct
position with respect to the first two elements, so all three elements are in order. At the ith iter-
ation of this algorithm, the first i elements in the original array will be sorted. For small arrays,
the insertion sort is acceptable, but for larger arrays it’s inefficient compared to other more so-
phisticated sorting algorithms.

• The insertion sort algorithm runs in O(n2) time.

Section 20.3.2 Selection Sort
• The first iteration of selection sort (p. 834) selects the smallest element and swaps it with the first

element. The second iteration selects the second-smallest element (which is the smallest remain-

cpphtp9_20_SearchSort.fm Page 844 Wednesday, January 2, 2013 9:03 AM

 Self-Review Exercises 845

ing element) and swaps it with the second element. This continues until the last iteration selects
the second-largest element and swaps it with the second-to-last index, leaving the largest element
in the last index. At the ith iteration, the smallest i elements are sorted into the first i elements.

• The selection sort algorithm runs in O(n2) time (p. 826).

Section 20.3.3 Merge Sort (A Recursive Implementation)
• Merge sort (p. 837) is faster, but more complex to implement, than insertion sort and selection sort.

• The merge sort algorithm sorts an array by splitting the array into two equal-sized sub-arrays,
sorting each sub-array and merging the sub-arrays into one larger array.

• Merge sort’s base case is an array with one element, which is already sorted. The merge part of
merge sort takes two sorted arrays (these could be one-element arrays) and combines them into
one larger sorted array.

• Merge sort performs the merge by looking at the first element in each array, which is also the small-
est element in each. Merge sort takes the smallest of these and places it in the first element of the
larger, sorted array. If there are still elements in the sub-array, merge sort looks at the second ele-
ment in that sub-array (which is now the smallest element remaining) and compares it to the first
element in the other sub-array. Merge sort continues this process until the larger array is filled.

• In the worst case, the first call to merge sort has to make O(n) comparisons to fill the n slots in
the final array.

• The merging portion of the merge sort algorithm is performed on two sub-arrays, each of ap-
proximately size n/2. Creating each of these sub-arrays requires n/2 – 1 comparisons for each
sub-array, or O(n) comparisons total. This pattern continues, as each level works on twice as
many arrays, but each is half the size of the previous array.

• Similar to binary search, this halving results in log n levels, each level requiring O(n) compari-
sons, for a total efficiency of O(n log n) (p. 842).

Self-Review Exercises
20.1 Fill in the blanks in each of the following statements:

a) A selection sort application would take approximately times as long to run
on a 128-element array as on a 32-element array.

b) The efficiency of merge sort is .

20.2 What key aspect of both the binary search and the merge sort accounts for the logarithmic
portion of their respective Big Os?

20.3 In what sense is the insertion sort superior to the merge sort? In what sense is the merge sort
superior to the insertion sort?

20.4 In the text, we say that after the merge sort splits the array into two sub-arrays, it then sorts
these two sub-arrays and merges them. Why might someone be puzzled by our statement that “it
then sorts these two sub-arrays”?

Answers to Self-Review Exercises
20.1 a) 16, because an O(n2) algorithm takes 16 times as long to sort four times as much infor-
mation. b) O(n log n).

20.2 Both of these algorithms incorporate “halving”—somehow reducing something by half.
The binary search eliminates from consideration half of the array after each comparison. The merge
sort splits the array in half each time it’s called.

cpphtp9_20_SearchSort.fm Page 845 Wednesday, January 2, 2013 9:03 AM

846 Chapter 20 Searching and Sorting

20.3 The insertion sort is easier to understand and to implement than the merge sort. The merge
sort is far more efficient (O(n log n)) than the insertion sort (O(n2)).

20.4 In a sense, it does not really sort these two sub-arrays. It simply keeps splitting the original
array in half until it provides a one-element sub-array, which is, of course, sorted. It then builds
up the original two sub-arrays by merging these one-element arrays to form larger sub-arrays,
which are then merged, and so on.

Exercises
20.5 (Bubble Sort) Implement the bubble sort algorithm—another simple yet inefficient sorting
technique. It’s called bubble sort or sinking sort because smaller values gradually “bubble” their way
to the top of the array (i.e., toward the first element) like air bubbles rising in water, while the larger
values sink to the bottom (end) of the array. The technique uses nested loops to make several passes
through the array. Each pass compares successive pairs of elements. If a pair is in increasing order
(or the values are equal), the bubble sort leaves the values as they are. If a pair is in decreasing order,
the bubble sort swaps their values in the array.

The first pass compares the first two element values of the array and swaps them if necessary.
It then compares the second and third element values in the array. The end of this pass compares
the last two element values in the array and swaps them if necessary. After one pass, the largest
value will be in the last element. After two passes, the largest two values will be in the last two ele-
ments. Explain why bubble sort is an O(n2) algorithm.

20.6 (Enhanced Bubble Sort) Make the following simple modifications to improve the perfor-
mance of the bubble sort you developed in Exercise 20.5:

a) After the first pass, the largest value is guaranteed to be in the highest-numbered ele-
ment of the array; after the second pass, the two highest values are “in place”; and so
on. Instead of making nine comparisons (for a 10-element array) on every pass, modify
the bubble sort to make only the eight necessary comparisons on the second pass, seven
on the third pass, and so on.

b) The data in the array may already be in the proper order or near-proper order, so why
make nine passes (of a 10-element array) if fewer will suffice? Modify the sort to check
at the end of each pass whether any swaps have been made. If none have been made, the
data must already be in the proper order, so the program should terminate. If swaps
have been made, at least one more pass is needed.

20.7 (Bucket Sort) A bucket sort begins with a one-dimensional array of positive integers to be
sorted and a two-dimensional array of integers with rows indexed from 0 to 9 and columns indexed
from 0 to n – 1, where n is the number of values to be sorted. Each row of the two-dimensional
array is referred to as a bucket. Write a class named BucketSort containing a function called sort
that operates as follows:

a) Place each value of the one-dimensional array into a row of the bucket array, based on
the value’s “ones” (rightmost) digit. For example, 97 is placed in row 7, 3 is placed in
row 3 and 100 is placed in row 0. This procedure is called a distribution pass.

b) Loop through the bucket array row by row, and copy the values back to the original
array. This procedure is called a gathering pass. The new order of the preceding values
in the one-dimensional array is 100, 3 and 97.

c) Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.).
On the second (tens digit) pass, 100 is placed in row 0, 3 is placed in row 0 (because 3 has no

tens digit) and 97 is placed in row 9. After the gathering pass, the order of the values in the one-
dimensional array is 100, 3 and 97. On the third (hundreds digit) pass, 100 is placed in row 1, 3 is
placed in row 0 and 97 is placed in row 0 (after the 3). After this last gathering pass, the original
array is in sorted order.

cpphtp9_20_SearchSort.fm Page 846 Wednesday, January 2, 2013 9:03 AM

 Exercises 847

Note that the two-dimensional array of buckets is 10 times the length of the integer array
being sorted. This sorting technique provides better performance than a bubble sort, but requires
much more memory—the bubble sort requires space for only one additional element of data. This
comparison is an example of the space–time trade-off: The bucket sort uses more memory than the
bubble sort, but performs better. This version of the bucket sort requires copying all the data back
to the original array on each pass. Another possibility is to create a second two-dimensional bucket
array and repeatedly swap the data between the two bucket arrays.

20.8 (Recursive Linear Search) Modify Fig. 20.2 to use recursive function recursiveLin-
earSearch to perform a linear search of the array. The function should receive the array, the search
key and starting index as arguments. If the search key is found, return its index in the array; other-
wise, return –1. Each call to the recursive function should check one element value in the array.

20.9 (Recursive Binary Search) Modify Fig. 20.3 to use recursive function recursiveBinary-
Search to perform a binary search of the array. The function should receive the array, the search
key, starting index and ending index as arguments. If the search key is found, return its index in the
array. If the search key is not found, return –1.

20.10 (Quicksort) The recursive sorting technique called quicksort uses the following basic algo-
rithm for a one-dimensional array of values:

a) Partitioning Step: Take the first element of the unsorted array and determine its final
location in the sorted array (i.e., all values to the left of the element in the array are less
than the element’s value, and all values to the right of the element in the array are great-
er than the element’s value—we show how to do this below). We now have one value
in its proper location and two unsorted sub-arrays.

b) Recursion Step: Perform the Partitioning Step on each unsorted sub-array.

Each time Step 1 is performed on a sub-array, another element is placed in its final location of the
sorted array, and two unsorted sub-arrays are created. When a sub-array consists of one element,
that sub-array must be sorted; therefore, that element is in its final location.

The basic algorithm seems simple enough, but how do we determine the final position of the
first element of each sub-array? As an example, consider the following set of values (the element in
bold is the partitioning element—it will be placed in its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45

Starting from the rightmost element of the array, compare each element with 37 until an ele-
ment less than 37 is found. Then swap 37 and that element. The first element less than 37 is 12, so
37 and 12 are swapped. The values now reside in the array as follows:

12 2 6 4 89 8 10 37 68 45

Element 12 is in italics to indicate that it was just swapped with 37.
Starting from the left of the array, but beginning with the element after 12, compare each ele-

ment with 37 until an element greater than 37 is found. Then swap 37 and that element. The first
element greater than 37 is 89, so 37 and 89 are swapped. The values now reside in the array as fol-
lows:

12 2 6 4 37 8 10 89 68 45

Starting from the right, but beginning with the element before 89, compare each element
with 37 until an element less than 37 is found. Then swap 37 and that element. The first element
less than 37 is 10, so 37 and 10 are swapped. The values now reside in the array as follows:

12 2 6 4 10 8 37 89 68 45

Starting from the left, but beginning with the element after 10, compare each element with
37 until an element greater than 37 is found. Then swap 37 and that element. There are no more

cpphtp9_20_SearchSort.fm Page 847 Wednesday, January 2, 2013 9:03 AM

848 Chapter 20 Searching and Sorting

elements greater than 37, so when we compare 37 with itself, we know that 37 has been placed in
its final location of the sorted array.

Once the partition has been applied to the array, there are two unsorted sub-arrays. The sub-
array with values less than 37 contains 12, 2, 6, 4, 10 and 8. The sub-array with values greater
than 37 contains 89, 68 and 45. The sort continues with both sub-arrays being partitioned in the
same manner as the original array.

Based on the preceding discussion, write recursive function quickSort to sort a single-sub-
scripted integer array. The function should receive as arguments an integer array, a starting sub-
script and an ending subscript. Function partition should be called by quickSort to perform the
partitioning step.

cpphtp9_20_SearchSort.fm Page 848 Wednesday, January 2, 2013 9:03 AM

21Class string and String
Stream Processing: A Deeper
Look

Suit the action to the word, the
word to the action; with this
special observance, that you
o’erstep not the modesty of
nature.
—William Shakespeare

The difference between the
almost-right word and the right
word is really a large matter —
it’s the difference between the
lightning bug and the lightning.
—Mark Twain

Mum’s the word.
—Miguel de Cervantes

I have made this letter longer
than usual, because I lack the
time to make it short.
—Blaise Pascal

O b j e c t i v e s
In this chapter you’ll:
■ Manipulate string objects.

■ Determine string
characteristics.

■ Find, replace and insert
characters in strings.

■ Convert string objects to
pointer-based strings and
vice versa.

■ Use string iterators.

■ Perform input from and
output to strings in
memory.

■ Use C++11 numeric
conversion functions.

cpphtp9_21_string.fm Page 849 Wednesday, January 2, 2013 1:35 PM

850 Chapter 21 Class string and String Stream Processing: A Deeper Look

21.1 Introduction
The class template basic_string provides typical string-manipulation operations such as
copying, searching, etc. The template definition and all support facilities are defined in
namespace std; these include the typedef statement

that creates the alias type string for basic_string<char>. A typedef is also provided for
the wchar_t type (wstring). Type wchar_t1 stores characters (e.g., two-byte characters,
four-byte characters, etc.) for supporting other character sets. We use string exclusively
throughout this chapter. To use strings, include header <string>.

Initializing a string Object
A string object can be initialized with a constructor argument as in

which creates a string containing the characters in "Hello", or with two constructor ar-
guments as in

which creates a string containing eight 'x' characters. Class string also provides a de-
fault constructor (which creates an empty string) and a copy constructor. A string also can
be initialized in its definition as in

Remember that = in the preceding declaration is not an assignment; rather it’s an implicit
call to the string class constructor, which does the conversion.

21.1 Introduction
21.2 string Assignment and

Concatenation
21.3 Comparing strings
21.4 Substrings
21.5 Swapping strings
21.6 string Characteristics
21.7 Finding Substrings and Characters in

a string

21.8 Replacing Characters in a string
21.9 Inserting Characters into a string

21.10 Conversion to Pointer-Based char *
Strings

21.11 Iterators
21.12 String Stream Processing
21.13 C++11 Numeric Conversion Functions
21.14 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

typedef basic_string< char > string;

1. Type wchar_t commonly is used to represent Unicode®, but wchar_t’s size is not specified by the
standard. C++11 also has types char16_t and char32_t for Unicode support. The Unicode Standard
outlines a specification to produce consistent encoding of the world’s characters and symbols. To learn
more about the Unicode Standard, visit www.unicode.org.

string text("Hello"); // creates a string from a const char *

string name(8, 'x'); // string of 8 'x' characters

string month = "March"; // same as: string month("March");

cpphtp9_21_string.fm Page 850 Wednesday, January 2, 2013 1:35 PM

21.2 string Assignment and Concatenation 851

strings Are Not Necessarily Null Terminated
Unlike pointer-based char * strings, string objects are not necessarily null terminated.
[Note: The C++ standard document provides only a description of the capabilities of class
string—implementation is platform dependent.]

Length of a string
The length of a string can be retrieved with member function size and with member
function length . The subscript operator, [] (which does not perform bounds checking),
can be used with strings to access and modify individual characters. A string object has
a first subscript of 0 and a last subscript of size() – 1.

Processing strings
Most string member functions take as arguments a starting subscript location and the
number of characters on which to operate.

string I/O
The stream extraction operator (>>) is overloaded to support strings. The statements

declare a string object and read a string from cin. Input is delimited by whitespace char-
acters. When a delimiter is encountered, the input operation is terminated. Function get-
line also is overloaded for strings. Assuming string1 is a string, the statement

reads a string from the keyboard into string1. Input is delimited by a newline ('\n'),
so getLine can read a line of text into a string object. You can specify an alternate delim-
iter as the optional third argument to getline.

Validating Input
In earlier chapters, we mentioned the importance of validating user input in industrial-
strength code. The capabilities presented in this chapter—and the regular-expression ca-
pabilities shown in Section 24.5—are frequently used to perform validation.

21.2 string Assignment and Concatenation
Figure 21.1 demonstrates string assignment and concatenation. Line 4 includes header
<string> for class string. The strings string1, string2 and string3 are created in
lines 9–11. Line 13 assigns the value of string1 to string2. After the assignment takes
place, string2 is a copy of string1. Line 14 uses member function assign to copy
string1 into string3. A separate copy is made (i.e., string1 and string3 are indepen-
dent objects). Class string also provides an overloaded version of member function as-
sign that copies a specified number of characters, as in

where sourceString is the string to be copied, start is the starting subscript and num-
berOfCharacters is the number of characters to copy.

Line 19 uses the subscript operator to assign 'r' to string3[2] (forming "car") and
to assign 'r' to string2[0] (forming "rat"). The strings are then output.

string stringObject;
cin >> stringObject;

getline(cin, string1);

targetString.assign(sourceString, start, numberOfCharacters);

cpphtp9_21_string.fm Page 851 Wednesday, January 2, 2013 1:35 PM

852 Chapter 21 Class string and String Stream Processing: A Deeper Look

1 // Fig. 21.1: Fig21_01.cpp
2 // Demonstrating string assignment and concatenation.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9

10
11
12
13
14
15 cout << "string1: " << string1 << "\nstring2: " << string2
16 << "\nstring3: " << string3 << "\n\n";
17
18
19
20
21 cout << "After modification of string2 and string3:\n" << "string1: "
22 << string1 << "\nstring2: " << string2 << "\nstring3: ";
23
24 // demonstrating member function at
25 for (size_t i = 0; i < ; ++i)
26 cout << ; // can throw out_of_range exception
27
28 // declare string4 and string5
29
30 string string5; // initialized to the empty string
31
32
33
34
35
36
37
38
39
40 cout << "\n\nAfter concatenation:\nstring1: " << string1
41 << "\nstring2: " << string2 << "\nstring3: " << string3
42 << "\nstring4: " << string4 << "\nstring5: " << string5 << endl;
43 } // end main

string1: cat
string2: cat
string3: cat

After modification of string2 and string3:
string1: cat
string2: rat
string3: car

Fig. 21.1 | Demonstrating string assignment and concatenation. (Part 1 of 2.)

#include <string>

string string1("cat");
string string2; // initialized to the empty string
string string3; // initialized to the empty string

string2 = string1; // assign string1 to string2
string3.assign(string1); // assign string1 to string3

// modify string2 and string3
string2[0] = string3[2] = 'r';

string3.size()
string3.at(i)

string string4(string1 + "apult"); // concatenation

// overloaded +=
string3 += "pet"; // create "carpet"
string1.append("acomb"); // create "catacomb"

// append subscript locations 4 through end of string1 to
// create string "comb" (string5 was initially empty)
string5.append(string1, 4, string1.size() - 4);

cpphtp9_21_string.fm Page 852 Wednesday, January 2, 2013 1:35 PM

21.3 Comparing strings 853

Lines 25–26 output the contents of string3 one character at a time using member
function at. Member function at provides checked access (or range checking); i.e., going
past the end of the string throws an out_of_range exception. The subscript operator, [],
does not provide checked access. This is consistent with its use on arrays. Note that you can
also iterate through the characters in a string using C++11’s range-based for as in

which ensures that you do not access any elements outside the string’s bounds.

String string4 is declared (line 29) and initialized to the result of concatenating
string1 and "apult" using the overloaded + operator, which for class string denotes con-
catenation. Line 33 uses the overloaded addition assignment operator, +=, to concatenate
string3 and "pet". Line 34 uses member function append to concatenate string1 and
"acomb".

Line 38 appends the string "comb" to empty string string5. This member function
is passed the string (string1) to retrieve characters from, the starting subscript in the
string (4) and the number of characters to append (the value returned by
string1.size() - 4).

21.3 Comparing strings
Class string provides member functions for comparing strings. Figure 21.2 demon-
strates class string’s comparison capabilities.

After concatenation:
string1: catacomb
string2: rat
string3: carpet
string4: catapult
string5: comb

for (char c : string3)
 cout << c;

Common Programming Error 21.1
Accessing an element beyond the size of the string using the subscript operator is an un-
reported logic error.

1 // Fig. 21.2: Fig21_02.cpp
2 // Comparing strings.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("Testing the comparison functions.");

Fig. 21.2 | Comparing strings. (Part 1 of 3.)

Fig. 21.1 | Demonstrating string assignment and concatenation. (Part 2 of 2.)

cpphtp9_21_string.fm Page 853 Wednesday, January 2, 2013 1:35 PM

854 Chapter 21 Class string and String Stream Processing: A Deeper Look

10 string string2("Hello");
11 string string3("stinger");
12 string string4(string2); // "Hello"
13
14 cout << "string1: " << string1 << "\nstring2: " << string2
15 << "\nstring3: " << string3 << "\nstring4: " << string4 << "\n\n";
16
17 // comparing string1 and string4
18 if ()
19 cout << "string1 == string4\n";
20 else if ()
21 cout << "string1 > string4\n";
22 else // string1 < string4
23 cout << "string1 < string4\n";
24
25 // comparing string1 and string2
26 int result = ;
27
28 if (result == 0)
29 cout << "string1.compare(string2) == 0\n";
30 else if (result > 0)
31 cout << "string1.compare(string2) > 0\n";
32 else // result < 0
33 cout << "string1.compare(string2) < 0\n";
34
35 // comparing string1 (elements 2-5) and string3 (elements 0-5)
36 result =
37
38 if (result == 0)
39 cout << "string1.compare(2, 5, string3, 0, 5) == 0\n";
40 else if (result > 0)
41 cout << "string1.compare(2, 5, string3, 0, 5) > 0\n";
42 else // result < 0
43 cout << "string1.compare(2, 5, string3, 0, 5) < 0\n";
44
45 // comparing string2 and string4
46 result = ;
47
48 if (result == 0)
49 cout << "string4.compare(0, string2.size(), "
50 << "string2) == 0" << endl;
51 else if (result > 0)
52 cout << "string4.compare(0, string2.size(), "
53 << "string2) > 0" << endl;
54 else // result < 0
55 cout << "string4.compare(0, string2.size(), "
56 << "string2) < 0" << endl;
57
58 // comparing string2 and string4
59 result =
60
61 if (result == 0)
62 cout << "string2.compare(0, 3, string4) == 0" << endl;

Fig. 21.2 | Comparing strings. (Part 2 of 3.)

string1 == string4

string1 > string4

string1.compare(string2)

string1.compare(2, 5, string3, 0, 5);

string4.compare(0, string2.size(), string2)

string2.compare(0, 3, string4);

cpphtp9_21_string.fm Page 854 Wednesday, January 2, 2013 1:35 PM

21.3 Comparing strings 855

The program declares four strings (lines 9–12) and outputs each (lines 14–15). Line
18 tests string1 against string4 for equality using the overloaded equality operator. If the
condition is true, "string1 == string4" is output. If the condition is false, the condi-
tion in line 20 is tested. All the string class overloaded relational and equality operator
functions return bool values.

Line 26 uses string member function compare to compare string1 to string2. Vari-
able result is assigned 0 if the strings are equivalent, a positive number if string1 is lex-
icographically greater than string2 or a negative number if string1 is lexicographically less
than string2. When we say that a string is lexicographically less than another, we mean
that the compare method uses the numerical values of the characters (see Appendix B,
ASCII Character Set) in each string to determine that the first string is less than the
second. Because a string starting with 'T' is considered lexicographically greater than a
string starting with 'H', result is assigned a value greater than 0, as confirmed by the
output. A lexicon is a dictionary.

Line 36 compares portions of string1 and string3 using an overloaded version of
member function compare. The first two arguments (2 and 5) specify the starting subscript
and length of the portion of string1 ("sting") to compare with string3. The third argu-
ment is the comparison string. The last two arguments (0 and 5) are the starting subscript
and length of the portion of the comparison string being compared (also "sting"). The
value assigned to result is 0 for equality, a positive number if string1 is lexicographically
greater than string3 or a negative number if string1 is lexicographically less than
string3. The two pieces being compared here are identical, so result is assigned 0.

Line 46 uses another overloaded version of function compare to compare string4 and
string2. The first two arguments are the same—the starting subscript and length. The last
argument is the comparison string. The value returned is also the same—0 for equality,
a positive number if string4 is lexicographically greater than string2 or a negative number
if string4 is lexicographically less than string2. Because the two pieces of strings being
compared here are identical, result is assigned 0.

Line 59 calls member function compare to compare the first 3 characters in string2
to string4. Because "Hel" is less than "Hello", a value less than zero is returned.

63 else if (result > 0)
64 cout << "string2.compare(0, 3, string4) > 0" << endl;
65 else // result < 0
66 cout << "string2.compare(0, 3, string4) < 0" << endl;
67 } // end main

string1: Testing the comparison functions.
string2: Hello
string3: stinger
string4: Hello

string1 > string4
string1.compare(string2) > 0
string1.compare(2, 5, string3, 0, 5) == 0
string4.compare(0, string2.size(), string2) == 0
string2.compare(0, 3, string4) < 0

Fig. 21.2 | Comparing strings. (Part 3 of 3.)

cpphtp9_21_string.fm Page 855 Wednesday, January 2, 2013 1:35 PM

856 Chapter 21 Class string and String Stream Processing: A Deeper Look

21.4 Substrings
Class string provides member function substr for retrieving a substring from a string.
The result is a new string object that’s copied from the source string. Figure 21.3 dem-
onstrates substr. The program declares and initializes a string at line 9. Line 13 uses
member function substr to retrieve a substring from string1. The first argument speci-
fies the beginning subscript of the desired substring; the second argument specifies the sub-
string’s length.

21.5 Swapping strings
Class string provides member function swap for swapping strings. Figure 21.4 swaps
two strings. Lines 9–10 declare and initialize strings first and second. Each string is
then output. Line 15 uses string member function swap to swap the values of first and
second. The two strings are printed again to confirm that they were indeed swapped.
The string member function swap is useful for implementing programs that sort strings.

1 // Fig. 21.3: Fig21_03.cpp
2 // Demonstrating string member function substr.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("The airplane landed on time.");

10
11 // retrieve substring "plane" which
12 // begins at subscript 7 and consists of 5 characters
13 cout << << endl;
14 } // end main

plane

Fig. 21.3 | Demonstrating string member function substr.

1 // Fig. 21.4: Fig21_04.cpp
2 // Using the swap function to swap two strings.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string first("one");

10 string second("two");
11
12 // output strings
13 cout << "Before swap:\n first: " << first << "\nsecond: " << second;

Fig. 21.4 | Using the swap function to swap two strings. (Part 1 of 2.)

string1.substr(7, 5)

cpphtp9_21_string.fm Page 856 Wednesday, January 2, 2013 1:35 PM

21.6 string Characteristics 857

21.6 string Characteristics
Class string provides member functions for gathering information about a string’s size,
length, capacity, maximum length and other characteristics. A string’s size or length is the
number of characters currently stored in the string. A string’s capacity is the number of
characters that can be stored in the string without allocating more memory. The capacity
of a string must be at least equal to the current size of the string, though it can be great-
er. The exact capacity of a string depends on the implementation. The maximum size is
the largest possible size a string can have. If this value is exceeded, a length_error ex-
ception is thrown. Figure 21.5 demonstrates string class member functions for determin-
ing various characteristics of strings.

14
15
16
17 cout << "\n\nAfter swap:\n first: " << first
18 << "\nsecond: " << second << endl;
19 } // end main

Before swap:
 first: one
second: two

After swap:
 first: two
second: one

1 // Fig. 21.5: Fig21_05.cpp
2 // Printing string characteristics.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 void printStatistics(const string &);
8
9 int main()

10 {
11 string string1; // empty string
12
13 cout << "Statistics before input:\n" << boolalpha;
14 printStatistics(string1);
15
16 // read in only "tomato" from "tomato soup"
17 cout << "\n\nEnter a string: ";
18 cin >> string1; // delimited by whitespace
19 cout << "The string entered was: " << string1;
20

Fig. 21.5 | Printing string characteristics. (Part 1 of 3.)

Fig. 21.4 | Using the swap function to swap two strings. (Part 2 of 2.)

first.swap(second); // swap strings

cpphtp9_21_string.fm Page 857 Wednesday, January 2, 2013 1:35 PM

858 Chapter 21 Class string and String Stream Processing: A Deeper Look

21 cout << "\nStatistics after input:\n";
22 printStatistics(string1);
23
24 // read in "soup"
25 cin >> string1; // delimited by whitespace
26 cout << "\n\nThe remaining string is: " << string1 << endl;
27 printStatistics(string1);
28
29 // append 46 characters to string1
30
31 cout << "\n\nstring1 is now: " << string1 << endl;
32 printStatistics(string1);
33
34 // add 10 elements to string1
35
36 cout << "\n\nStats after resizing by (length + 10):\n";
37 printStatistics(string1);
38 cout << endl;
39 } // end main
40
41 // display string statistics
42 void printStatistics(const string &stringRef)
43 {
44 cout << "capacity: " << stringRef.capacity() << "\nmax size: "
45 << stringRef.max_size() << "\nsize: " << stringRef.size()
46 << "\nlength: " << stringRef.size()
47 << "\nempty: " << stringRef.empty();
48 } // end printStatistics

Statistics before input:
capacity: 15
max size: 4294967294
size: 0
length: 0
empty: true

Enter a string: tomato soup
The string entered was: tomato
Statistics after input:
capacity: 15
max size: 4294967294
size: 6
length: 6
empty: false

The remaining string is: soup
capacity: 15
max size: 4294967294
size: 4
length: 4
empty: false

string1 is now: soup1234567890abcdefghijklmnopqrstuvwxyz1234567890
capacity: 63
max size: 4294967294

Fig. 21.5 | Printing string characteristics. (Part 2 of 3.)

string1 += "1234567890abcdefghijklmnopqrstuvwxyz1234567890";

string1.resize(string1.size() + 10);

cpphtp9_21_string.fm Page 858 Wednesday, January 2, 2013 1:35 PM

21.7 Finding Substrings and Characters in a string 859

The program declares empty string string1 (line 11) and passes it to function
printStatistics (line 14). Function printStatistics (lines 42–48) takes a reference to
a const string as an argument and outputs the capacity (using member function
capacity), maximum size (using member function max_size), size (using member func-
tion size), length (using member function size) and whether the string is empty (using
member function empty). The initial call to printStatistics indicates that the initial
values for the size and length of string1 are 0.

The size and length of 0 indicate that there are no characters stored in string. Recall
that the size and length are always identical. In this implementation, the maximum size is
4,294,967,294. Object string1 is an empty string, so function empty returns true.

Line 18 inputs a string. In this example, "tomato soup" is input. Because a space char-
acter is a delimiter, only "tomato" is stored in string1; however, "soup" remains in the
input buffer. Line 22 calls function printStatistics to output statistics for string1.
Notice in the output that the length is 6 and the capacity is 15.

Line 25 reads "soup" from the input buffer and stores it in string1, thereby replacing
"tomato". Line 27 passes string1 to printStatistics.

Line 30 uses the overloaded += operator to concatenate a 46-character-long string to
string1. Line 32 passes string1 to printStatistics. The capacity has increased to 63
elements and the length is now 50.

Line 35 uses member function resize to increase the length of string1 by 10 char-
acters. The additional elements are set to null characters. The output shows that the
capacity has not changed and the length is now 60.

21.7 Finding Substrings and Characters in a string
Class string provides const member functions for finding substrings and characters in a
string. Figure 21.6 demonstrates the find functions.

size: 50
length: 50
empty: false

Stats after resizing by (length + 10):
capacity: 63
max size: 4294967294
size: 60
length: 60
empty: false

1 // Fig. 21.6: Fig21_06.cpp
2 // Demonstrating the string find member functions.
3 #include <iostream>
4 #include <string>

Fig. 21.6 | Demonstrating the string find member functions. (Part 1 of 2.)

Fig. 21.5 | Printing string characteristics. (Part 3 of 3.)

cpphtp9_21_string.fm Page 859 Wednesday, January 2, 2013 1:35 PM

860 Chapter 21 Class string and String Stream Processing: A Deeper Look

5 using namespace std;
6
7 int main()
8 {
9 string string1("noon is 12 pm; midnight is not.");

10 int location;
11
12 // find "is" at location 5 and 24
13 cout << "Original string:\n" << string1
14 << "\n\n(find) \"is\" was found at: " <<
15 << "\n(rfind) \"is\" was found at: " <<
16
17 // find 'o' at location 1
18 location =
19 cout << "\n\n(find_first_of) found '" << string1[location]
20 << "' from the group \"misop\" at: " << location;
21
22 // find 'o' at location 28
23 location =
24 cout << "\n\n(find_last_of) found '" << string1[location]
25 << "' from the group \"misop\" at: " << location;
26
27 // find '1' at location 8
28 location =
29 cout << "\n\n(find_first_not_of) '" << string1[location]
30 << "' is not contained in \"noi spm\" and was found at: "
31 << location;
32
33 // find '.' at location 13
34 location =
35 cout << "\n\n(find_first_not_of) '" << string1[location]
36 << "' is not contained in \"12noi spm\" and was "
37 << "found at: " << location << endl;
38
39 // search for characters not in string1
40 location =
41
42 cout << "\nfind_first_not_of(\"noon is 12 pm; midnight is not.\")"
43 << " returned: " << location << endl;
44 } // end main

Original string:
noon is 12 pm; midnight is not.

(find) "is" was found at: 5
(rfind) "is" was found at: 24

(find_first_of) found 'o' from the group "misop" at: 1

(find_last_of) found 'o' from the group "misop" at: 28

(find_first_not_of) '1' is not contained in "noi spm" and was found at: 8

(find_first_not_of) '.' is not contained in "12noi spm" and was found at: 13

find_first_not_of("noon is 12 pm; midnight is not.") returned: -1

Fig. 21.6 | Demonstrating the string find member functions. (Part 2 of 2.)

string1.find("is")
string1.rfind("is");

string1.find_first_of("misop");

string1.find_last_of("misop");

string1.find_first_not_of("noi spm");

string1.find_first_not_of("12noi spm");

string1.find_first_not_of(
"noon is 12 pm; midnight is not.");

cpphtp9_21_string.fm Page 860 Wednesday, January 2, 2013 1:35 PM

21.8 Replacing Characters in a string 861

String string1 is declared and initialized in line 9. Line 14 attempts to find "is" in
string1 using function find. If "is" is found, the subscript of the starting location of that
string is returned. If the string is not found, the value string::npos (a public static
constant defined in class string) is returned. This value is returned by the string find-
related functions to indicate that a substring or character was not found in the string.

Line 15 uses member function rfind to search string1 backward (i.e., right-to-left).
If "is" is found, the subscript location is returned. If the string is not found,
string::npos is returned. [Note: The rest of the find functions presented in this section
return the same type unless otherwise noted.]

Line 18 uses member function find_first_of to locate the first occurrence in
string1 of any character in "misop". The searching is done from the beginning of
string1. The character 'o' is found in element 1.

Line 23 uses member function find_last_of to find the last occurrence in string1
of any character in "misop". The searching is done from the end of string1. The character
'o' is found in element 28.

Line 28 uses member function find_first_not_of to find the first character in
string1 not contained in "noi spm". The character '1' is found in element 8. Searching
is done from the beginning of string1.

Line 34 uses member function find_first_not_of to find the first character not con-
tained in "12noi spm". The character '.' is found in element 13. Searching is done from
the beginning of string1.

Lines 40–41 use member function find_first_not_of to find the first character not
contained in "noon is 12 pm; midnight is not.". In this case, the string being
searched contains every character specified in the string argument. Because a character was
not found, string::npos (which has the value –1 in this case) is returned.

21.8 Replacing Characters in a string
Figure 21.7 demonstrates string member functions for replacing and erasing characters.
Lines 10–14 declare and initialize string string1. Line 20 uses string member function
erase to erase everything from (and including) the character in position 62 to the end of
string1. [Note: Each newline character occupies one character in the string.]

1 // Fig. 21.7: Fig21_07.cpp
2 // Demonstrating string member functions erase and replace.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 // compiler concatenates all parts into one string

10 string string1("The values in any left subtree"
11 "\nare less than the value in the"
12 "\nparent node and the values in"
13 "\nany right subtree are greater"
14 "\nthan the value in the parent node");

Fig. 21.7 | Demonstrating string member functions erase and replace. (Part 1 of 2.)

cpphtp9_21_string.fm Page 861 Wednesday, January 2, 2013 1:35 PM

862 Chapter 21 Class string and String Stream Processing: A Deeper Look

15
16 cout << "Original string:\n" << string1 << endl << endl;
17
18
19
20
21
22 // output new string
23 cout << "Original string after erase:\n" << string1
24 << "\nAfter first replacement:\n";
25
26 size_t position = string1.find(" "); // find first space
27
28 // replace all spaces with period
29 while (position != string::npos)
30 {
31
32 position = string1.find(" ", position + 1);
33 } // end while
34
35 cout << string1 << "\nAfter second replacement:\n";
36
37 position = string1.find("."); // find first period
38
39 // replace all periods with two semicolons
40 // NOTE: this will overwrite characters
41 while (position != string::npos)
42 {
43
44 position = string1.find(".", position + 1);
45 } // end while
46
47 cout << string1 << endl;
48 } // end main

Original string:
The values in any left subtree
are less than the value in the
parent node and the values in
any right subtree are greater
than the value in the parent node

Original string after erase:
The values in any left subtree
are less than the value in the

After first replacement:
The.values.in.any.left.subtree
are.less.than.the.value.in.the

After second replacement:
The;;alues;;n;;ny;;eft;;ubtree
are;;ess;;han;;he;;alue;;n;;he

Fig. 21.7 | Demonstrating string member functions erase and replace. (Part 2 of 2.)

// remove all characters from (and including) location 62
// through the end of string1
string1.erase(62);

string1.replace(position, 1, ".");

string1.replace(position, 2, "xxxxx;;yyy", 5, 2);

cpphtp9_21_string.fm Page 862 Wednesday, January 2, 2013 1:35 PM

21.9 Inserting Characters into a string 863

Lines 26–33 use find to locate each occurrence of the space character. Each space is
then replaced with a period by a call to string member function replace. Function
replace takes three arguments: the subscript of the character in the string at which
replacement should begin, the number of characters to replace and the replacement string.
Member function find returns string::npos when the search character is not found. In
line 32, 1 is added to position to continue searching at the location of the next character.

Lines 37–45 use function find to find every period and another overloaded function
replace to replace every period and its following character with two semicolons. The
arguments passed to this version of replace are the subscript of the element where the
replace operation begins, the number of characters to replace, a replacement character
string from which a substring is selected to use as replacement characters, the element in
the character string where the replacement substring begins and the number of characters
in the replacement character string to use.

21.9 Inserting Characters into a string
Class string provides member functions for inserting characters into a string.
Figure 21.8 demonstrates the string insert capabilities.

The program declares, initializes then outputs strings string1, string2, string3
and string4. Line 19 uses string member function insert to insert string2’s content
before element 10 of string1.

Line 22 uses insert to insert string4 before string3’s element 3. The last two argu-
ments specify the starting and last element of string4 that should be inserted. Using
string::npos causes the entire string to be inserted.

1 // Fig. 21.8: Fig21_08.cpp
2 // Demonstrating class string insert member functions.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("beginning end");

10 string string2("middle ");
11 string string3("12345678");
12 string string4("xx");
13
14 cout << "Initial strings:\nstring1: " << string1
15 << "\nstring2: " << string2 << "\nstring3: " << string3
16 << "\nstring4: " << string4 << "\n\n";
17
18
19
20
21
22
23

Fig. 21.8 | Demonstrating class string insert member functions. (Part 1 of 2.)

// insert "middle" at location 10 in string1
string1.insert(10, string2);

// insert "xx" at location 3 in string3
string3.insert(3, string4, 0, string::npos);

cpphtp9_21_string.fm Page 863 Wednesday, January 2, 2013 1:35 PM

864 Chapter 21 Class string and String Stream Processing: A Deeper Look

21.10 Conversion to Pointer-Based char * Strings
You can convert string class objects to pointer-based strings. As mentioned earlier, unlike
pointer-based strings, strings are not necessarily null terminated. These conversion func-
tions are useful when a given function takes a pointer-based string as an argument.
Figure 21.9 demonstrates conversion of strings to pointer-based strings.

24 cout << "Strings after insert:\nstring1: " << string1
25 << "\nstring2: " << string2 << "\nstring3: " << string3
26 << "\nstring4: " << string4 << endl;
27 } // end main

Initial strings:
string1: beginning end
string2: middle
string3: 12345678
string4: xx

Strings after insert:
string1: beginning middle end
string2: middle
string3: 123xx45678
string4: xx

1 // Fig. 21.9: Fig21_09.cpp
2 // Converting strings to pointer-based strings and character arrays.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("STRINGS"); // string constructor with char * arg

10 const char *ptr1 = nullptr; // initialize *ptr1
11 size_t length = string1.size();
12 char *ptr2 = new char[length + 1]; // including null
13
14 // copy characters from string1 into allocated memory
15 string1.copy(ptr2, length, 0); // copy string1 to ptr2 char *
16 ptr2[length] = '\0'; // add null terminator
17
18 cout << "string string1 is " << string1
19 << "\nstring1 converted to a pointer-based string is "
20 << << "\nptr1 is ";
21
22
23

Fig. 21.9 | Converting strings to pointer-based strings and character arrays. (Part 1 of 2.)

Fig. 21.8 | Demonstrating class string insert member functions. (Part 2 of 2.)

string1.c_str()

// Assign to pointer ptr1 the const char * returned by
// function data(). NOTE: this is a potentially dangerous

cpphtp9_21_string.fm Page 864 Wednesday, January 2, 2013 1:35 PM

21.11 Iterators 865

The program declares a string, a size_t and two char pointers (lines 9–12). The
string string1 is initialized to "STRINGS", ptr1 is initialized to nullptr and length is ini-
tialized to the length of string1. Memory of sufficient size to hold a pointer-based string
equivalent of string string1 is allocated dynamically and attached to char pointer ptr2.

Line 15 uses string member function copy to copy object string1 into the char
array pointed to by ptr2. Line 16 places a terminating null character in the array pointed
to by ptr2.

Line 20 uses function c_str to obtain a const char * that points to a null terminated
pointer-based string with the same content as string1. The pointer is passed to the stream
insertion operator for output.

Line 26 assigns the const char * ptr1 a pointer returned by class string member
function data. This member function returns a non-null-terminated built-in character
array. We do not modify string string1 in this example. If string1 were to be modified
(e.g., the string’s dynamic memory changes its address due to a member function call
such as string1.insert(0, "abcd");), ptr1 could become invalid—which could lead
to unpredictable results.

Lines 29–30 use pointer arithmetic to output the character array pointed to by ptr1.
In lines 32–33, the pointer-based string ptr2 is output and the memory allocated for ptr2
is deleted to avoid a memory leak.

21.11 Iterators
Class string provides iterators (introduced in Chapter 15) for forward and backward travers-
al of strings. Iterators provide access to individual characters with a syntax that’s similar to
pointer operations. Iterators are not range checked. Figure 21.10 demonstrates iterators.

24
25
26
27
28 // output each character using pointer
29 for (size_t i = 0; i < length; ++i)
30 cout << *(ptr1 + i); // use pointer arithmetic
31
32 cout << "\nptr2 is " << ptr2 << endl;
33 delete [] ptr2; // reclaim dynamically allocated memory
34 } // end main

string string1 is STRINGS
string1 converted to a pointer-based string is STRINGS
ptr1 is STRINGS
ptr2 is STRINGS

Common Programming Error 21.2
Not terminating the character array returned by data with a null character can lead to
execution-time errors.

Fig. 21.9 | Converting strings to pointer-based strings and character arrays. (Part 2 of 2.)

// assignment. If string1 is modified, pointer ptr1 can
// become invalid.
ptr1 = string1.data(); // non-null terminated char array

cpphtp9_21_string.fm Page 865 Wednesday, January 2, 2013 1:35 PM

866 Chapter 21 Class string and String Stream Processing: A Deeper Look

Lines 9–10 declare string string1 and string::const_iterator iterator1. Recall
that a const_iterator cannot be used to modify the data that you’re iterating through—
in this case the string. Iterator iterator1 is initialized to the beginning of string1 with
the string class member function begin. Two versions of begin exist—one that returns
an iterator for iterating through a non-const string and a const version that returns a
const_iterator for iterating through a const string. Line 12 outputs string1.

Lines 16–20 use iterator iterator1 to “walk through” string1. Class string
member function end returns an iterator (or a const_iterator) for the position past the
last element of string1. Each element is printed by dereferencing the iterator much as you’d
dereference a pointer, and the iterator is advanced one position using operator ++. In
C++11, lines 10 and 16–20 can be replaced with a range-based for, as in

Class string provides member functions rend and rbegin for accessing individual
string characters in reverse from the end of a string toward the beginning. Member
functions rend and rbegin return reverse_iterators or const_reverse_iterators
(based on whether the string is non-const or const). Exercise 21.8 asks you to write a
program that demonstrates these capabilities.

1 // Fig. 21.10: Fig21_10.cpp
2 // Using an iterator to output a string.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("Testing iterators");

10
11
12 cout << "string1 = " << string1
13 << "\n(Using iterator iterator1) string1 is: ";
14
15
16
17
18
19
20
21
22 cout << endl;
23 } // end main

string1 = Testing iterators
(Using iterator iterator1) string1 is: Testing iterators

Fig. 21.10 | Using an iterator to output a string.

for (char c : string1)
 cout << c;

string::const_iterator iterator1 = string1.begin();

// iterate through string
while (iterator1 != string1.end())
{
 cout << *iterator1; // dereference iterator to get char
 ++iterator1; // advance iterator to next char
} // end while

cpphtp9_21_string.fm Page 866 Wednesday, January 2, 2013 1:35 PM

21.12 String Stream Processing 867

21.12 String Stream Processing
In addition to standard stream I/O and file stream I/O, C++ stream I/O includes capabili-
ties for inputting from, and outputting to, strings in memory. These capabilities often
are referred to as in-memory I/O or string stream processing.

Input from a string is supported by class istringstream. Output to a string is sup-
ported by class ostringstream. The class names istringstream and ostringstream are
actually aliases defined by the typedefs

Class templates basic_istringstream and basic_ostringstream provide the same func-
tionality as classes istream and ostream plus other member functions specific to in-mem-
ory formatting. Programs that use in-memory formatting must include the <sstream> and
<iostream> headers.

An ostringstream object uses a string object to store the output data. The str
member function of class ostringstream returns a copy of that string.

Demonstrating ostringstream
Figure 21.11 demonstrates an ostringstream object. The program creates ostring-
stream object outputString (line 10) and uses the stream insertion operator to output a
series of strings and numerical values to the object.

Good Programming Practice 21.1
When the operations involving the iterator should not modify the data being processed, use
a const_iterator. This is another example of employing the principle of least privilege.

typedef basic_istringstream< char > istringstream;
typedef basic_ostringstream< char > ostringstream;

Error-Prevention Tip 21.1
One application of these techniques is data validation. A program can read an entire line
at a time from the input stream into a string. Next, a validation routine can scrutinize
the contents of the string and correct (or repair) the data, if necessary. Then the program
can proceed to input from the string, knowing that the input data is in the proper format.

Error-Prevention Tip 21.2
To assist with data validation, C++11 provides powerful regular-expression capabili-
ties. For example, if a program requires a user to enter a U.S. format telephone number
(e.g., (800) 555-1212), you can use a regular-expression pattern to confirm that the user’s
input matches the expected format. Many websites provide regular expressions for validat-
ing email addresses, URLs, phone numbers, addresses and other popular kinds of data.
We introduce regular expressions and provide several examples in Chapter 24.

Software Engineering Observation 21.1
Outputting to a string is a nice way to take advantage of the powerful output formatting
capabilities of C++ streams. Data can be prepared in a string to mimic the edited screen
format. That string could be written to a disk file to preserve the screen image.

cpphtp9_21_string.fm Page 867 Wednesday, January 2, 2013 1:35 PM

868 Chapter 21 Class string and String Stream Processing: A Deeper Look

Lines 22–23 output string string1, string string2, string string3, double
double1, string string4, int integer, string string5 and the address of int
integer—all to outputString in memory. Line 26 uses the stream insertion operator and
the call outputString.str() to display a copy of the string created in lines 22–23. Line
29 demonstrates that more data can be appended to the string in memory by simply

1 // Fig. 21.11: Fig21_11.cpp
2 // Using an ostringstream object.
3 #include <iostream>
4 #include <string>
5
6 using namespace std;
7
8 int main()
9 {

10
11
12 string string1("Output of several data types ");
13 string string2("to an ostringstream object:");
14 string string3("\n double: ");
15 string string4("\n int: ");
16 string string5("\naddress of int: ");
17
18 double double1 = 123.4567;
19 int integer = 22;
20
21
22
23
24
25
26
27
28
29
30 cout << "\n\nafter additional stream insertions,\n"
31 << "outputString contains:\n" << << endl;
32 } // end main

outputString contains:
Output of several data types to an ostringstream object:
 double: 123.457
 int: 22
address of int: 0012F540

after additional stream insertions,
outputString contains:
Output of several data types to an ostringstream object:
 double: 123.457
 int: 22
address of int: 0012F540
more characters added

Fig. 21.11 | Using an ostringstream object.

#include <sstream> // header for string stream processing

ostringstream outputString; // create ostringstream instance

// output strings, double and int to ostringstream outputString
outputString << string1 << string2 << string3 << double1
 << string4 << integer << string5 << &integer;

// call str to obtain string contents of the ostringstream
cout << "outputString contains:\n" << outputString.str();

// add additional characters and call str to output string
outputString << "\nmore characters added";

outputString.str()

cpphtp9_21_string.fm Page 868 Wednesday, January 2, 2013 1:35 PM

21.12 String Stream Processing 869

issuing another stream insertion operation to outputString. Lines 30–31 display string
outputString after appending additional characters.

An istringstream object inputs data from a string in memory to program variables.
Data is stored in an istringstream object as characters. Input from the istringstream
object works identically to input from any file. The end of the string is interpreted by the
istringstream object as end-of-file.

Demonstrating istringstream
Figure 21.12 demonstrates input from an istringstream object. Lines 10–11 create
string input containing the data and istringstream object inputString constructed to
contain the data in string input. The string input contains the data

which, when read as input to the program, consist of two strings ("Input" and "test"),
an int (123), a double (4.7) and a char ('A'). These characters are extracted to variables
string1, string2, integer, double1 and character in line 18.

Input test 123 4.7 A

1 // Fig. 21.12: Fig21_12.cpp
2 // Demonstrating input from an istringstream object.
3 #include <iostream>
4 #include <string>
5
6 using namespace std;
7
8 int main()
9 {

10 string input("Input test 123 4.7 A");
11
12 string string1;
13 string string2;
14 int integer;
15 double double1;
16 char character;
17
18 inputString >> string1 >> string2 >> integer >> double1 >> character;
19
20 cout << "The following items were extracted\n"
21 << "from the istringstream object:" << "\nstring: " << string1
22 << "\nstring: " << string2 << "\n int: " << integer
23 << "\ndouble: " << double1 << "\n char: " << character;
24
25 // attempt to read from empty stream
26 long value;
27
28
29 // test stream results
30 if ()
31 cout << "\n\nlong value is: " << value << endl;
32 else
33 cout << "\n\ninputString is empty" << endl;
34 } // end main

Fig. 21.12 | Demonstrating input from an istringstream object. (Part 1 of 2.)

#include <sstream>

istringstream inputString(input);

inputString >> value;

inputString.good()

cpphtp9_21_string.fm Page 869 Wednesday, January 2, 2013 1:35 PM

870 Chapter 21 Class string and String Stream Processing: A Deeper Look

The data is then output in lines 20–23. The program attempts to read from input-
String again in line 27. The if condition in line 30 uses function good (Section 13.8) to
test if any data remains. Because no data remains, the function returns false and the else
part of the if…else statement is executed.

21.13 C++11 Numeric Conversion Functions
C++11 now contains functions for converting from numeric values to strings and from
strings to numeric values. Though you could previously perform such conversions using
other techniques, the functions presented in this section were added for convenience.

Converting Numeric Values to string Objects
C++11’s to_string function (from the <string> header) returns the string representa-
tion of its numeric argument. The function is overloaded for types int, unsigned int,
long, unsigned long, long long, unsigned long long, float, double and long double.

Converting string Objects to Numeric Values
C++11 provides eight functions (Fig. 21.13; from the <string> header) for converting
string objects to numeric values. Each function attempts to convert the beginning of its
string argument to a numeric value. If no conversion can be performed, each function
throws an invalid_argument exception. If the result of the conversion is out of range for
the function’s return type, each function throws an out_of_range exception.

The following items were extracted
from the istringstream object:
string: Input
string: test
 int: 123
double: 4.7
 char: A

inputString is empty

Function Return type Function Return type

Functions that convert to integral types Functions that convert to floating-point types

stoi int stof float

stol long stod double

stoul unsigned long stold long double

stoll long long

stoull unsigned long long

Fig. 21.13 | C++11 functions that convert from strings to numeric types.

Fig. 21.12 | Demonstrating input from an istringstream object. (Part 2 of 2.)

cpphtp9_21_string.fm Page 870 Wednesday, January 2, 2013 1:35 PM

21.14 Wrap-Up 871

Functions That Convert strings to Integral Types
Consider an example of converting a string to an integral value. Assuming the string:

the following statement converts the beginning of the string to the int value 100 and stores
that value in convertedInt:

Each function that converts a string to an integral type actually receives three param-
eters—the last two have default arguments. The parameters are:

• A string containing the characters to convert.

• A pointer to a size_t variable. The function uses this pointer to store the index
of the first character that was not converted. The default argument is a null point-
er, in which case the function does not store the index.

• An int from 2 to 36 representing the number’s base—the default is base 10.

So, the preceding statement is equivalent to

Given a size_t variable named index, the statement:

converts the binary number "100" (base 2) to an int (100 in binary is the int value 4) and
stores in index the location of the string’s letter "h" (the first character that was not con-
verted).

Functions That Convert strings to Floating-Point Types
The functions that convert strings to floating-point types each receive two parameters:

• A string containing the characters to convert.

• A pointer to a size_t variable where the function stores the index of the first
character that was not converted. The default argument is a null pointer, in which
case the function does not store the index.

Consider an example of converting a string to an floating-point value. Assuming the
string:

the following statement converts the beginning of the string to the double value 123.45
and stores that value in convertedDouble:

Again, the second argument is a null pointer by default.

21.14 Wrap-Up
This chapter discussed the details of C++ Standard Library class string. We discussed as-
signing, concatenating, comparing, searching and swapping strings. We also introduced a

string s("100hello");

int convertedInt = stoi(s);

int convertedInt = stoi(s, nullptr, 10);

int convertedInt = stoi(s, &index, 2);

string s("123.45hello");

double convertedDouble = stod(s);

cpphtp9_21_string.fm Page 871 Wednesday, January 2, 2013 1:35 PM

872 Chapter 21 Class string and String Stream Processing: A Deeper Look

number of methods to determine string characteristics, to find, replace and insert charac-
ters in a string, and to convert strings to pointer-based strings and vice versa. You learned
about string iterators and performing input from and output to strings in memory. Final-
ly, we introduced C++11’s new functions for converting numeric values to strings and
for converting strings to numeric values. In the next chapter, we introduce structs, which
are similar to classes, and discuss the manipulation of bits, characters and C strings.

Summary
Section 21.1 Introduction
• Class template basic_string provides typical string-manipulation operations.

• The typedef statement

typedef basic_string< char > string;

creates the alias type string for basic_string<char> (p. 850). A typedef also is provided for the
wchar_t type (wstring).

• To use strings, include C++ Standard Library header <string>.

• Assigning a single character to a string object is permitted in an assignment statement.

• strings are not necessarily null terminated.

• Most string member functions take as arguments a starting subscript location and the number
of characters on which to operate.

Section 21.2 string Assignment and Concatenation
• Class string provides overloaded operator= and member function assign (p. 851) for assign-

ments.

• The subscript operator, [], provides read/write access to any element of a string.

• string member function at (p. 853) provides checked access (p. 853)—going past either end of the
string throws an out_of_range exception. The subscript operator, [], does not provide checked
access.

• The overloaded + and += operators and member function append (p. 853) perform string con-
catenation.

Section 21.3 Comparing strings
• Class string provides overloaded ==, !=, <, >, <= and >= operators for string comparisons.

• string member function compare (p. 855) compares two strings (or substrings) and returns 0
if the strings are equal, a positive number if the first string is lexicographically (p. 855) greater
than the second or a negative number if the first string is lexicographically less than the second.

Section 21.4 Substrings
• string member function substr (p. 856) retrieves a substring from a string.

Section 21.5 Swapping strings
• string member function swap (p. 856) swaps the contents of two strings.

cpphtp9_21_string.fm Page 872 Wednesday, January 2, 2013 1:35 PM

 Summary 873

Section 21.6 string Characteristics
• string member functions size and length (p. 851) return the number of characters currently

stored in a string.

• string member function capacity (p. 857) returns the total number of characters that can be
stored in a string without increasing the amount of memory allocated to the string.

• string member function max_size (p. 859) returns the maximum size a string can have.

• string member function resize (p. 859) changes the length of a string.

• string member function empty returns true if a string is empty.

Section 21.7 Finding Substrings and Characters in a string
• Class string find functions (p. 861) find, rfind, find_first_of, find_last_of and

find_first_not_of locate substrings or characters in a string.

Section 21.8 Replacing Characters in a string
• string member function erase (p. 861) deletes elements of a string.

• string member function replace (p. 863) replaces characters in a string.

Section 21.9 Inserting Characters into a string
• string member function insert (p. 863) inserts characters in a string.

Section 21.10 Conversion to Pointer-Based char * Strings
• string member function c_str (p. 865) returns a const char * pointing to a null-terminated

pointer-based string that contains all the characters in a string.

• string member function data (p. 865) returns a const char * pointing to a non-null-terminat-
ed built-in character array that contains all the characters in a string.

Section 21.11 Iterators
• Class string provides member functions begin and end (p. 866) to iterate through individual

elements.

• Class string provides member functions rend and rbegin (p. 866) for accessing individual
string characters in reverse from the end of a string toward the beginning.

Section 21.12 String Stream Processing
• Input from a string is supported by type istringstream (p. 867). Output to a string is sup-

ported by type ostringstream (p. 867).

• ostringstream member function str (p. 867) returns the string from the stream.

Section 21.13 C++11 Numeric Conversion Functions
• C++11’s <string> header now contains functions for converting from numeric values to string

objects and from string objects to numeric values.

• The to_string function (p. 870) returns the string representation of its numeric argument and
is overloaded for types int, unsigned int, long, unsigned long, long long, unsigned long long,
float, double and long double.

• C++11 provides eight functions for converting string objects to numeric values. Each function
attempts to convert the beginning of its string argument to a numeric value. If no conversion can
be performed, an invalid_argument exception occurs. If the result of the convertion is out of
range for the function’s return type, an out_of_range exception occurs.

• Each function that converts a string to an integral type receives three parameters—a string
containing the characters to convert, a pointer to a size_t variable where the function stores the

cpphtp9_21_string.fm Page 873 Wednesday, January 2, 2013 1:35 PM

874 Chapter 21 Class string and String Stream Processing: A Deeper Look

index of the first character that was not converted (a null pointer, by default) and an int from 2
to 36 representing the number’s base (base 10, by default).

• The functions that convert strings to floating-point types each receive two parameters—a string
containing the characters to convert and a pointer to a size_t variable where the function stores
the index of the first character that was not converted (a null pointer, by default).

Self-Review Exercises
21.1 Fill in the blanks in each of the following:

a) Header must be included for class string.
b) Class string belongs to the namespace.
c) Function deletes characters from a string.
d) Function finds the first occurrence of one of several characters from a string.

21.2 State which of the following statements are true and which are false. If a statement is false,
explain why.

a) Concatenation of string objects can be performed with the addition assignment oper-
ator, +=.

b) Characters within a string begin at index 0.
c) The assignment operator, =, copies a string.
d) A pointer-based string is a string object.

21.3 Find the error(s) in each of the following, and explain how to correct it (them):
a) string string1(28); // construct string1

string string2('z'); // construct string2
b) // assume std namespace is known

const char *ptr = name.data(); // name is "joe bob"
ptr[3] = '-';
cout << ptr << endl;

Answers to Self-Review Exercises
21.1 a) <string>. b) std. c) erase. d) find_first_of.

21.2 a) True.
b) True.
c) True.
d) False. A string is an object that provides many different services. A pointer-based string

does not provide any services. Pointer-based strings are null terminated; strings are not
necessarily null terminated. Pointer-based strings are pointers and strings are objects.

21.3 a) Constructors for class string do not exist for integer and character arguments. Other
valid constructors should be used—converting the arguments to strings if need be.

b) Function data does not add a null terminator. Also, the code attempts to modify a
const char. Replace all of the lines with the code:
 cout << name.substr(0, 3) + "-" + name.substr(4) << endl;

Exercises
21.4 (Fill in the Blanks) Fill in the blanks in each of the following:

a) Class string member function converts a string to a pointer-based string.
b) Class string member function is used for assignment.
c) is the return type of function rbegin.
d) Class string member function is used to retrieve a substring.

cpphtp9_21_string.fm Page 874 Wednesday, January 2, 2013 1:35 PM

 Exercises 875

21.5 (True or False) State which of the following statements are true and which are false. If a
statement is false, explain why.

a) strings are always null terminated.
b) Class string member function max_size returns the maximum size for a string.
c) Class string member function at can throw an out_of_range exception.
d) Class string member function begin returns an iterator.

21.6 (Find Code Errors) Find any errors in the following and explain how to correct them:
a) std::cout << s.data() << std::endl; // s is "hello"
b) erase(s.rfind("x"), 1); // s is "xenon"
c) string& foo()

{
 string s("Hello");
 ... // other statements
 return;
} // end function foo

21.7 (Simple Encryption) Some information on the Internet may be encrypted with a simple al-
gorithm known as “rot13,” which rotates each character by 13 positions in the alphabet. Thus, 'a'
corresponds to 'n', and 'x' corresponds to 'k'. rot13 is an example of symmetric key encryption.
With symmetric key encryption, both the encrypter and decrypter use the same key.

a) Write a program that encrypts a message using rot13.
b) Write a program that decrypts the scrambled message using 13 as the key.
c) After writing the programs of part (a) and part (b), briefly answer the following ques-

tion: If you did not know the key for part (b), how difficult do you think it would be
to break the code? What if you had access to substantial computing power (e.g., super-
computers)? In Exercise 21.24 we ask you to write a program to accomplish this.

21.8 (Using string Iterators) Write a program using iterators that demonstrates the use of func-
tions rbegin and rend.

21.9 (Words Ending in “r” or “ay”) Write a program that reads in several strings and prints only
those ending in “r” or “ay”. Only lowercase letters should be considered.

21.10 (string Concatenation) Write a program that separately inputs a first name and a last name
and concatenates the two into a new string. Show two techniques for accomplishing this task.

21.11 (Hangman Game) Write a program that plays the game of Hangman. The program should
pick a word (which is either coded directly into the program or read from a text file) and display the
following:

Guess the word: XXXXXX

Each X represents a letter. The user tries to guess the letters in the word. The appropriate response
yes or no should be displayed after each guess. After each incorrect guess, display the diagram with
another body part filled. After seven incorrect guesses, the user should be hanged. The display
should look as follows:

 O
 /|\
 |
 / \

After each guess, display all user guesses. If the user guesses the word correctly, display

Congratulations!!! You guessed my word. Play again? yes/no

21.12 (Printing a string Backward) Write a program that inputs a string and prints the string
backward. Convert all uppercase characters to lowercase and all lowercase characters to uppercase.

cpphtp9_21_string.fm Page 875 Wednesday, January 2, 2013 1:35 PM

876 Chapter 21 Class string and String Stream Processing: A Deeper Look

21.13 (Alphabetizing Animal Names) Write a program that uses the comparison capabilities in-
troduced in this chapter to alphabetize a series of animal names. Only uppercase letters should be
used for the comparisons.

21.14 (Cryptograms) Write a program that creates a cryptogram out of a string. A cryptogram is
a message or word in which each letter is replaced with another letter. For example the string

The bird was named squawk

might be scrambled to form

cin vrjs otz ethns zxqtop

Spaces are not scrambled. In this particular case, 'T' was replaced with 'x', each 'a' was replaced
with 'h', etc. Uppercase letters become lowercase letters in the cryptogram. Use techniques similar
to those in Exercise 21.7.

21.15 (Solving Cryptograms) Modify Exercise 21.14 to allow the user to solve the cryptogram.
The user should input two characters at a time: The first character specifies a letter in the crypto-
gram, and the second letter specifies the replacement letter. If the replacement letter is correct, re-
place the letter in the cryptogram with the replacement letter in uppercase.

21.16 (Counting Palindromes) Write a program that inputs a sentence and counts the number of
palindromes in it. A palindrome is a word that reads the same backward and forward. For example,
"tree" is not a palindrome, but "noon" is.

21.17 (Counting Vowels) Write a program that counts the total number of vowels in a sentence.
Output the frequency of each vowel.

21.18 (String Insertion) Write a program that inserts the characters "******" in the exact middle
of a string.

21.19 (Erasing Characters from a string) Write a program that erases the sequences "by" and
"BY" from a string.

21.20 (Reversing a string with Iterators) Write a program that inputs a line of text and prints the
text backward. Use iterators in your solution.

21.21 (Reversing a string with Iterators using Recursion) Write a recursive version of
Exercise 21.20.

21.22 (Using the erase Functions with Iterator Arguments) Write a program that demonstrates
the use of the erase functions that take iterator arguments.

21.23 (Letter Pyramid) Write a program that generates the following from the string "abcdef-
ghijklmnopqrstuvwxyz":

 a
 bcb
 cdedc
 defgfed
 efghihgfe
 fghijkjihgf
 ghijklmlkjihg
 hijklmnonmlkjih
 ijklmnopqponmlkji
 jklmnopqrsrqponmlkj
 klmnopqrstutsrqponmlk
 lmnopqrstuvwvutsrqponml
 mnopqrstuvwxyxwvutsrqponm
 nopqrstuvwxyz{zyxwvutsrqpon

cpphtp9_21_string.fm Page 876 Wednesday, January 2, 2013 1:35 PM

 Making a Difference 877

21.24 (Simple Decryption) In Exercise 21.7, we asked you to write a simple encryption algorithm.
Write a program that will attempt to decrypt a “rot13” message using simple frequency substitution.
(Assume that you do not know the key.) The most frequent letters in the encrypted phrase should
be replaced with the most commonly used English letters (a, e, i, o, u, s, t, r, etc.). Write the possi-
bilities to a file. What made the code breaking easy? How can the encryption mechanism be improved?

21.25 (Enhanced Employee Class) Modify class Employee in Figs. 12.9–12.10 by adding a private
utility function called isValidSocialSecurityNumber. This member function should validate the
format of a social security number (e.g., ###-##-####, where # is a digit). If the format is valid, re-
turn true; otherwise return false.

Making a Difference
21.26 (Cooking with Healthier Ingredients) Obesity in the United States is increasing at an alarm-
ing rate. Check the map from the Centers for Disease Control and Prevention (CDC) at
www.cdc.gov/nccdphp/dnpa/Obesity/trend/maps/index.htm, which shows obesity trends in the
United States over the last 20 years. As obesity increases, so do occurrences of related problems (e.g.,
heart disease, high blood pressure, high cholesterol, type 2 diabetes). Write a program that helps
users choose healthier ingredients when cooking, and helps those allergic to certain foods (e.g., nuts,
gluten) find substitutes. The program should read a recipe from the user and suggest healthier re-
placements for some of the ingredients. For simplicity, your program should assume the recipe has
no abbreviations for measures such as teaspoons, cups, and tablespoons, and uses numerical digits
for quantities (e.g., 1 egg, 2 cups) rather than spelling them out (one egg, two cups). Some common
substitutions are shown in Fig. 21.14. Your program should display a warning such as, “Always con-
sult your physician before making significant changes to your diet.”

Ingredient Substitution

1 cup sour cream 1 cup yogurt

1 cup milk 1/2 cup evaporated milk and 1/2 cup water

1 teaspoon lemon juice 1/2 teaspoon vinegar

1 cup sugar 1/2 cup honey, 1 cup molasses
or 1/4 cup agave nectar

1 cup butter 1 cup yogurt

1 cup flour 1 cup rye or rice flour

1 cup mayonnaise 1 cup cottage cheese
or 1/8 cup mayonnaise and 7/8 cup yogurt

1 egg 2 tablespoons cornstarch, arrowroot flour
or potato starch or 2 egg whites
or 1/2 of a large banana (mashed)

1 cup milk 1 cup soy milk

1/4 cup oil 1/4 cup applesauce

white bread whole-grain bread

Fig. 21.14 | Common ingredient substitutions.

cpphtp9_21_string.fm Page 877 Wednesday, January 2, 2013 1:35 PM

878 Chapter 21 Class string and String Stream Processing: A Deeper Look

Your program should take into consideration that replacements are not always one-for-one.
For example, if a cake recipe calls for three eggs, it might reasonably use six egg whites instead.
Conversion data for measurements and substitutes can be obtained at websites such as:

chinesefood.about.com/od/recipeconversionfaqs/f/usmetricrecipes.htm
www.pioneerthinking.com/eggsub.html
www.gourmetsleuth.com/conversions.htm

Your program should consider the user’s health concerns, such as high cholesterol, high blood pres-
sure, weight loss, gluten allergy, and so on. For high cholesterol, the program should suggest substi-
tutes for eggs and dairy products; if the user wishes to lose weight, low-calorie substitutes for
ingredients such as sugar should be suggested.

21.27 (Spam Scanner) Spam (or junk e-mail) costs U.S. organizations billions of dollars a year in
spam-prevention software, equipment, network resources, bandwidth, and lost productivity.
Research online some of the most common spam e-mail messages and words, and check your own
junk e-mail folder. Create a list of 30 words and phrases commonly found in spam messages. Write
an application in which the user enters an e-mail message. Then, scan the message for each of the
30 keywords or phrases. For each occurrence of one of these within the message, add a point to the
message’s “spam score.” Next, rate the likelihood that the message is spam, based on the number of
points it received.

21.28 (SMS Language) Short Message Service (SMS) is a communications service that allows
sending text messages of 160 or fewer characters between mobile phones. With the proliferation of
mobile phone use worldwide, SMS is being used in many developing nations for political purposes
(e.g., voicing opinions and opposition), reporting news about natural disasters, and so on. For ex-
ample, check out comunica.org/radio2.0/archives/87. Since the length of SMS messages is lim-
ited, SMS Language—abbreviations of common words and phrases in mobile text messages, e-
mails, instant messages, etc.—is often used. For example, “in my opinion” is “IMO” in SMS Lan-
guage. Research SMS Language online. Write a program in which the user can enter a message using
SMS Language; the program should translate it into English (or your own language). Also provide
a mechanism to translate text written in English (or your own language) into SMS Language. One
potential problem is that one SMS abbreviation could expand into a variety of phrases. For example,
IMO (as used above) could also stand for “International Maritime Organization,” “in memory of,”
etc.

cpphtp9_21_string.fm Page 878 Wednesday, January 2, 2013 1:35 PM

22Bits, Characters, C Strings
and structs

The same old charitable lie
Repeated as the years scoot by
Perpetually makes a hit—
“You really haven’t changed a
bit!”
—Margaret Fishback

The chief defect of Henry King
Was chewing little bits of string.
—Hilaire Belloc

Vigorous writing is concise. A
sentence should contain no
unnecessary words, a paragraph
no unnecessary sentences.
—William Strunk, Jr.

O b j e c t i v e s
In this chapter you’ll learn:

■ To create and use structs
and to understand their near
equivalence with classes.

■ To use typedef to create
aliases for data types.

■ To manipulate data with the
bitwise operators and to
create bit fields for storing
data compactly.

■ To use the functions of the
character-handling library
<cctype>.

■ To use the string-conversion
functions of the general-
utilities library <cstdlib>.

■ To use the string-processing
functions of the string-
handling library <cstring>.

cpphtp9_22_BitsChars.fm Page 879 Thursday, January 3, 2013 12:13 PM

880 Chapter 22 Bits, Characters, C Strings and structs

22.1 Introduction
We now discuss structures, their near equivalence with classes, and the manipulation of
bits, characters and C strings. Many of the techniques we present here are included for the
benefit of those who will work with legacy C and C++ code.

Like classes, C++ structures may contain access specifiers, member functions, con-
structors and destructors. In fact, the only differences between structures and classes in C++ is
that structure members default to public access and class members default to private access
when no access specifiers are used, and that structures default to public inheritance, whereas
classes default to private inheritance. Our presentation of structures here is typical of the
legacy C code and early C++ code you’ll see in industry.

We present a high-performance card shuffling and dealing simulation in which we use
structure objects containing C++ string objects to represent the cards. We discuss the bit-
wise operators that allow you to access and manipulate the individual bits in bytes of data.
We also present bitfields—special structures that can be used to specify the exact number
of bits a variable occupies in memory. These bit-manipulation techniques are common in
programs that interact directly with hardware devices that have limited memory. The
chapter finishes with examples of many character and C string-manipulation functions—
some of which are designed to process blocks of memory as arrays of bytes. The detailed
C string treatment in this chapter is mostly for reasons of legacy code support and because
there are still remnants of C string use in C++, such as command-line arguments
(Appendix F). New development should use C++ string objects rather than C strings.

22.2 Structure Definitions
Consider the following structure definition:

Keyword struct introduces the definition for structure Card. The identifier Card is the
structure name and is used in C++ to declare variables of the structure type (in C, the type

22.1 Introduction
22.2 Structure Definitions
22.3 typedef
22.4 Example: Card Shuffling and Dealing

Simulation
22.5 Bitwise Operators
22.6 Bit Fields
22.7 Character-Handling Library

22.8 C String-Manipulation Functions
22.9 C String-Conversion Functions

22.10 Search Functions of the C String-
Handling Library

22.11 Memory Functions of the C String-
Handling Library

22.12 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Advanced String-Manipulation Exercises | Challenging String-Manipulation Projects

struct Card
{
 string face;
 string suit;
}; // end struct Card

cpphtp9_22_BitsChars.fm Page 880 Thursday, January 3, 2013 12:13 PM

22.2 Structure Definitions 881

name of the preceding structure is struct Card). Card’s definition contains two string
members—face and suit.

The following declarations

declare oneCard to be a structure variable of type Card, deck to be an array with 52 ele-
ments of type Card and cardPtr to be a pointer to a Card structure. Variables of a given
structure type can also be declared by placing a comma-separated list of the variable names
between the closing brace of the structure definition and the semicolon that ends the struc-
ture definition. For example, the preceding declarations could have been incorporated into
the Card structure definition as follows:

As with classes, structure members are not necessarily stored in consecutive bytes of
memory. Sometimes there are “holes” in a structure, because some computers store spe-
cific data types only on certain memory boundaries for performance reasons, such as half-
word, word or double-word boundaries. A word is a standard memory unit used to store
data in a computer—usually two, four or eight bytes and typically eight bytes on today’s
popular 64-bit systems. Consider the following structure definition in which structure
objects sample1 and sample2 of type Example are declared:

A computer with two-byte words might require that each of the members of Example be
aligned on a word boundary (i.e., at the beginning of a word—this is machine dependent).
Figure 22.1 shows a sample storage alignment for an object of type Example that’s been
assigned the character 'a' and the integer 97 (the bit representations of the values are
shown). If the members are stored beginning at word boundaries, there is a one-byte hole
(byte 1 in the figure) in the storage for objects of type Example. The value in the one-byte
hole is undefined. If the values in sample1 and sample2 are in fact equal, the structure ob-
jects might not be equal, because the undefined one-byte holes are not likely to contain
identical values.

Card oneCard;
Card deck[52];
Card *cardPtr;

struct Card
{
 string face;
 string suit;
} oneCard, deck[52], *cardPtr;

struct Example
{
 char c;
 int i;
} sample1, sample2;

Common Programming Error 22.1
Comparing variables of structure types is a compilation error.

Portability Tip 22.1
Because the size of data items of a particular type is machine dependent, and because storage
alignment considerations are machine dependent, so too is the representation of a structure.

cpphtp9_22_BitsChars.fm Page 881 Thursday, January 3, 2013 12:13 PM

882 Chapter 22 Bits, Characters, C Strings and structs

22.3 typedef
Keyword typedef provides a mechanism for creating synonyms (or aliases) for previously
defined data types. Names for structure types are often defined with typedef to more read-
able type names. For example, the statement

defines the new type name CardPtr as a synonym for type Card *.
Creating a new name with typedef does not create a new type; typedef simply creates

a new type name that can then be used in the program as an alias for an existing type name.

22.4 Example: Card Shuffling and Dealing Simulation
The card shuffling and dealing program in Figs. 22.2–22.4 is similar to the one described
in Exercise 9.23. This program represents the deck of cards as an array of structures.

Fig. 22.1 | Possible storage alignment for an Example object, showing an undefined byte.

typedef Card *CardPtr;

1 // Fig. 22.2: DeckOfCards.h
2 // Definition of class DeckOfCards that
3 // represents a deck of playing cards.
4 #include <string>
5 #include <array>
6
7
8
9

10
11
12
13
14 // DeckOfCards class definition
15 class DeckOfCards
16 {
17 public:
18 static const int numberOfCards = 52;
19 static const int faces = 13;
20 static const int suits = 4;
21
22 DeckOfCards(); // constructor initializes deck
23 void shuffle(); // shuffles cards in deck
24 void deal() const; // deals cards in deck
25

Fig. 22.2 | Definition of class DeckOfCards that represents a deck of playing cards. (Part 1 of 2.)

01100001 00000000 01100001

0Byte 1 2 3

// Card structure definition
struct Card
{
 std::string face;
 std::string suit;
}; // end structure Card

cpphtp9_22_BitsChars.fm Page 882 Thursday, January 3, 2013 12:13 PM

22.4 Example: Card Shuffling and Dealing Simulation 883

The constructor (lines 12–31 of Fig. 22.3) initializes the array in order with character
strings representing Ace through King of each suit. Function shuffle implements the
shuffling algorithm. The function loops through all 52 cards (subscripts 0 to 51). For each
card, a number between 0 and 51 is picked randomly. Next, the current Card and the ran-
domly selected Card are swapped in the array. A total of 52 swaps are made in a single
pass of the entire array, and the array is shuffled. Because the Card structures were
swapped in place in the array, the dealing algorithm implemented in function deal
requires only one pass of the array to deal the shuffled cards.

26 private:
27 std::array< Card, numberOfCards > deck; // represents deck of cards
28 }; // end class DeckOfCards

1 // Fig. 22.3: DeckOfCards.cpp
2 // Member-function definitions for class DeckOfCards that simulates
3 // the shuffling and dealing of a deck of playing cards.
4 #include <iostream>
5 #include <iomanip>
6 #include <cstdlib> // prototypes for rand and srand
7 #include <ctime> // prototype for time
8 #include "DeckOfCards.h" // DeckOfCards class definition
9 using namespace std;

10
11 // no-argument DeckOfCards constructor intializes deck
12 DeckOfCards::DeckOfCards()
13 {
14 // initialize suit array
15 static string suit[suits] =
16 { "Hearts", "Diamonds", "Clubs", "Spades" };
17
18 // initialize face array
19 static string face[faces] =
20 { "Ace", "Deuce", "Three", "Four", "Five", "Six", "Seven",
21 "Eight", "Nine", "Ten", "Jack", "Queen", "King" };
22
23 // set values for deck of 52 Cards
24 for (size_t i = 0; i < deck.size(); ++i)
25 {
26
27
28 } // end for
29
30 srand(static_cast< size_t >(time(nullptr))); // seed
31 } // end no-argument DeckOfCards constructor
32
33 // shuffle cards in deck
34 void DeckOfCards::shuffle()
35 {

Fig. 22.3 | Member-function definitions for class DeckOfCards. (Part 1 of 2.)

Fig. 22.2 | Definition of class DeckOfCards that represents a deck of playing cards. (Part 2 of 2.)

deck[i].face = face[i % faces];
deck[i].suit = suit[i / faces];

cpphtp9_22_BitsChars.fm Page 883 Thursday, January 3, 2013 12:13 PM

884 Chapter 22 Bits, Characters, C Strings and structs

36 // shuffle cards randomly
37 for (size_t i = 0; i < deck.size(); ++i)
38 {
39 int j = rand() % numberOfCards;
40
41
42
43 } // end for
44 } // end function shuffle
45
46 // deal cards in deck
47 void DeckOfCards::deal() const
48 {
49 // display each card’s face and suit
50 for (size_t i = 0; i < deck.size(); ++i)
51 cout << right << setw(5) << << " of "
52 << left << setw(8) <<
53 << ((i + 1) % 2 ? '\t' : '\n');
54 } // end function deal

1 // Fig. 22.4: fig22_04.cpp
2 // Card shuffling and dealing program.
3 #include "DeckOfCards.h" // DeckOfCards class definition
4
5 int main()
6 {
7 DeckOfCards deckOfCards; // create DeckOfCards object
8 deckOfCards.shuffle(); // shuffle the cards in the deck
9 deckOfCards.deal(); // deal the cards in the deck

10 } // end main

 King of Clubs Ten of Diamonds
 Five of Diamonds Jack of Clubs
Seven of Spades Five of Clubs
Three of Spades King of Hearts
 Ten of Clubs Eight of Spades
Eight of Hearts Six of Hearts
 Nine of Diamonds Nine of Clubs
Three of Diamonds Queen of Hearts
 Six of Clubs Seven of Hearts
Seven of Diamonds Jack of Diamonds
 Jack of Spades King of Diamonds
Deuce of Diamonds Four of Clubs
Three of Clubs Five of Hearts
Eight of Clubs Ace of Hearts
Deuce of Spades Ace of Clubs
 Ten of Spades Eight of Diamonds
 Ten of Hearts Six of Spades
Queen of Diamonds Nine of Hearts
Seven of Clubs Queen of Clubs

Fig. 22.4 | Card shuffling and dealing program. (Part 1 of 2.)

Fig. 22.3 | Member-function definitions for class DeckOfCards. (Part 2 of 2.)

Card temp = deck[i];
deck[i] = deck[j];
deck[j] = temp;

deck[i].face
deck[i].suit

cpphtp9_22_BitsChars.fm Page 884 Thursday, January 3, 2013 12:13 PM

22.5 Bitwise Operators 885

22.5 Bitwise Operators
C++ provides extensive bit-manipulation capabilities for getting down to the so-called
“bits-and-bytes” level. Operating systems, test-equipment software, networking software
and many other kinds of software require that you communicate “directly with the hard-
ware.” We introduce each of the bitwise operators, and we discuss how to save memory by
using bit fields.

All data is represented internally by computers as sequences of bits. Each bit can
assume the value 0 or the value 1. On most systems, a sequence of eight bits, each of which
forms a byte—the standard storage unit for a variable of type char. Other data types are
stored in larger numbers of bytes. Bitwise operators are used to manipulate the bits of inte-
gral operands (char, short, int and long; both signed and unsigned). Normally the bit-
wise operators are used with unsigned integers.

The bitwise operator discussions in this section show the binary representations of the
integer operands. For a detailed explanation of the binary (also called base-2) number
system, see Appendix D. Because of the machine-dependent nature of bitwise manipula-
tions, some of these programs might not work on your system without modification.

The bitwise operators are: bitwise AND (&), bitwise inclusive OR (|), bitwise exclu-
sive OR (^), left shift (<<), right shift (>>) and bitwise complement (~)—also known as
the one’s complement. We’ve been using &, << and >> for other purposes—this is a classic
example of operator overloading. The bitwise AND, bitwise inclusive OR and bitwise exclu-
sive OR operators compare their two operands bit by bit. The bitwise AND operator sets
each bit in the result to 1 if the corresponding bit in both operands is 1. The bitwise inclu-
sive OR operator sets each bit in the result to 1 if the corresponding bit in either (or both)
operand(s) is 1. The bitwise exclusive OR operator sets each bit in the result to 1 if the cor-
responding bit in either operand—but not both—is 1. The left-shift operator shifts the bits
of its left operand to the left by the number of bits specified in its right operand. The right-
shift operator shifts the bits in its left operand to the right by the number of bits specified
in its right operand. The bitwise complement operator sets all 0 bits in its operand to 1 in
the result and sets all 1 bits in its operand to 0 in the result. Detailed discussions of each
bitwise operator appear in the following examples. The bitwise operators are summarized
in Fig. 22.5.

Deuce of Clubs Queen of Spades
Three of Hearts Five of Spades
Deuce of Hearts Jack of Hearts
 Four of Hearts Ace of Diamonds
 Nine of Spades Four of Diamonds
 Ace of Spades Six of Diamonds
 Four of Spades King of Spades

Portability Tip 22.2
Bitwise data manipulations are machine dependent.

Fig. 22.4 | Card shuffling and dealing program. (Part 2 of 2.)

cpphtp9_22_BitsChars.fm Page 885 Thursday, January 3, 2013 12:13 PM

886 Chapter 22 Bits, Characters, C Strings and structs

Printing a Binary Representation of an Integral Value
When using the bitwise operators, it’s useful to illustrate their precise effects by printing
values in their binary representation. The program of Fig. 22.6 prints an unsigned integer
in its binary representation in groups of eight bits each.

Operator Name Description

& bitwise AND The bits in the result are set to 1 if the corresponding
bits in the two operands are both 1.

| bitwise inclusive OR The bits in the result are set to 1 if one or both of the
corresponding bits in the two operands is 1.

^ bitwise exclusive OR The bits in the result are set to 1 if exactly one of the cor-
responding bits in the two operands is 1.

<< left shift Shifts the bits of the first operand left by the number of
bits specified by the second operand; fill from right with
0 bits.

>> right shift with sign
extension

Shifts the bits of the first operand right by the number
of bits specified by the second operand; the method of
filling from the left is machine dependent.

~ bitwise complement All 0 bits are set to 1 and all 1 bits are set to 0.

Fig. 22.5 | Bitwise operators.

1 // Fig. 22.6: fig22_06.cpp
2 // Printing an unsigned integer in bits.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 void displayBits(unsigned); // prototype
8
9 int main()

10 {
11 unsigned inputValue = 0; // integral value to print in binary
12
13 cout << "Enter an unsigned integer: ";
14 cin >> inputValue;
15 displayBits(inputValue);
16 } // end main
17
18 // display bits of an unsigned integer value
19 void displayBits(unsigned value)
20 {
21
22
23
24 cout << setw(10) << value << " = ";

Fig. 22.6 | Printing an unsigned integer in bits. (Part 1 of 2.)

const int SHIFT = 8 * sizeof(unsigned) - 1;
const unsigned MASK = 1 << SHIFT;

cpphtp9_22_BitsChars.fm Page 886 Thursday, January 3, 2013 12:13 PM

22.5 Bitwise Operators 887

Function displayBits (lines 19–37) uses the bitwise AND operator to combine vari-
able value with constant MASK. Often, the bitwise AND operator is used with an operand
called a mask—an integer value with specific bits set to 1. Masks are used to hide some bits
in a value while selecting other bits. In displayBits, line 22 assigns constant MASK the value
1 << SHIFT. The value of constant SHIFT was calculated in line 21 with the expression

which multiplies the number of bytes an unsigned object requires in memory by 8 (the
number of bits in a byte) to get the total number of bits required to store an unsigned ob-
ject, then subtracts 1. The bit representation of 1 << SHIFT on a computer that represents
unsigned objects in four bytes of memory is

The left-shift operator shifts the value 1 from the low-order (rightmost) bit to the high-or-
der (leftmost) bit in MASK, and fills in 0 bits from the right. Line 29 prints a 1 or a 0 for the
current leftmost bit of variable value. Assume that variable value contains 65000
(00000000 00000000 11111101 11101000). When value and MASK are combined using &,
all the bits except the high-order bit in variable value are “masked off” (hidden), because
any bit “ANDed” with 0 yields 0. If the leftmost bit is 1, value & MASK evaluates to

which is interpreted as false, and 0 is printed. Then line 30 shifts variable value left by
one bit with the expression value <<= 1 (i.e., value = value << 1). These steps are repeated

25
26 // display bits
27 for (unsigned i = 1; i <= SHIFT + 1; ++i)
28 {
29
30
31
32 if (i % 8 == 0) // output a space after 8 bits
33 cout << ' ';
34 } // end for
35
36 cout << endl;
37 } // end function displayBits

Enter an unsigned integer: 65000
 65000 = 00000000 00000000 11111101 11101000

Enter an unsigned integer: 29
 29 = 00000000 00000000 00000000 00011101

8 * sizeof(unsigned) - 1

10000000 00000000 00000000 00000000

00000000 00000000 11111101 11101000 (value)
10000000 00000000 00000000 00000000 (MASK)

00000000 00000000 00000000 00000000 (value & MASK)

Fig. 22.6 | Printing an unsigned integer in bits. (Part 2 of 2.)

cout << (value & MASK ? '1' : '0');
value <<= 1; // shift value left by 1

cpphtp9_22_BitsChars.fm Page 887 Thursday, January 3, 2013 12:13 PM

888 Chapter 22 Bits, Characters, C Strings and structs

for each bit variable value. Eventually, a bit with a value of 1 is shifted into the leftmost
bit position, and the bit manipulation is as follows:

Because both left bits are 1s, the expression’s result is nonzero (true) and 1 is printed.
Figure 22.7 summarizes the results of combining two bits with the bitwise AND operator.

The program of Fig. 22.8 demonstrates the bitwise AND operator, the bitwise inclusive
OR operator, the bitwise exclusive OR operator and the bitwise complement operator. Func-
tion displayBits (lines 48–66) prints the unsigned integer values.

11111101 11101000 00000000 00000000 (value)
10000000 00000000 00000000 00000000 (MASK)

10000000 00000000 00000000 00000000 (value & MASK)

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

1 0 0

0 1 0

1 1 1

Fig. 22.7 | Results of combining two
bits with the bitwise AND operator (&).

Common Programming Error 22.2
Using the logical AND operator (&&) for the bitwise AND operator (&) and vice versa is
a logic error.

1 // Fig. 22.8: fig22_08.cpp
2 // Bitwise AND, inclusive OR,
3 // exclusive OR and complement operators.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 void displayBits(unsigned); // prototype
9

10 int main()
11 {
12 // demonstrate bitwise &
13 unsigned number1 = 2179876355;
14 unsigned mask = 1;
15 cout << "The result of combining the following\n";
16 displayBits(number1);
17 displayBits(mask);
18 cout << "using the bitwise AND operator & is\n";
19 displayBits();

Fig. 22.8 | Bitwise AND, inclusive OR, exclusive OR and complement operators. (Part 1 of 3.)

number1 & mask

cpphtp9_22_BitsChars.fm Page 888 Thursday, January 3, 2013 12:13 PM

22.5 Bitwise Operators 889

20
21 // demonstrate bitwise |
22 number1 = 15;
23 unsigned setBits = 241;
24 cout << "\nThe result of combining the following\n";
25 displayBits(number1);
26 displayBits(setBits);
27 cout << "using the bitwise inclusive OR operator | is\n";
28 displayBits();
29
30 // demonstrate bitwise exclusive OR
31 number1 = 139;
32 unsigned number2 = 199;
33 cout << "\nThe result of combining the following\n";
34 displayBits(number1);
35 displayBits(number2);
36 cout << "using the bitwise exclusive OR operator ^ is\n";
37 displayBits();
38
39 // demonstrate bitwise complement
40 number1 = 21845;
41 cout << "\nThe one's complement of\n";
42 displayBits(number1);
43 cout << "is" << endl;
44 displayBits();
45 } // end main
46
47 // display bits of an unsigned integer value
48 void displayBits(unsigned value)
49 {
50 const int SHIFT = 8 * sizeof(unsigned) - 1;
51 const unsigned MASK = 1 << SHIFT;
52
53 cout << setw(10) << value << " = ";
54
55 // display bits
56 for (unsigned i = 1; i <= SHIFT + 1; ++i)
57 {
58 cout << (value & MASK ? '1' : '0');
59 value <<= 1; // shift value left by 1
60
61 if (i % 8 == 0) // output a space after 8 bits
62 cout << ' ';
63 } // end for
64
65 cout << endl;
66 } // end function displayBits

The result of combining the following
2179876355 = 10000001 11101110 01000110 00000011
 1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000000 00000000 00000001

Fig. 22.8 | Bitwise AND, inclusive OR, exclusive OR and complement operators. (Part 2 of 3.)

number1 | setBits

number1 ^ number2

~number1

cpphtp9_22_BitsChars.fm Page 889 Thursday, January 3, 2013 12:13 PM

890 Chapter 22 Bits, Characters, C Strings and structs

Bitwise AND Operator (&)
In Fig. 22.8, line 13 assigns 2179876355 (10000001 11101110 01000110 00000011) to vari-
able number1, and line 14 assigns 1 (00000000 00000000 00000000 00000001) to variable
mask. When mask and number1 are combined using the bitwise AND operator (&) in the
expression number1 & mask (line 19), the result is 00000000 00000000 00000000 00000001.
All the bits except the low-order bit in variable number1 are “masked off” (hidden) by
“ANDing” with constant MASK.

Bitwise Inclusive OR Operator (|)
The bitwise inclusive OR operator is used to set specific bits to 1 in an operand. In Fig. 22.8,
line 22 assigns 15 (00000000 00000000 00000000 00001111) to variable number1, and line
23 assigns 241 (00000000 00000000 00000000 11110001) to variable setBits. When
number1 and setBits are combined using the bitwise inclusive OR operator in the expres-
sion number1 | setBits (line 28), the result is 255 (00000000 00000000 00000000
11111111). Figure 22.9 summarizes the results of combining two bits with the bitwise in-
clusive-OR operator.

The result of combining the following
 15 = 00000000 00000000 00000000 00001111
 241 = 00000000 00000000 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 00000000 00000000 11111111

The result of combining the following
 139 = 00000000 00000000 00000000 10001011
 199 = 00000000 00000000 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 00000000 00000000 01001100

The one's complement of
 21845 = 00000000 00000000 01010101 01010101
is
4294945450 = 11111111 11111111 10101010 10101010

Common Programming Error 22.3
Using the logical OR operator (||) for the bitwise OR operator (|) and vice versa is a
logic error.

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

1 0 1

0 1 1

1 1 1

Fig. 22.9 | Combining two bits
with the bitwise inclusive-OR operator (|).

Fig. 22.8 | Bitwise AND, inclusive OR, exclusive OR and complement operators. (Part 3 of 3.)

cpphtp9_22_BitsChars.fm Page 890 Thursday, January 3, 2013 12:13 PM

22.5 Bitwise Operators 891

Bitwise Exclusive OR (^)
The bitwise exclusive OR operator (^) sets each bit in the result to 1 if exactly one of the cor-
responding bits in its two operands is 1. In Fig. 22.8, lines 31–32 assign variables number1
and number2 the values 139 (00000000 00000000 00000000 10001011) and 199 (00000000
00000000 00000000 11000111), respectively. When these variables are combined with the
bitwise exclusive OR operator in the expression number1 ^ number2 (line 37), the result is
00000000 00000000 00000000 01001100. Figure 22.10 summarizes the results of combin-
ing two bits with the bitwise exclusive OR operator.

Bitwise Complement (~)
The bitwise complement operator (~) sets all 1 bits in its operand to 0 in the result and sets
all 0 bits to 1 in the result—otherwise referred to as “taking the one’s complement of the val-
ue.” In Fig. 22.8, line 40 assigns variable number1 the value 21845 (00000000 00000000
01010101 01010101). When the expression ~number1 evaluates, the result is (11111111
11111111 10101010 10101010).

Bitwise Shift Operators
Figure 22.11 demonstrates the left-shift operator (<<) and the right-shift operator (>>).
Function displayBits (lines 27–45) prints the unsigned integer values.

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

1 0 1

0 1 1

1 1 0

Fig. 22.10 | Combining two bits with
the bitwise exclusive OR operator (^).

1 // Fig. 22.11: fig22_11.cpp
2 // Using the bitwise shift operators.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 void displayBits(unsigned); // prototype
8
9 int main()

10 {
11 unsigned number1 = 960;
12
13 // demonstrate bitwise left shift
14 cout << "The result of left shifting\n";
15 displayBits(number1);
16 cout << "8 bit positions using the left-shift operator is\n";

Fig. 22.11 | Bitwise shift operators. (Part 1 of 2.)

cpphtp9_22_BitsChars.fm Page 891 Thursday, January 3, 2013 12:13 PM

892 Chapter 22 Bits, Characters, C Strings and structs

Left-Shift Operator
The left-shift operator (<<) shifts the bits of its left operand to the left by the number of bits
specified in its right operand. Bits vacated to the right are replaced with 0s; bits shifted off
the left are lost. In Fig. 22.11, line 11 assigns variable number1 the value 960 (00000000
00000000 00000011 11000000). The result of left-shifting variable number1 eight bits in the
expression number1 << 8 (line 17) is 245760 (00000000 00000011 11000000 00000000).

Right-Shift Operator
The right-shift operator (>>) shifts the bits of its left operand to the right by the number of
bits specified in its right operand. Performing a right shift on an unsigned integer causes
the vacated bits at the left to be replaced by 0s; bits shifted off the right are lost. In the

17 displayBits();
18
19 // demonstrate bitwise right shift
20 cout << "\nThe result of right shifting\n";
21 displayBits(number1);
22 cout << "8 bit positions using the right-shift operator is\n";
23 displayBits();
24 } // end main
25
26 // display bits of an unsigned integer value
27 void displayBits(unsigned value)
28 {
29 const int SHIFT = 8 * sizeof(unsigned) - 1;
30 const unsigned MASK = 1 << SHIFT;
31
32 cout << setw(10) << value << " = ";
33
34 // display bits
35 for (unsigned i = 1; i <= SHIFT + 1; ++i)
36 {
37 cout << (value & MASK ? '1' : '0');
38 value <<= 1; // shift value left by 1
39
40 if (i % 8 == 0) // output a space after 8 bits
41 cout << ' ';
42 } // end for
43
44 cout << endl;
45 } // end function displayBits

The result of left shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the left-shift operator is
 245760 = 00000000 00000011 11000000 00000000

The result of right shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the right-shift operator is
 3 = 00000000 00000000 00000000 00000011

Fig. 22.11 | Bitwise shift operators. (Part 2 of 2.)

number1 << 8

number1 >> 8

cpphtp9_22_BitsChars.fm Page 892 Thursday, January 3, 2013 12:13 PM

22.5 Bitwise Operators 893

program of Fig. 22.11, the result of right-shifting number1 in the expression number1 >> 8
(line 23) is 3 (00000000 00000000 00000000 00000011).

Bitwise Assignment Operators
Each bitwise operator (except the bitwise complement operator) has a corresponding as-
signment operator. These bitwise assignment operators are shown in Fig. 22.12; they’re
used in a similar manner to the arithmetic assignment operators introduced in Chapter 4.

Figure 22.13 shows the precedence and associativity of the operators introduced up
to this point in the text. They’re shown top to bottom in decreasing order of precedence.

Common Programming Error 22.4
The result of shifting a value is undefined if the right operand is negative or if the right
operand is greater than or equal to the number of bits in which the left operand is stored.

Portability Tip 22.3
The result of right-shifting a signed value is machine dependent. Some machines fill with
zeros and others use the sign bit.

Bitwise assignment operators

&= Bitwise AND assignment operator.

|= Bitwise inclusive OR assignment operator.

^= Bitwise exclusive OR assignment operator.

<<= Left-shift assignment operator.

>>= Right-shift with sign extension assignment operator.

Fig. 22.12 | Bitwise assignment operators.

Operators Associativity Type

:: (unary; right to left)
:: (binary; left to right)
() (grouping parentheses)

left to right
[See caution in Fig. 2.10 regard-
ing grouping parentheses.]

primary

() [] . -> ++ -- static_cast<type>() left to right postfix

++ -- + - ! delete sizeof

 * ~ & new

right to left prefix

* / % left to right multiplicative

+ - left to right additive

<< >> left to right shifting

< <= > >= left to right relational

== != left to right equality

Fig. 22.13 | Operator precedence and associativity. (Part 1 of 2.)

cpphtp9_22_BitsChars.fm Page 893 Thursday, January 3, 2013 12:13 PM

894 Chapter 22 Bits, Characters, C Strings and structs

22.6 Bit Fields
C++ provides the ability to specify the number of bits in which an integral type or enum
type member of a class or a structure is stored. Such a member is referred to as a bit field.
Bit fields enable better memory utilization by storing data in the minimum number of bits
required. Bit field members must be declared as an integral or enum type.

Consider the following structure definition:

The definition contains three unsigned bit fields—face, suit and color—used to repre-
sent a card from a deck of 52 cards. A bit field is declared by following an integral type or
enum type member with a colon (:) and an integer constant representing the width of the
bit field (i.e., the number of bits in which the member is stored). The width must be an
integer constant.

The preceding structure definition indicates that member face is stored in four bits,
member suit in 2 bits and member color in one bit. The number of bits is based on the
desired range of values for each structure member. Member face stores values between 0
(Ace) and 12 (King)—four bits can store a value between 0 and 15. Member suit stores
values between 0 and 3 (0 = Diamonds, 1 = Hearts, 2 = Clubs, 3 = Spades)—two bits can
store a value between 0 and 3. Finally, member color stores either 0 (Red) or 1 (Black)—
one bit can store either 0 or 1.

The program in Figs. 22.14–22.16 creates array deck containing BitCard structures
(line 25 of Fig. 22.14). The constructor inserts the 52 cards in the deck array, and func-
tion deal prints the 52 cards. Notice that bit fields are accessed exactly as any other struc-

& left to right bitwise AND

^ left to right bitwise XOR

| left to right bitwise OR

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= &= |= ^= <<= >>= right to left assignment

, left to right comma

Performance Tip 22.1
Bit fields help conserve storage.

struct BitCard
{
 unsigned face : 4;
 unsigned suit : 2;
 unsigned color : 1;
}; // end struct BitCard

Operators Associativity Type

Fig. 22.13 | Operator precedence and associativity. (Part 2 of 2.)

cpphtp9_22_BitsChars.fm Page 894 Thursday, January 3, 2013 12:13 PM

22.6 Bit Fields 895

ture member is (lines 14–16 and 25–30 of Fig. 22.15). The member color is included as
a means of indicating the card color.

1 // Fig. 22.14: DeckOfCards.h
2 // Definition of class DeckOfCards that
3 // represents a deck of playing cards.
4 #include <array>
5
6
7
8
9

10
11
12
13
14 // DeckOfCards class definition
15 class DeckOfCards
16 {
17 public:
18 static const int faces = 13;
19 static const int colors = 2; // black and red
20 static const int numberOfCards = 52;
21
22 DeckOfCards(); // constructor initializes deck
23 void deal() const; // deals cards in deck
24 private:
25
26 }; // end class DeckOfCards

Fig. 22.14 | Definition of class DeckOfCards that represents a deck of playing cards.

1 // Fig. 22.15: DeckOfCards.cpp
2 // Member-function definitions for class DeckOfCards that simulates
3 // the shuffling and dealing of a deck of playing cards.
4 #include <iostream>
5 #include <iomanip>
6 #include "DeckOfCards.h" // DeckOfCards class definition
7 using namespace std;
8
9 // no-argument DeckOfCards constructor intializes deck

10 DeckOfCards::DeckOfCards()
11 {
12 for (size_t i = 0; i < deck.size(); ++i)
13 {
14
15
16
17 } // end for
18 } // end no-argument DeckOfCards constructor

Fig. 22.15 | Member-function definitions for class DeckOfCards. (Part 1 of 2.)

// BitCard structure definition with bit fields
struct BitCard
{
 unsigned face : 4; // 4 bits; 0-15
 unsigned suit : 2; // 2 bits; 0-3
 unsigned color : 1; // 1 bit; 0-1
}; // end struct BitCard

std::array< BitCard, numberOfCards > deck; // represents deck of cards

deck[i].face = i % faces; // faces in order
deck[i].suit = i / faces; // suits in order
deck[i].color = i / (faces * colors); // colors in order

cpphtp9_22_BitsChars.fm Page 895 Thursday, January 3, 2013 12:13 PM

896 Chapter 22 Bits, Characters, C Strings and structs

19
20 // deal cards in deck
21 void DeckOfCards::deal() const
22 {
23 for (size_t k1 = 0, k2 = k1 + deck.size() / 2;
24 k1 < deck.size() / 2 - 1; ++k1, ++k2)
25 cout << "Card:" << setw(3) <<
26 << " Suit:" << setw(2) <<
27 << " Color:" << setw(2) <<
28 << " " << "Card:" << setw(3) <<
29 << " Suit:" << setw(2) <<
30 << " Color:" << setw(2) << << endl;
31 } // end function deal

1 // Fig. 22.16: fig22_16.cpp
2 // Card shuffling and dealing program.
3 #include "DeckOfCards.h" // DeckOfCards class definition
4
5 int main()
6 {
7 DeckOfCards deckOfCards; // create DeckOfCards object
8 deckOfCards.deal(); // deal the cards in the deck
9 } // end main

Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1
Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1
Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1
Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1
Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1
Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1
Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1
Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1
Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1
Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1
Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1
Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1
Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1
Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1
Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1
Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1
Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1
Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1
Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1
Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1
Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1
Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1
Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1
Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1
Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1
Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

Fig. 22.16 | Bit fields used to store a deck of cards.

Fig. 22.15 | Member-function definitions for class DeckOfCards. (Part 2 of 2.)

deck[k1].face
deck[k1].suit
deck[k1].color

deck[k2].face
deck[k2].suit
deck[k2].color

cpphtp9_22_BitsChars.fm Page 896 Thursday, January 3, 2013 12:13 PM

22.7 Character-Handling Library 897

It’s possible to specify an unnamed bit field, in which case the field is used as padding
in the structure. For example, the structure definition uses an unnamed three-bit field as
padding—nothing can be stored in those three bits. Member b is stored in another storage
unit.

An unnamed bit field with a zero width is used to align the next bit field on a new
storage-unit boundary. For example, the structure definition

uses an unnamed 0-bit field to skip the remaining bits (as many as there are) of the storage
unit in which a is stored and align b on the next storage-unit boundary.

22.7 Character-Handling Library
Most data is entered into computers as characters—including letters, digits and various
special symbols. In this section, we discuss C++’s capabilities for examining and manipu-
lating individual characters. In the remainder of the chapter, we continue the discussion
of character-string manipulation that we began in Chapter 8.

struct Example
{
 unsigned a : 13;
 unsigned : 3; // align to next storage-unit boundary
 unsigned b : 4;
}; // end struct Example

struct Example
{
 unsigned a : 13;
 unsigned : 0; // align to next storage-unit boundary
 unsigned b : 4;
}; // end struct Example

Portability Tip 22.4
Bit-field manipulations are machine dependent. For example, some computers allow bit
fields to cross word boundaries, whereas others do not.

Common Programming Error 22.5
Attempting to access individual bits of a bit field with subscripting as if they were elements
of an array is a compilation error. Bit fields are not “arrays of bits.”

Common Programming Error 22.6
Attempting to take the address of a bit field (the & operator may not be used with bit fields
because a pointer can designate only a particular byte in memory and bit fields can start
in the middle of a byte) is a compilation error.

Performance Tip 22.2
Although bit fields save space, using them can cause the compiler to generate slower-exe-
cuting machine-language code. This occurs because it takes extra machine-language oper-
ations to access only portions of an addressable storage unit. This is one of many examples
of the space–time trade-offs that occur in computer science.

cpphtp9_22_BitsChars.fm Page 897 Thursday, January 3, 2013 12:13 PM

898 Chapter 22 Bits, Characters, C Strings and structs

The character-handling library includes several functions that perform useful tests and
manipulations of character data. Each function receives a character—represented as an
int—or EOF as an argument. Characters are often manipulated as integers. Remember that
EOF normally has the value –1 and that some hardware architectures do not allow negative
values to be stored in char variables. Therefore, the character-handling functions manip-
ulate characters as integers. Figure 22.17 summarizes the functions of the character-han-
dling library. When using functions from the character-handling library, include the
<cctype> header.

Figure 22.18 demonstrates functions isdigit, isalpha, isalnum and isxdigit.
Function isdigit determines whether its argument is a digit (0–9). Function isalpha
determines whether its argument is an uppercase letter (A-Z) or a lowercase letter (a–z).
Function isalnum determines whether its argument is an uppercase letter, a lowercase letter
or a digit. Function isxdigit determines whether its argument is a hexadecimal digit (A–
F, a–f, 0–9).

Prototype Description

int isdigit(int c) Returns 1 if c is a digit and 0 otherwise.

int isalpha(int c) Returns 1 if c is a letter and 0 otherwise.

int isalnum(int c) Returns 1 if c is a digit or a letter and 0 otherwise.

int isxdigit(int c) Returns 1 if c is a hexadecimal digit character and 0 otherwise. (See
Appendix D for a detailed explanation of binary, octal, decimal
and hexadecimal numbers.)

int islower(int c) Returns 1 if c is a lowercase letter and 0 otherwise.

int isupper(int c) Returns 1 if c is an uppercase letter; 0 otherwise.

int tolower(int c) If c is an uppercase letter, tolower returns c as a lowercase letter.
Otherwise, tolower returns the argument unchanged.

int toupper(int c) If c is a lowercase letter, toupper returns c as an uppercase letter.
Otherwise, toupper returns the argument unchanged.

int isspace(int c) Returns 1 if c is a whitespace character—newline ('\n'), space
(' '), form feed ('\f'), carriage return ('\r'), horizontal tab
('\t'), or vertical tab ('\v')—and 0 otherwise.

int iscntrl(int c) Returns 1 if c is a control character, such as newline ('\n'), form
feed ('\f'), carriage return ('\r'), horizontal tab ('\t'), vertical
tab ('\v'), alert ('\a'), or backspace ('\b')—and 0 otherwise.

int ispunct(int c) Returns 1 if c is a printing character other than a space, a digit, or a
letter and 0 otherwise.

int isprint(int c) Returns 1 if c is a printing character including space (' ') and 0
otherwise.

int isgraph(int c) Returns 1 if c is a printing character other than space (' ') and 0
otherwise.

Fig. 22.17 | Character-handling library functions.

cpphtp9_22_BitsChars.fm Page 898 Thursday, January 3, 2013 12:13 PM

22.7 Character-Handling Library 899

1 // Fig. 22.18: fig22_18.cpp
2 // Character-handling functions isdigit, isalpha, isalnum and isxdigit.
3 #include <iostream>
4 #include <cctype> // character-handling function prototypes
5 using namespace std;
6
7 int main()
8 {
9 cout << "According to isdigit:\n"

10 << (? "8 is a" : "8 is not a") << " digit\n"
11 << (? "# is a" : "# is not a") << " digit\n";
12
13 cout << "\nAccording to isalpha:\n"
14 << (? "A is a" : "A is not a") << " letter\n"
15 << (? "b is a" : "b is not a") << " letter\n"
16 << (? "& is a" : "& is not a") << " letter\n"
17 << (? "4 is a" : "4 is not a") << " letter\n";
18
19 cout << "\nAccording to isalnum:\n"
20 << (? "A is a" : "A is not a")
21 << " digit or a letter\n"
22 << (? "8 is a" : "8 is not a")
23 << " digit or a letter\n"
24 << (? "# is a" : "# is not a")
25 << " digit or a letter\n";
26
27 cout << "\nAccording to isxdigit:\n"
28 << (? "F is a" : "F is not a")
29 << " hexadecimal digit\n"
30 << (? "J is a" : "J is not a")
31 << " hexadecimal digit\n"
32 << (? "7 is a" : "7 is not a")
33 << " hexadecimal digit\n"
34 << (? "$ is a" : "$ is not a")
35 << " hexadecimal digit\n"
36 << (? "f is a" : "f is not a")
37 << " hexadecimal digit" << endl;
38 } // end main

According to isdigit:
8 is a digit
is not a digi

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

Fig. 22.18 | Character-handling functions isdigit, isalpha, isalnum and isxdigit. (Part 1
of 2.)

isdigit('8')
isdigit('#')

isalpha('A')
isalpha('b')
isalpha('&')
isalpha('4')

isalnum('A')

isalnum('8')

isalnum('#')

isxdigit('F')

isxdigit('J')

isxdigit('7')

isxdigit('$')

isxdigit('f')

cpphtp9_22_BitsChars.fm Page 899 Thursday, January 3, 2013 12:13 PM

900 Chapter 22 Bits, Characters, C Strings and structs

Figure 22.18 uses the conditional operator (?:) with each function to determine
whether the string " is a " or the string " is not a " should be printed in the output for
each character tested. For example, line 10 indicates that if '8' is a digit—i.e., if isdigit
returns a true (nonzero) value—the string "8 is a " is printed. If '8' is not a digit (i.e., if
isdigit returns 0), the string "8 is not a " is printed.

Figure 22.19 demonstrates functions islower, isupper, tolower and toupper. Func-
tion islower determines whether its argument is a lowercase letter (a–z). Function
isupper determines whether its argument is an uppercase letter (A–Z). Function tolower
converts an uppercase letter to lowercase and returns the lowercase letter—if the argument
is not an uppercase letter, tolower returns the argument value unchanged. Function
toupper converts a lowercase letter to uppercase and returns the uppercase letter—if the
argument is not a lowercase letter, toupper returns the argument value unchanged.

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

1 // Fig. 22.19: fig22_19.cpp
2 // Character-handling functions islower, isupper, tolower and toupper.
3 #include <iostream>
4 #include <cctype> // character-handling function prototypes
5 using namespace std;
6
7 int main()
8 {
9 cout << "According to islower:\n"

10 << (? "p is a" : "p is not a")
11 << " lowercase letter\n"
12 << (? "P is a" : "P is not a")
13 << " lowercase letter\n"
14 << (? "5 is a" : "5 is not a")
15 << " lowercase letter\n"
16 << (? "! is a" : "! is not a")
17 << " lowercase letter\n";
18
19 cout << "\nAccording to isupper:\n"
20 << (? "D is an" : "D is not an")
21 << " uppercase letter\n"
22 << (? "d is an" : "d is not an")
23 << " uppercase letter\n"
24 << (? "8 is an" : "8 is not an")

Fig. 22.19 | Character-handling functions islower, isupper, tolower and toupper. (Part 1
of 2.)

Fig. 22.18 | Character-handling functions isdigit, isalpha, isalnum and isxdigit. (Part 2
of 2.)

islower('p')

islower('P')

islower('5')

islower('!')

isupper('D')

isupper('d')

isupper('8')

cpphtp9_22_BitsChars.fm Page 900 Thursday, January 3, 2013 12:13 PM

22.7 Character-Handling Library 901

Figure 22.20 demonstrates functions isspace, iscntrl, ispunct, isprint and
isgraph. Function isspace determines whether its argument is a whitespace character,
such as space (' '), form feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal tab
('\t') or vertical tab ('\v'). Function iscntrl determines whether its argument is a con-
trol character such as horizontal tab ('\t'), vertical tab ('\v'), form feed ('\f'), alert
('\a'), backspace ('\b'), carriage return ('\r') or newline ('\n'). Function ispunct
determines whether its argument is a printing character other than a space, digit or letter,
such as $, #, (,), [,], {, }, ;, : or %. Function isprint determines whether its argument
is a character that can be displayed on the screen (including the space character). Function
isgraph tests for the same characters as isprint, but the space character is not included.

25 << " uppercase letter\n"
26 << (? "$ is an" : "$ is not an")
27 << " uppercase letter\n";
28
29 cout << "\nu converted to uppercase is "
30 <<
31 << "\n7 converted to uppercase is "
32 <<
33 << "\n$ converted to uppercase is "
34 <<
35 << "\nL converted to lowercase is "
36 << << endl;
37 } // end main

According to islower:
p is a lowercase letter
P is not a lowercase letter
5 is not a lowercase letter
! is not a lowercase letter

According to isupper:
D is an uppercase letter
d is not an uppercase letter
8 is not an uppercase letter
$ is not an uppercase letter

u converted to uppercase is U
7 converted to uppercase is 7
$ converted to uppercase is $
L converted to lowercase is l

1 // Fig. 22.20: fig22_20.cpp
2 // Using functions isspace, iscntrl, ispunct, isprint and isgraph.
3 #include <iostream>

Fig. 22.20 | Character-handling functions isspace, iscntrl, ispunct, isprint and
isgraph. (Part 1 of 3.)

Fig. 22.19 | Character-handling functions islower, isupper, tolower and toupper. (Part 2
of 2.)

isupper('$')

static_cast< char >(toupper('u'))

static_cast< char >(toupper('7'))

static_cast< char >(toupper('$'))

static_cast< char >(tolower('L'))

cpphtp9_22_BitsChars.fm Page 901 Thursday, January 3, 2013 12:13 PM

902 Chapter 22 Bits, Characters, C Strings and structs

4 #include <cctype> // character-handling function prototypes
5 using namespace std;
6
7 int main()
8 {
9 cout << "According to isspace:\nNewline "

10 << (? "is a" : "is not a")
11 << " whitespace character\nHorizontal tab "
12 << (? "is a" : "is not a")
13 << " whitespace character\n"
14 << (? "% is a" : "% is not a")
15 << " whitespace character\n";
16
17 cout << "\nAccording to iscntrl:\nNewline "
18 << (? "is a" : "is not a")
19 << " control character\n"
20 << (? "$ is a" : "$ is not a")
21 << " control character\n";
22
23 cout << "\nAccording to ispunct:\n"
24 << (? "; is a" : "; is not a")
25 << " punctuation character\n"
26 << (? "Y is a" : "Y is not a")
27 << " punctuation character\n"
28 << (? "# is a" : "# is not a")
29 << " punctuation character\n";
30
31 cout << "\nAccording to isprint:\n"
32 << (? "$ is a" : "$ is not a")
33 << " printing character\nAlert "
34 << (? "is a" : "is not a")
35 << " printing character\nSpace "
36 << (? "is a" : "is not a")
37 << " printing character\n";
38
39 cout << "\nAccording to isgraph:\n"
40 << (? "Q is a" : "Q is not a")
41 << " printing character other than a space\nSpace "
42 << (? "is a" : "is not a")
43 << " printing character other than a space" << endl;
44 } // end main

According to isspace:
Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character

According to iscntrl:
Newline is a control character
$ is not a control character

Fig. 22.20 | Character-handling functions isspace, iscntrl, ispunct, isprint and
isgraph. (Part 2 of 3.)

isspace('\n')

isspace('\t')

isspace('%')

iscntrl('\n')

iscntrl('$')

ispunct(';')

ispunct('Y')

ispunct('#')

isprint('$')

isprint('\a')

isprint(' ')

isgraph('Q')

isgraph(' ')

cpphtp9_22_BitsChars.fm Page 902 Thursday, January 3, 2013 12:13 PM

22.8 C String-Manipulation Functions 903

22.8 C String-Manipulation Functions
The string-handling library provides any useful functions for manipulating string data,
comparing strings, searching strings for characters and other strings, tokenizing strings (sep-
arating strings into logical pieces such as the separate words in a sentence) and determining
the length of strings. This section presents some common string-manipulation functions
of the string-handling library (from the C++ standard library). The functions are summa-
rized in Fig. 22.21; then each is used in a live-code example. The prototypes for these func-
tions are located in header <cstring>.

According to ispunct:
; is a punctuation character
Y is not a punctuation character
is a punctuation character

According to isprint:
$ is a printing character
Alert is not a printing character
Space is a printing character

According to isgraph:
Q is a printing character other than a space
Space is not a printing character other than a space

Function prototype Function description

char *strcpy(char *s1, const char *s2);
Copies the string s2 into the character array s1. The value of s1 is
returned.

char *strncpy(char *s1, const char *s2, size_t n);
Copies at most n characters of the string s2 into the character array
s1. The value of s1 is returned.

char *strcat(char *s1, const char *s2);
Appends the string s2 to s1. The first character of s2 overwrites the
terminating null character of s1. The value of s1 is returned.

char *strncat(char *s1, const char *s2, size_t n);
Appends at most n characters of string s2 to string s1. The first char-
acter of s2 overwrites the terminating null character of s1. The value
of s1 is returned.

int strcmp(const char *s1, const char *s2);
Compares the string s1 with the string s2. The function returns a
value of zero, less than zero or greater than zero if s1 is equal to, less
than or greater than s2, respectively.

Fig. 22.21 | String-manipulation functions of the string-handling library. (Part 1 of 2.)

Fig. 22.20 | Character-handling functions isspace, iscntrl, ispunct, isprint and
isgraph. (Part 3 of 3.)

cpphtp9_22_BitsChars.fm Page 903 Thursday, January 3, 2013 12:13 PM

904 Chapter 22 Bits, Characters, C Strings and structs

Several functions in Fig. 22.21 contain parameters with data type size_t. This type
is defined in the header <cstring> to be an unsigned integral type such as unsigned int
or unsigned long.

Copying Strings with strcpy and strncpy
Function strcpy copies its second argument—a string—into its first argument—a char-
acter array that must be large enough to store the string and its terminating null character,
(which is also copied). Function strncpy is much like strcpy, except that strncpy speci-
fies the number of characters to be copied from the string into the array. Function strncpy
does not necessarily copy the terminating null character of its second argument—a termi-
nating null character is written only if the number of characters to be copied is at least one
more than the length of the string. For example, if "test" is the second argument, a ter-
minating null character is written only if the third argument to strncpy is at least 5 (four
characters in "test" plus one terminating null character). If the third argument is larger
than 5, null characters are appended to the array until the total number of characters spec-
ified by the third argument is written.

int strncmp(const char *s1, const char *s2, size_t n);
Compares up to n characters of the string s1 with the string s2. The
function returns zero, less than zero or greater than zero if the n-
character portion of s1 is equal to, less than or greater than the cor-
responding n-character portion of s2, respectively.

char *strtok(char *s1, const char *s2);
A sequence of calls to strtok breaks string s1 into tokens—logical
pieces such as words in a line of text. The string is broken up based
on the characters contained in string s2. For instance, if we were to
break the string "this:is:a:string" into tokens based on the
character ':', the resulting tokens would be "this", "is", "a" and
"string". Function strtok returns only one token at a time—the
first call contains s1 as the first argument, and subsequent calls to
continue tokenizing the same string contain NULL as the first
argument. A pointer to the current token is returned by each call. If
there are no more tokens when the function is called, NULL is
returned.

size_t strlen(const char *s);

Determines the length of string s. The number of characters preced-
ing the terminating null character is returned.

Common Programming Error 22.7
Forgetting to include the <cstring> header when using functions from the string-han-
dling library causes compilation errors.

Function prototype Function description

Fig. 22.21 | String-manipulation functions of the string-handling library. (Part 2 of 2.)

cpphtp9_22_BitsChars.fm Page 904 Thursday, January 3, 2013 12:13 PM

22.8 C String-Manipulation Functions 905

Figure 22.22 uses strcpy (line 13) to copy the entire string in array x into array y and
uses strncpy (line 19) to copy the first 14 characters of array x into array z. Line 20
appends a null character ('\0') to array z, because the call to strncpy in the program does
not write a terminating null character. (The third argument is less than the string length
of the second argument plus one.)

Concatenating Strings with strcat and strncat
Function strcat appends its second argument (a string) to its first argument (a character ar-
ray containing a string). The first character of the second argument replaces the null charac-
ter ('\0') that terminates the string in the first argument. You must ensure that the array
used to store the first string is large enough to store the combination of the first string, the
second string and the terminating null character (copied from the second string). Function
strncat appends a specified number of characters from the second string to the first string
and appends a terminating null character to the result. The program of Fig. 22.23 demon-
strates function strcat (lines 15 and 25) and function strncat (line 20).

Common Programming Error 22.8
When using strncpy, the terminating null character of the second argument (a char *
string) will not be copied if the number of characters specified by strncpy’s third argu-
ment is not greater than the second argument’s length. In that case, a fatal error may occur
if you do not manually terminate the resulting char * string with a null character.

1 // Fig. 22.22: fig22_22.cpp
2 // Using strcpy and strncpy.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 char x[] = "Happy Birthday to You"; // string length 21

10 char y[25];
11 char z[15];
12
13
14
15 cout << "The string in array x is: " << x
16 << "\nThe string in array y is: " << y << '\n';
17
18
19
20
21
22 cout << "The string in array z is: " << z << endl;
23 } // end main

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

Fig. 22.22 | strcpy and strncpy.

#include <cstring> // prototypes for strcpy and strncpy

strcpy(y, x); // copy contents of x into y

// copy first 14 characters of x into z
strncpy(z, x, 14); // does not copy null character
z[14] = '\0'; // append '\0' to z's contents

cpphtp9_22_BitsChars.fm Page 905 Thursday, January 3, 2013 12:13 PM

906 Chapter 22 Bits, Characters, C Strings and structs

Comparing Strings with strcmp and strncmp
Figure 22.24 compares three strings using strcmp (lines 15–17) and strncmp (lines 20–
22). Function strcmp compares its first string argument with its second string argument
character by character. The function returns zero if the strings are equal, a negative value
if the first string is less than the second string and a positive value if the first string is greater
than the second string. Function strncmp is equivalent to strcmp, except that strncmp
compares up to a specified number of characters. Function strncmp stops comparing char-

1 // Fig. 22.23: fig23_23.cpp
2 // Using strcat and strncat.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 char s1[20] = "Happy "; // length 6

10 char s2[] = "New Year "; // length 9
11 char s3[40] = "";
12
13 cout << "s1 = " << s1 << "\ns2 = " << s2;
14
15
16
17 cout << "\n\nAfter strcat(s1, s2):\ns1 = " << s1 << "\ns2 = " << s2;
18
19
20
21
22 cout << "\n\nAfter strncat(s3, s1, 6):\ns1 = " << s1
23 << "\ns3 = " << s3;
24
25
26 cout << "\n\nAfter strcat(s3, s1):\ns1 = " << s1
27 << "\ns3 = " << s3 << endl;
28 } // end main

s1 = Happy
s2 = New Year

After strcat(s1, s2):
s1 = Happy New Year
s2 = New Year

After strncat(s3, s1, 6):
s1 = Happy New Year
s3 = Happy

After strcat(s3, s1):
s1 = Happy New Year
s3 = Happy Happy New Year

Fig. 22.23 | strcat and strncat.

#include <cstring> // prototypes for strcat and strncat

strcat(s1, s2); // concatenate s2 to s1 (length 15)

// concatenate first 6 characters of s1 to s3
strncat(s3, s1, 6); // places '\0' after last character

strcat(s3, s1); // concatenate s1 to s3

cpphtp9_22_BitsChars.fm Page 906 Thursday, January 3, 2013 12:13 PM

22.8 C String-Manipulation Functions 907

acters if it reaches the null character in one of its string arguments. The program prints the
integer value returned by each function call.

To understand what it means for one string to be “greater than” or “less than”
another, consider the process of alphabetizing last names. You’d, no doubt, place “Jones”
before “Smith,” because the first letter of “Jones” comes before the first letter of “Smith”
in the alphabet. But the alphabet is more than just a list of 26 letters—it’s an ordered list
of characters. Each letter occurs in a specific position within the list. “Z” is more than just
a letter of the alphabet; “Z” is specifically the 26th letter of the alphabet.

Common Programming Error 22.9
Assuming that strcmp and strncmp return one (a true value) when their arguments are
equal is a logic error. Both functions return zero (C++'s false value) for equality. There-
fore, when testing two strings for equality, the result of the strcmp or strncmp function
should be compared with zero to determine whether the strings are equal.

1 // Fig. 22.24: fig22_24.cpp
2 // Using strcmp and strncmp.
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8 int main()
9 {

10 const char *s1 = "Happy New Year";
11 const char *s2 = "Happy New Year";
12 const char *s3 = "Happy Holidays";
13
14 cout << "s1 = " << s1 << "\ns2 = " << s2 << "\ns3 = " << s3
15 << "\n\nstrcmp(s1, s2) = " << setw(2) <<
16 << "\nstrcmp(s1, s3) = " << setw(2) <<
17 << "\nstrcmp(s3, s1) = " << setw(2) << ;
18
19 cout << "\n\nstrncmp(s1, s3, 6) = " << setw(2)
20 << << "\nstrncmp(s1, s3, 7) = " << setw(2)
21 << << "\nstrncmp(s3, s1, 7) = " << setw(2)
22 << << endl;
23 } // end main

s1 = Happy New Year
s2 = Happy New Year
s3 = Happy Holidays

strcmp(s1, s2) = 0
strcmp(s1, s3) = 1
strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0
strncmp(s1, s3, 7) = 1
strncmp(s3, s1, 7) = -1

Fig. 22.24 | strcmp and strncmp.

#include <cstring> // prototypes for strcmp and strncmp

strcmp(s1, s2)
strcmp(s1, s3)
strcmp(s3, s1)

strncmp(s1, s3, 6)
strncmp(s1, s3, 7)
strncmp(s3, s1, 7)

cpphtp9_22_BitsChars.fm Page 907 Thursday, January 3, 2013 12:13 PM

908 Chapter 22 Bits, Characters, C Strings and structs

How does the computer know that one letter “comes before” another? All characters
are represented inside the computer as numeric codes; when the computer compares two
strings, it actually compares the numeric codes of the characters in the strings.

[Note: With some compilers, functions strcmp and strncmp always return -1, 0 or 1,
as in the sample output of Fig. 22.24. With other compilers, these functions return 0 or
the difference between the numeric codes of the first characters that differ in the strings
being compared. For example, when s1 and s3 are compared, the first characters that
differ between them are the first character of the second word in each string—N (numeric
code 78) in s1 and H (numeric code 72) in s3, respectively. In this case, the return value
will be 6 (or -6 if s3 is compared to s1).]

Tokenizing a String with strtok
Function strtok breaks a string into a series of tokens. A token is a sequence of characters
separated by delimiting characters (usually spaces or punctuation marks). For example, in
a line of text, each word can be considered a token, and the spaces separating the words can
be considered delimiters. Multiple calls to strtok are required to break a string into tokens
(assuming that the string contains more than one token). The first call to strtok contains
two arguments, a string to be tokenized and a string containing characters that separate the
tokens (i.e., delimiters). Line 15 in Fig. 22.25 assigns to tokenPtr a pointer to the first to-
ken in sentence. The second argument, " ", indicates that tokens in sentence are sepa-
rated by spaces. Function strtok searches for the first character in sentence that’s not a
delimiting character (space). This begins the first token. The function then finds the next
delimiting character in the string and replaces it with a null ('\0') character. This termi-
nates the current token. Function strtok saves (in a static variable) a pointer to the next
character following the token in sentence and returns a pointer to the current token.

1 // Fig. 22.25: fig22_25.cpp
2 // Using strtok to tokenize a string.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 char sentence[] = "This is a sentence with 7 tokens";

10
11 cout << "The string to be tokenized is:\n" << sentence
12 << "\n\nThe tokens are:\n\n";
13
14 // begin tokenization of sentence
15 char *tokenPtr = strtok(sentence, " ");
16
17 // continue tokenizing sentence until tokenPtr becomes NULL
18 while (tokenPtr != NULL)
19 {
20 cout << tokenPtr << '\n';
21 // get next token
22 } // end while

Fig. 22.25 | Using strtok to tokenize a string. (Part 1 of 2.)

#include <cstring> // prototype for strtok

tokenPtr = strtok(NULL, " ");

cpphtp9_22_BitsChars.fm Page 908 Thursday, January 3, 2013 12:13 PM

22.8 C String-Manipulation Functions 909

Subsequent calls to strtok to continue tokenizing sentence contain NULL as the first
argument (line 21). The NULL argument indicates that the call to strtok should continue
tokenizing from the location in sentence saved by the last call to strtok. Function strtok
maintains this saved information in a manner that’s not visible to you. If no tokens remain
when strtok is called, strtok returns NULL. The program of Fig. 22.25 uses strtok to
tokenize the string "This is a sentence with 7 tokens". The program prints each token
on a separate line. Line 24 outputs sentence after tokenization. Note that strtok modifies
the input string; therefore, a copy of the string should be made if the program requires the
original after the calls to strtok. When sentence is output after tokenization, only the
word “This” prints, because strtok replaced each blank in sentence with a null character
('\0') during the tokenization process.

Determining String Lengths
Function strlen takes a string as an argument and returns the number of characters in the
string—the terminating null character is not included in the length. The length is also the
index of the null character. The program of Fig. 22.26 demonstrates function strlen.

23
24 cout << "\nAfter strtok, sentence = " << sentence << endl;
25 } // end main

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:

This
is
a
sentence
with
7
tokens

After strtok, sentence = This

Common Programming Error 22.10
Not realizing that strtok modifies the string being tokenized, then attempting to use
that string as if it were the original unmodified string is a logic error.

1 // Fig. 22.26: fig22_26.cpp
2 // Using strlen.
3 #include <iostream>
4
5 using namespace std;
6

Fig. 22.26 | strlen returns the length of a char * string. (Part 1 of 2.)

Fig. 22.25 | Using strtok to tokenize a string. (Part 2 of 2.)

#include <cstring> // prototype for strlen

cpphtp9_22_BitsChars.fm Page 909 Thursday, January 3, 2013 12:13 PM

910 Chapter 22 Bits, Characters, C Strings and structs

22.9 C String-Conversion Functions
In Section 22.8, we discussed several of C++’s most popular C string-manipulation func-
tions. In the next several sections, we cover the remaining functions, including functions
for converting strings to numeric values, functions for searching strings and functions for
manipulating, comparing and searching blocks of memory.

This section presents the C string-conversion functions from the general-utilities
library <cstdlib>. These functions convert C strings to integer and floating-point values.
In new code, C++ programmers typically use the string stream processing capabilities
(Chapter 21) to perform such conversions. Figure 22.27 summarizes the C string-conver-
sion functions. When using functions from the general-utilities library, include the <cst-
dlib> header.

7 int main()
8 {
9 const char *string1 = "abcdefghijklmnopqrstuvwxyz";

10 const char *string2 = "four";
11 const char *string3 = "Boston";
12
13 cout << "The length of \"" << string1 << "\" is " <<
14 << "\nThe length of \"" << string2 << "\" is " <<
15 << "\nThe length of \"" << string3 << "\" is " <<
16 << endl;
17 } // end main

The length of "abcdefghijklmnopqrstuvwxyz" is 26
The length of "four" is 4
The length of "Boston" is 6

Prototype Description

double atof(const char *nPtr) Converts the string nPtr to double. If the string can-
not be converted, 0 is returned.

int atoi(const char *nPtr) Converts the string nPtr to int. If the string cannot
be converted, 0 is returned.

long atol(const char *nPtr) Converts the string nPtr to long int. If the string can-
not be converted, 0 is returned.

double strtod(const char *nPtr, char **endPtr)

Converts the string nPtr to double. endPtr is the
address of a pointer to the rest of the string after the
double. If the string cannot be converted, 0 is
returned.

Fig. 22.27 | C string-conversion functions of the general-utilities library. (Part 1 of 2.)

Fig. 22.26 | strlen returns the length of a char * string. (Part 2 of 2.)

strlen(string1)
strlen(string2)
strlen(string3)

cpphtp9_22_BitsChars.fm Page 910 Thursday, January 3, 2013 12:13 PM

22.9 C String-Conversion Functions 911

Function atof (Fig. 22.28, line 9) converts its argument—a string that represents a
floating-point number—to a double value. The function returns the double value. If the
string cannot be converted—for example, if the first character of the string is not a digit—
function atof returns zero.

Function atoi (Fig. 22.29, line 9) converts its argument—a string of digits that rep-
resents an integer—to an int value. The function returns the int value. If the string
cannot be converted, function atoi returns zero.

long strtol(const char *nPtr, char **endPtr, int base)

Converts the string nPtr to long. endPtr is the
address of a pointer to the rest of the string after the
long. If the string cannot be converted, 0 is returned.
The base parameter indicates the base of the number
to convert (e.g., 8 for octal, 10 for decimal or 16 for
hexadecimal). The default is decimal.

unsigned long strtoul(const char *nPtr, char **endPtr, int base)

Converts the string nPtr to unsigned long. endPtr is
the address of a pointer to the rest of the string after
the unsigned long. If the string cannot be converted,
0 is returned. The base parameter indicates the base
of the number to convert (e.g., 8 for octal, 10 for dec-
imal or 16 for hexadecimal). The default is decimal.

1 // Fig. 22.28: fig22_28.cpp
2 // Using atof.
3 #include <iostream>
4 #include <cstdlib> // atof prototype
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "The string \"99.0\" converted to double is " << d
12 << "\nThe converted value divided by 2 is " << d / 2.0 << endl;
13 } // end main

The string "99.0" converted to double is 99
The converted value divided by 2 is 49.5

Fig. 22.28 | String-conversion function atof.

Prototype Description

Fig. 22.27 | C string-conversion functions of the general-utilities library. (Part 2 of 2.)

double d = atof("99.0"); // convert string to double

cpphtp9_22_BitsChars.fm Page 911 Thursday, January 3, 2013 12:13 PM

912 Chapter 22 Bits, Characters, C Strings and structs

Function atol (Fig. 22.30, line 9) converts its argument—a string of digits repre-
senting a long integer—to a long value. The function returns the long value. If the string
cannot be converted, function atol returns zero. If int and long are both stored in four
bytes, function atoi and function atol work identically.

Function strtod (Fig. 22.31) converts a sequence of characters representing a
floating-point value to double. Function strtod receives two arguments—a string (char
*) and the address of a char * pointer (i.e., a char **). The string contains the character
sequence to be converted to double. The second argument enables strtod to modify a
char * pointer in the calling function, such that the pointer points to the location of the
first character after the converted portion of the string. Line 12 indicates that d is assigned

1 // Fig. 22.29: fig22_29.cpp
2 // Using atoi.
3 #include <iostream>
4 #include <cstdlib> // atoi prototype
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "The string \"2593\" converted to int is " << i
12 << "\nThe converted value minus 593 is " << i - 593 << endl;
13 } // end main

The string "2593" converted to int is 2593
The converted value minus 593 is 2000

Fig. 22.29 | String-conversion function atoi.

1 // Fig. 22.30: fig22_30.cpp
2 // Using atol.
3 #include <iostream>
4 #include <cstdlib> // atol prototype
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "The string \"1000000\" converted to long is " << x
12 << "\nThe converted value divided by 2 is " << x / 2 << endl;
13 } // end main

The string "1000000" converted to long int is 1000000
The converted value divided by 2 is 500000

Fig. 22.30 | String-conversion function atol.

int i = atoi("2593"); // convert string to int

long x = atol("1000000"); // convert string to long

cpphtp9_22_BitsChars.fm Page 912 Thursday, January 3, 2013 12:13 PM

22.9 C String-Conversion Functions 913

the double value converted from string and that stringPtr is assigned the location of
the first character after the converted value (51.2) in string.

Function strtol (Fig. 22.32) converts to long a sequence of characters representing an
integer. The function receives a string (char *), the address of a char * pointer and an
integer. The string contains the character sequence to convert. The second argument is
assigned the location of the first character after the converted portion of the string. The
integer specifies the base of the value being converted. Line 12 indicates that x is assigned the
long value converted from string and that remainderPtr is assigned the location of the first
character after the converted value (-1234567) in string1. Using a null pointer for the
second argument causes the remainder of the string to be ignored. The third argument, 0,
indicates that the value to be converted can be in octal (base 8), decimal (base 10) or hexa-
decimal (base 16). This is determined by the initial characters in the string—0 indicates an
octal number, 0x indicates hexadecimal and a number from 1 to 9 indicates decimal.

1 // Fig. 22.31: fig22_31.cpp
2 // Using strtod.
3 #include <iostream>
4 #include <cstdlib> // strtod prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "51.2% are admitted";

10 char *stringPtr = nullptr;
11
12
13
14 cout << "The string \"" << string1
15 << "\" is converted to the\ndouble value " << d
16 << " and the string \"" << stringPtr << "\"" << endl;
17 } // end main

The string "51.2% are admitted" is converted to the
double value 51.2 and the string "% are admitted"

Fig. 22.31 | String-conversion function strtod.

1 // Fig. 22.32: fig22_32.cpp
2 // Using strtol.
3 #include <iostream>
4 #include <cstdlib> // strtol prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "-1234567abc";

10 char *remainderPtr = nullptr;

Fig. 22.32 | String-conversion function strtol. (Part 1 of 2.)

double d = strtod(string1, &stringPtr); // convert to double

cpphtp9_22_BitsChars.fm Page 913 Thursday, January 3, 2013 12:13 PM

914 Chapter 22 Bits, Characters, C Strings and structs

In a call to function strtol, the base can be specified as zero or as any value between
2 and 36. (See Appendix D for a detailed explanation of the octal, decimal, hexadecimal
and binary number systems.) Numeric representations of integers from base 11 to base 36
use the characters A–Z to represent the values 10 to 35. For example, hexadecimal values
can consist of the digits 0–9 and the characters A–F. A base-11 integer can consist of the
digits 0–9 and the character A. A base-24 integer can consist of the digits 0–9 and the char-
acters A–N. A base-36 integer can consist of the digits 0–9 and the characters A–Z. [Note:
The case of the letter used is ignored.]

Function strtoul (Fig. 22.33) converts to unsigned long a sequence of characters
representing an unsigned long integer. The function works identically to strtol. Line 13
indicates that x is assigned the unsigned long value converted from string and that
remainderPtr is assigned the location of the first character after the converted value
(1234567) in string1. The third argument, 0, indicates that the value to be converted can
be in octal, decimal or hexadecimal format, depending on the initial characters.

11
12
13
14 cout << "The original string is \"" << string1
15 << "\"\nThe converted value is " << x
16 << "\nThe remainder of the original string is \"" << remainderPtr
17 << "\"\nThe converted value plus 567 is " << x + 567 << endl;
18 } // end main

The original string is "-1234567abc"
The converted value is -1234567
The remainder of the original string is "abc"
The converted value plus 567 is -1234000

1 // Fig. 22.33: fig22_33.cpp
2 // Using strtoul.
3 #include <iostream>
4 #include <cstdlib> // strtoul prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "1234567abc";

10 char *remainderPtr = nullptr;
11
12
13
14
15 cout << "The original string is \"" << string1
16 << "\"\nThe converted value is " << x
17 << "\nThe remainder of the original string is \"" << remainderPtr

Fig. 22.33 | String-conversion function strtoul. (Part 1 of 2.)

Fig. 22.32 | String-conversion function strtol. (Part 2 of 2.)

long x = strtol(string1, &remainderPtr, 0); // convert to long

// convert a sequence of characters to unsigned long
unsigned long x = strtoul(string1, &remainderPtr, 0);

cpphtp9_22_BitsChars.fm Page 914 Thursday, January 3, 2013 12:13 PM

22.10 Search Functions of the C String-Handling Library 915

22.10 Search Functions of the C String-Handling Library
This section presents the functions of the string-handling library used to search strings for
characters and other strings. The functions are summarized in Fig. 22.34. Functions
strcspn and strspn specify return type size_t. Type size_t is a type defined by the stan-
dard as the integral type of the value returned by operator sizeof.

Function strchr searches for the first occurrence of a character in a string. If the char-
acter is found, strchr returns a pointer to the character in the string; otherwise, strchr
returns a null pointer. The program of Fig. 22.35 uses strchr (lines 14 and 22) to search
for the first occurrences of 'a' and 'z' in the string "This is a test".

18 << "\"\nThe converted value minus 567 is " << x - 567 << endl;
19 } // end main

The original string is "1234567abc"
The converted value is 1234567
The remainder of the original string is "abc"
The converted value minus 567 is 1234000

Prototype Description

char *strchr(const char *s, int c)

Locates the first occurrence of character c in string s. If c is found, a pointer
to c in s is returned. Otherwise, a null pointer is returned.

char *strrchr(const char *s, int c)

Searches from the end of string s and locates the last occurrence of character c
in string s. If c is found, a pointer to c in string s is returned. Otherwise, a
null pointer is returned.

size_t strspn(const char *s1, const char *s2)

Determines and returns the length of the initial segment of string s1 consist-
ing only of characters contained in string s2.

char *strpbrk(const char *s1, const char *s2)

Locates the first occurrence in string s1 of any character in string s2. If a char-
acter from string s2 is found, a pointer to the character in string s1 is
returned. Otherwise, a null pointer is returned.

size_t strcspn(const char *s1, const char *s2)

Determines and returns the length of the initial segment of string s1 consist-
ing of characters not contained in string s2.

char *strstr(const char *s1, const char *s2)

Locates the first occurrence in string s1 of string s2. If the string is found, a
pointer to the string in s1 is returned. Otherwise, a null pointer is returned.

Fig. 22.34 | Search functions of the C string-handling library.

Fig. 22.33 | String-conversion function strtoul. (Part 2 of 2.)

cpphtp9_22_BitsChars.fm Page 915 Thursday, January 3, 2013 12:13 PM

916 Chapter 22 Bits, Characters, C Strings and structs

Function strcspn (Fig. 22.36, line 15) determines the length of the initial part of the
string in its first argument that does not contain any characters from the string in its
second argument. The function returns the length of the segment.

1 // Fig. 22.35: fig22_35.cpp
2 // Using strchr.
3 #include <iostream>
4 #include <cstring> // strchr prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "This is a test";

10 char character1 = 'a';
11 char character2 = 'z';
12
13 // search for character1 in string1
14 if ()
15 cout << '\'' << character1 << "' was found in \""
16 << string1 << "\".\n";
17 else
18 cout << '\'' << character1 << "' was not found in \""
19 << string1 << "\".\n";
20
21 // search for character2 in string1
22 if ()
23 cout << '\'' << character2 << "' was found in \""
24 << string1 << "\".\n";
25 else
26 cout << '\'' << character2 << "' was not found in \""
27 << string1 << "\"." << endl;
28 } // end main

'a' was found in "This is a test".
'z' was not found in "This is a test".

Fig. 22.35 | String-search function strchr.

1 // Fig. 22.36: fig22_36.cpp
2 // Using strcspn.
3 #include <iostream>
4 #include <cstring> // strcspn prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "1234567890";
11
12 cout << "string1 = " << string1 << "\nstring2 = " << string2
13 << "\n\nThe length of the initial segment of string1"

Fig. 22.36 | String-search function strcspn. (Part 1 of 2.)

strchr(string1, character1) != NULL

strchr(string1, character2) != NULL

cpphtp9_22_BitsChars.fm Page 916 Thursday, January 3, 2013 12:13 PM

22.10 Search Functions of the C String-Handling Library 917

Function strpbrk searches for the first occurrence in its first string argument of any
character in its second string argument. If a character from the second argument is found,
strpbrk returns a pointer to the character in the first argument; otherwise, strpbrk
returns a null pointer. Line 13 of Fig. 22.37 locates the first occurrence in string1 of any
character from string2.

Function strrchr searches for the last occurrence of the specified character in a string.
If the character is found, strrchr returns a pointer to the character in the string; other-
wise, strrchr returns 0. Line 15 of Fig. 22.38 searches for the last occurrence of the char-
acter 'z' in the string "A zoo has many animals including zebras".

14 << "\ncontaining no characters from string2 = "
15 << << endl;
16 } // end main

string1 = The value is 3.14159
string2 = 1234567890

The length of the initial segment of string1
containing no characters from string2 = 13

1 // Fig. 22.37: fig22_37.cpp
2 // Using strpbrk.
3 #include <iostream>
4 #include <cstring> // strpbrk prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "This is a test";

10 const char *string2 = "beware";
11
12 cout << "Of the characters in \"" << string2 << "\"\n'"
13 << << "\' is the first character "
14 << "to appear in\n\"" << string1 << '\"' << endl;
15 } // end main

Of the characters in "beware"
'a' is the first character to appear in
"This is a test"

Fig. 22.37 | String-search function strpbrk.

1 // Fig. 22.38: fig22_38.cpp
2 // Using strrchr.
3 #include <iostream>
4 #include <cstring> // strrchr prototype

Fig. 22.38 | String-search function strrchr. (Part 1 of 2.)

Fig. 22.36 | String-search function strcspn. (Part 2 of 2.)

strcspn(string1, string2)

*strpbrk(string1, string2)

cpphtp9_22_BitsChars.fm Page 917 Thursday, January 3, 2013 12:13 PM

918 Chapter 22 Bits, Characters, C Strings and structs

Function strspn (Fig. 22.39, line 15) determines the length of the initial part of the
string in its first argument that contains only characters from the string in its second argu-
ment. The function returns the length of the segment.

Function strstr searches for the first occurrence of its second string argument in its
first string argument. If the second string is found in the first string, a pointer to the location

5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "A zoo has many animals including zebras";

10 char c = 'z';
11
12 cout << "string1 = " << string1 << "\n" << endl;
13 cout << "The remainder of string1 beginning with the\n"
14 << "last occurrence of character '"
15 << c << "' is: \"" << << '\"' << endl;
16 } // end main

string1 = A zoo has many animals including zebras

The remainder of string1 beginning with the
last occurrence of character 'z' is: "zebras"

1 // Fig. 22.39: fig22_39.cpp
2 // Using strspn.
3 #include <iostream>
4 #include <cstring> // strspn prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "aehils Tuv";
11
12 cout << "string1 = " << string1 << "\nstring2 = " << string2
13 << "\n\nThe length of the initial segment of string1\n"
14 << "containing only characters from string2 = "
15 << << endl;
16 } // end main

string1 = The value is 3.14159
string2 = aehils Tuv

The length of the initial segment of string1
containing only characters from string2 = 13

Fig. 22.39 | String-search function strspn.

Fig. 22.38 | String-search function strrchr. (Part 2 of 2.)

strrchr(string1, c)

strspn(string1, string2)

cpphtp9_22_BitsChars.fm Page 918 Thursday, January 3, 2013 12:13 PM

22.11 Memory Functions of the C String-Handling Library 919

of the string in the first argument is returned; otherwise, it returns 0. Line 15 of Fig. 22.40
uses strstr to find the string "def" in the string "abcdefabcdef".

22.11 Memory Functions of the C String-Handling
Library
The string-handling library functions presented in this section facilitate manipulating,
comparing and searching blocks of memory. The functions treat blocks of memory as arrays
of bytes. These functions can manipulate any block of data. Figure 22.41 summarizes the
memory functions of the string-handling library. In the function discussions, “object” refers
to a block of data. [Note: The string-processing functions in prior sections operate on null-
terminated strings. The functions in this section operate on arrays of bytes. The null-char-
acter value (i.e., a byte containing 0) has no significance with the functions in this section.]

1 // Fig. 22.40: fig22_40.cpp
2 // Using strstr.
3 #include <iostream>
4 #include <cstring> // strstr prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "abcdefabcdef";

10 const char *string2 = "def";
11
12 cout << "string1 = " << string1 << "\nstring2 = " << string2
13 << "\n\nThe remainder of string1 beginning with the\n"
14 << "first occurrence of string2 is: "
15 << << endl;
16 } // end main

string1 = abcdefabcdef
string2 = def

The remainder of string1 beginning with the
first occurrence of string2 is: defabcdef

Fig. 22.40 | String-search function strstr.

Prototype Description

void *memcpy(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed
to by s1. A pointer to the resulting object is returned. The area from which
characters are copied is not allowed to overlap the area to which characters are
copied.

Fig. 22.41 | Memory functions of the string-handling library. (Part 1 of 2.)

strstr(string1, string2)

cpphtp9_22_BitsChars.fm Page 919 Thursday, January 3, 2013 12:13 PM

920 Chapter 22 Bits, Characters, C Strings and structs

The pointer parameters to these functions are declared void *. In Chapter 8, we saw
that a pointer to any data type can be assigned directly to a pointer of type void *. For this
reason, these functions can receive pointers to any data type. Remember that a pointer of
type void * cannot be assigned directly to a pointer of any other data type. Because a void *
pointer cannot be dereferenced, each function receives a size argument that specifies the
number of characters (bytes) the function will process. For simplicity, the examples in this
section manipulate character arrays (blocks of characters).

Function memcpy copies a specified number of characters (bytes) from the object
pointed to by its second argument into the object pointed to by its first argument. The
function can receive a pointer to any type of object. The result of this function is unde-
fined if the two objects overlap in memory (i.e., are parts of the same object). The program
of Fig. 22.42 uses memcpy (line 14) to copy the string in array s2 to array s1.

void *memmove(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed
to by s1. The copy is performed as if the characters were first copied from the
object pointed to by s2 into a temporary array, then copied from the tempo-
rary array into the object pointed to by s1. A pointer to the resulting object is
returned. The area from which characters are copied is allowed to overlap the
area to which characters are copied.

int memcmp(const void *s1, const void *s2, size_t n)

Compares the first n characters of the objects pointed to by s1 and s2. The
function returns 0, less than 0, or greater than 0 if s1 is equal to, less than or
greater than s2, respectively.

void *memchr(const void *s, int c, size_t n)

Locates the first occurrence of c (converted to unsigned char) in the first n
characters of the object pointed to by s. If c is found, a pointer to c in the
object is returned. Otherwise, 0 is returned.

void *memset(void *s, int c, size_t n)

Copies c (converted to unsigned char) into the first n characters of the object
pointed to by s. A pointer to the result is returned.

1 // Fig. 22.42: fig22_42.cpp
2 // Using memcpy.
3 #include <iostream>
4 #include <cstring> // memcpy prototype
5 using namespace std;
6
7 int main()
8 {
9 char s1[17] = {};

Fig. 22.42 | Memory-handling function memcpy. (Part 1 of 2.)

Prototype Description

Fig. 22.41 | Memory functions of the string-handling library. (Part 2 of 2.)

cpphtp9_22_BitsChars.fm Page 920 Thursday, January 3, 2013 12:13 PM

22.11 Memory Functions of the C String-Handling Library 921

Function memmove, like memcpy, copies a specified number of bytes from the object
pointed to by its second argument into the object pointed to by its first argument.
Copying is performed as if the bytes were copied from the second argument to a temporary
array of characters, then copied from the temporary array to the first argument. This allows
characters from one part of a string to be copied into another part of the same string.

The program in Fig. 22.43 uses memmove (line 13) to copy the last 10 bytes of array x
into the first 10 bytes of array x.

Function memcmp (Fig. 22.44, lines 14–16) compares the specified number of charac-
ters of its first argument with the corresponding characters of its second argument. The

10
11 // 17 total characters (includes terminating null)
12 char s2[] = "Copy this string";
13
14
15
16 cout << "After s2 is copied into s1 with memcpy,\n"
17 << "s1 contains \"" << s1 << '\"' << endl;
18 } // end main

After s2 is copied into s1 with memcpy,
s1 contains "Copy this string"

Common Programming Error 22.11
String-manipulation functions other than memmove that copy characters have undefined
results when copying takes place between parts of the same string.

1 // Fig. 22.43: fig22_43.cpp
2 // Using memmove.
3 #include <iostream>
4 #include <cstring> // memmove prototype
5 using namespace std;
6
7 int main()
8 {
9 char x[] = "Home Sweet Home";

10
11 cout << "The string in array x before memmove is: " << x;
12 cout << "\nThe string in array x after memmove is: "
13 << << endl;
14 } // end main

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

Fig. 22.43 | Memory-handling function memmove.

Fig. 22.42 | Memory-handling function memcpy. (Part 2 of 2.)

memcpy(s1, s2, 17); // copy 17 characters from s2 to s1

static_cast< char * >(memmove(x, &x[5], 10))

cpphtp9_22_BitsChars.fm Page 921 Thursday, January 3, 2013 12:13 PM

922 Chapter 22 Bits, Characters, C Strings and structs

function returns a value greater than zero if the first argument is greater than the second
argument, zero if the arguments are equal, and a value less than zero if the first argument
is less than the second argument. [Note: With some compilers, function memcmp returns -
1, 0 or 1, as in the sample output of Fig. 22.44. With other compilers, this function returns
0 or the difference between the numeric codes of the first characters that differ in the
strings being compared. For example, when s1 and s2 are compared, the first character
that differs between them is the fifth character of each string—E (numeric code 69) for s1
and X (numeric code 72) for s2. In this case, the return value will be 19 (or -19 when s2
is compared to s1).]

Function memchr searches for the first occurrence of a byte, represented as unsigned
char, in the specified number of bytes of an object. If the byte is found in the object, a
pointer to it is returned; otherwise, the function returns a null pointer. Line 13 of
Fig. 22.45 searches for the character (byte) 'r' in the string "This is a string".

1 // Fig. 22.44: fig22_44.cpp
2 // Using memcmp.
3 #include <iostream>
4 #include <iomanip>
5 #include <cstring> // memcmp prototype
6 using namespace std;
7
8 int main()
9 {

10 char s1[] = "ABCDEFG";
11 char s2[] = "ABCDXYZ";
12
13 cout << "s1 = " << s1 << "\ns2 = " << s2 << endl
14 << "\nmemcmp(s1, s2, 4) = " << setw(3) <<
15 << "\nmemcmp(s1, s2, 7) = " << setw(3) <<
16 << "\nmemcmp(s2, s1, 7) = " << setw(3) <<
17 << endl;
18 } // end main

s1 = ABCDEFG
s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0
memcmp(s1, s2, 7) = -1
memcmp(s2, s1, 7) = 1

Fig. 22.44 | Memory-handling function memcmp.

1 // Fig. 22.45: fig22_45.cpp
2 // Using memchr.
3 #include <iostream>
4 #include <cstring> // memchr prototype
5 using namespace std;

Fig. 22.45 | Memory-handling function memchr. (Part 1 of 2.)

memcmp(s1, s2, 4)
memcmp(s1, s2, 7)
memcmp(s2, s1, 7)

cpphtp9_22_BitsChars.fm Page 922 Thursday, January 3, 2013 12:13 PM

22.12 Wrap-Up 923

Function memset copies the value of the byte in its second argument into a specified
number of bytes of the object pointed to by its first argument. Line 13 in Fig. 22.46 uses
memset to copy 'b' into the first 7 bytes of string1.

22.12 Wrap-Up
This chapter introduced struct definitions, initializing structs and using them with
functions. We discussed typedef, using it to create aliases to help promote portability. We
also introduced bitwise operators to manipulate data and bit fields for storing data com-
pactly. You learned about the string-conversion functions in <cstlib> and the string-pro-
cessing functions in <cstring>. In the next chapter, we discuss additional C++ topics.

6
7 int main()
8 {
9 char s[] = "This is a string";

10
11 cout << "s = " << s << "\n" << endl;
12 cout << "The remainder of s after character 'r' is found is \""
13 << << '\"' << endl;
14 } // end main

s = This is a string

The remainder of s after character 'r' is found is "ring"

1 // Fig. 22.46: fig22_46.cpp
2 // Using memset.
3 #include <iostream>
4 #include <cstring> // memset prototype
5 using namespace std;
6
7 int main()
8 {
9 char string1[15] = "BBBBBBBBBBBBBB";

10
11 cout << "string1 = " << string1 << endl;
12 cout << "string1 after memset = "
13 << << endl;
14 } // end main

string1 = BBBBBBBBBBBBBB
string1 after memset = bbbbbbbBBBBBBB

Fig. 22.46 | Memory-handling function memset.

Fig. 22.45 | Memory-handling function memchr. (Part 2 of 2.)

static_cast< char * >(memchr(s, 'r', 16))

static_cast< char * >(memset(string1, 'b', 7))

cpphtp9_22_BitsChars.fm Page 923 Thursday, January 3, 2013 12:13 PM

924 Chapter 22 Bits, Characters, C Strings and structs

Summary
Section 22.2 Structure Definitions
• Keyword struct (p. 880) begins every structure definition. Between the braces of the structure

definition are the structure member declarations.

• A structure definition creates a new data type (p. 880) that can be used to declare variables.

Section 22.3 typedef
• Creating a new type name with typedef (p. 882) does not create a new type; it creates a name

that’s synonymous with a type defined previously.

Section 22.5 Bitwise Operators
• The bitwise AND operator (&; p. 885) takes two integral operands. A bit in the result is set to

one if the corresponding bits in each of the operands are one.

• Masks (p. 887) are used with bitwise AND to hide some bits while preserving others.

• The bitwise inclusive OR operator (|; p. 885) takes two operands. A bit in the result is set to one
if the corresponding bit in either operand is set to one.

• Each of the bitwise operators (except complement) has a corresponding assignment operator.

• The bitwise exclusive OR operator (^; p. 885) takes two operands. A bit in the result is set to one
if exactly one of the corresponding bits in the two operands is set to one.

• The left-shift operator (<<; p. 885) shifts the bits of its left operand left by the number of bits
specified by its right operand. Bits vacated to the right are replaced with zeros.

• The right-shift operator (>>; p. 885) shifts the bits of its left operand right by the number of bits
specified in its right operand. Right shifting an unsigned integer causes bits vacated at the left to
be replaced by zeros. Vacated bits in signed integers can be replaced with zeros or ones.

• The bitwise complement operator (~; p. 885) takes one operand and inverts its bits—this pro-
duces the one’s complement of the operand.

Section 22.6 Bit Fields
• Bit fields (p. 894) reduce storage use by storing data in the minimum number of bits required.

Bit-field members must be declared as int or unsigned.

• A bit field is declared by following an unsigned or int member name with a colon and the width
of the bit field.

• The bit-field width must be an integer constant.

• If a bit field is specified without a name, the field is used as padding (p. 897) in the structure.

• An unnamed bit field with width 0 (p. 897) aligns the next bit field on a new machine-word
boundary.

Section 22.7 Character-Handling Library
• Function islower (p. 900) determines if its argument is a lowercase letter (a–z). Function isup-

per (p. 900) determines whether its argument is an uppercase letter (A–Z).

• Function isdigit (p. 898) determines if its argument is a digit (0–9).

• Function isalpha (p. 898) determines if its argument is an uppercase (A–Z) or lowercase letter
(a–z).

• Function isalnum (p. 898) determines if its argument is an uppercase letter (A–Z), a lowercase
letter (a–z), or a digit (0–9).

• Function isxdigit (p. 898) determines if its argument is a hexadecimal digit (A–F, a–f, 0–9).

cpphtp9_22_BitsChars.fm Page 924 Thursday, January 3, 2013 12:13 PM

 Summary 925

• Function toupper (p. 900) converts a lowercase letter to an uppercase letter. Function tolower
(p. 900) converts an uppercase letter to a lowercase letter.

• Function isspace (p. 901) determines if its argument is one of the following whitespace charac-
ters: ' ' (space), '\f', '\n', '\r', '\t' or '\v'.

• Function iscntrl (p. 901) determines if its argument is a control character, such as '\t', '\v',
'\f', '\a', '\b', '\r' or '\n'.

• Function ispunct (p. 901) determines if its argument is a printing character other than a space,
a digit or a letter.

• Function isprint (p. 901) determines if its argument is any printing character, including space.

• Function isgraph (p. 901) determines if its argument is a printing character other than space.

Section 22.8 C String-Manipulation Functions
• Function strcpy (p. 904) copies its second argument into its first argument. You must ensure

that the target array is large enough to store the string and its terminating null character.

• Function strncpy (p. 904) is equivalent to strcpy, but it specifies the number of characters to
be copied from the string into the array. The terminating null character will be copied only if the
number of characters to be copied is at least one more than the length of the string.

• Function strcat (p. 905) appends its second string argument—including the terminating null
character—to its first string argument. The first character of the second string replaces the null
('\0') character of the first string. You must ensure that the target array used to store the first
string is large enough to store both the first string and the second string.

• Function strncat (p. 905) is equivalent to strcat, but it appends a specified number of characters
from the second string to the first string. A terminating null character is appended to the result.

• Function strcmp compares its first string argument with its second string argument character by
character. The function returns zero if the strings are equal, a negative value if the first string is
less than the second string and a positive value if the first string is greater than the second string.

• Function strncmp is equivalent to strcmp, but it compares a specified number of characters. If
the number of characters in one of the strings is less than the number of characters specified,
strncmp compares characters until the null character in the shorter string is encountered.

• A sequence of calls to strtok (p. 908) breaks a string into tokens that are separated by characters
contained in a second string argument. The first call specifies the string to be tokenized as the
first argument, and subsequent calls to continue tokenizing the same string specify NULL as the
first argument. The function returns a pointer to the current token from each call. If there are
no more tokens when strtok is called, NULL is returned.

• Function strlen (p. 909) takes a string as an argument and returns the number of characters in
the string—the terminating null character is not included in the length of the string.

Section 22.9 C String-Conversion Functions
• Function atof (p. 911) converts its argument—a string beginning with a series of digits that rep-

resents a floating-point number—to a double value.

• Function atoi (p. 911) converts its argument—a string beginning with a series of digits that rep-
resents an integer—to an int value.

• Function atol (p. 912) converts its argument—a string beginning with a series of digits that rep-
resents a long integer—to a long value.

• Function strtod (p. 912) converts a sequence of characters representing a floating-point value
to double. The function receives two arguments—a string (char *) and the address of a char *

cpphtp9_22_BitsChars.fm Page 925 Thursday, January 3, 2013 12:13 PM

926 Chapter 22 Bits, Characters, C Strings and structs

pointer. The string contains the character sequence to be converted, and the pointer to char * is
assigned the remainder of the string after the conversion.

• Function strtol (p. 913) converts a sequence of characters representing an integer to long. It
receives a string (char *), the address of a char * pointer and an integer. The string contains the
character sequence to be converted, the pointer to char * is assigned the location of the first char-
acter after the converted value and the integer specifies the base of the value being converted.

• Function strtoul (p. 914) converts a sequence of characters representing an integer to unsigned
long. It receives a string (char *), the address of a char * pointer and an integer. The string con-
tains the character sequence to be converted, the pointer to char * is assigned the location of the
first character after the converted value and the integer specifies the base of the value being con-
verted.

Section 22.10 Search Functions of the C String-Handling Library
• Function strchr (p. 915) searches for the first occurrence of a character in a string. If found,

strchr returns a pointer to the character in the string; otherwise, strchr returns a null pointer.

• Function strcspn (p. 916) determines the length of the initial part of the string in its first argu-
ment that does not contain any characters from the string in its second argument. The function
returns the length of the segment.

• Function strpbrk (p. 917) searches for the first occurrence in its first argument of any character
that appears in its second argument. If a character from the second argument is found, strpbrk
returns a pointer to the character; otherwise, strpbrk returns a null pointer.

• Function strrchr (p. 917) searches for the last occurrence of a character in a string. If the char-
acter is found, strrchr returns a pointer to the character in the string; otherwise, it returns a null
pointer.

• Function strspn (p. 918) determines the length of the initial part of its first argument that contains
only characters from the string in its second argument and returns the length of the segment.

• Function strstr (p. 918) searches for the first occurrence of its second string argument in its first
string argument. If the second string is found in the first string, a pointer to the location of the
string in the first argument is returned; otherwise it returns 0.

Section 22.11 Memory Functions of the C String-Handling Library
• Function memcpy (p. 920) copies a specified number of characters from the object to which its

second argument points into the object to which its first argument points. The function can re-
ceive a pointer to any object. The pointers are received as void pointers and converted to char
pointers for use in the function. Function memcpy manipulates the bytes of its argument as char-
acters.

• Function memmove (p. 921) copies a specified number of bytes from the object pointed to by its
second argument to the object pointed to by its first argument. Copying is accomplished as if the
bytes were copied from the second argument to a temporary character array, then copied from
the temporary array to the first argument.

• Function memcmp (p. 921) compares the specified number of characters of its first and second ar-
guments.

• Function memchr (p. 922) searches for the first occurrence of a byte, represented as unsigned
char, in the specified number of bytes of an object. If the byte is found, a pointer to it is returned;
otherwise, a null pointer is returned.

• Function memset (p. 923) copies its second argument, treated as an unsigned char, to a specified
number of bytes of the object pointed to by the first argument.

cpphtp9_22_BitsChars.fm Page 926 Thursday, January 3, 2013 12:13 PM

 Self-Review Exercises 927

Self-Review Exercises
22.1 Fill in the blanks in each of the following:

a) The bits in the result of an expression using the operator are set to one if the
corresponding bits in each operand are set to one. Otherwise, the bits are set to zero.

b) The bits in the result of an expression using the operator are set to one if at
least one of the corresponding bits in either operand is set to one. Otherwise, the bits
are set to zero.

c) Keyword introduces a structure declaration.
d) Keyword is used to create a synonym for a previously defined data type.
e) Each bit in the result of an expression using the operator is set to one if exactly

one of the corresponding bits in either operand is set to one.
f) The bitwise AND operator & is often used to bits (i.e., to select certain bits

from a bit string while zeroing others).
g) The and operators are used to shift the bits of a value to the left or

to the right, respectively.

22.2 Write a single statement or a set of statements to accomplish each of the following:
a) Define a structure called Part containing int variable partNumber and char array part-

Name, whose values may be as long as 25 characters.
b) Define PartPtr to be a synonym for the type Part *.
c) Use separate statements to declare variable a to be of type Part, array b[10] to be of

type Part and variable ptr to be of type pointer to Part.
d) Read a part number and a part name from the keyboard into the members of variable a.
e) Assign the member values of variable a to element three of array b.
f) Assign the address of array b to the pointer variable ptr.
g) Print the member values of element three of array b, using the variable ptr and the struc-

ture pointer operator to refer to the members.

22.3 Write a single statement to accomplish each of the following. Assume that variables c
(which stores a character), x, y and z are of type int; variables d, e and f are of type double; variable
ptr is of type char * and arrays s1[100] and s2[100] are of type char.

a) Convert the character stored in c to an uppercase letter. Assign the result to variable c.
b) Determine if the value of variable c is a digit. Use the conditional operator as shown in

Figs. 22.18–22.20 to print " is a " or " is not a " when the result is displayed.
c) Convert the string "1234567" to long, and print the value.
d) Determine whether the value of variable c is a control character. Use the conditional

operator to print " is a " or " is not a " when the result is displayed.
e) Assign to ptr the location of the last occurrence of c in s1.
f) Convert the string "8.63582" to double, and print the value.
g) Determine whether the value of c is a letter. Use the conditional operator to print " is

a " or " is not a " when the result is displayed.
h) Assign to ptr the location of the first occurrence of s2 in s1.
i) Determine whether the value of variable c is a printing character. Use the conditional

operator to print " is a " or " is not a " when the result is displayed.
j) Assign to ptr the location of the first occurrence in s1 of any character from s2.
k) Assign to ptr the location of the first occurrence of c in s1.
l) Convert the string "-21" to int, and print the value.

Answers to Self-Review Exercises
22.1 a) bitwise AND (&). b) bitwise inclusive OR (|). c) struct. d) typedef. e) bitwise exclu-
sive OR (^). f) mask. g) left-shift operator (<<), right-shift operator (>>).

cpphtp9_22_BitsChars.fm Page 927 Thursday, January 3, 2013 12:13 PM

928 Chapter 22 Bits, Characters, C Strings and structs

22.2 a) struct Part

{

 int partNumber;

 char partName[26];
};

b) typedef Part * PartPtr;
c) Part a;

Part b[10];

Part *ptr;
d) cin >> a.partNumber >> a.partName;
e) b[3] = a;
f) ptr = b;
g) cout << (ptr + 3)->partNumber << ' '

 << (ptr + 3)->partName << endl;

22.3 a) c = toupper(c);
b) cout << '\'' << c << "\' "

 << (isdigit(c) ? "is a" : "is not a")
 << " digit" << endl;

c) cout << atol("1234567") << endl;
d) cout << '\'' << c << "\' "

 << (iscntrl(c) ? "is a" : "is not a")
 << " control character" << endl;

e) ptr = strrchr(s1, c);
f) out << atof("8.63582") << endl;
g) cout << '\'' << c << "\' "

 << (isalpha(c) ? "is a" : "is not a")
 << " letter" << endl;

h) ptr = strstr(s1, s2);
i) cout << '\'' << c << "\' "

 << (isprint(c) ? "is a" : "is not a")
 << " printing character" << endl;

j) ptr = strpbrk(s1, s2);
k) ptr = strchr(s1, c);
l) cout << atoi("-21") << endl;

Exercises
22.4 (Defining Structures) Provide the definition for each of the following structures:

a) Structure Inventory, containing character array partName[30], integer partNumber,
floating-point price, integer stock and integer reorder.

b) A structure called Address that contains character arrays streetAddress[25], city[20],
state[3] and zipCode[6].

c) Structure Student, containing arrays firstName[15] and lastName[15] and variable
homeAddress of type struct Address from part (b).

d) Structure Test, containing 16 bit fields with widths of 1 bit. The names of the bit fields
are the letters a to p.

22.5 (Card Shufflling and Dealing) Modify Fig. 22.14 to shuffle the cards using the shuffle al-
gorithm in Fig. 22.3. Print the resulting deck in two-column format. Precede each card with its col-
or.

cpphtp9_22_BitsChars.fm Page 928 Thursday, January 3, 2013 12:13 PM

 Exercises 929

22.6 (Shifting and Printing an Integer) Write a program that right-shifts an integer variable four
bits. The program should print the integer in bits before and after the shift operation. Does your
system place zeros or ones in the vacated bits?

22.7 (Multiplication Via Bit Shifting) Left-shifting an unsigned integer by one bit is equivalent
to multiplying the value by 2. Write function power2 that takes two integer arguments, number and
pow, and calculates

number * 2pow

Use a shift operator to calculate the result. The program should print the values as integers and as bits.

22.8 (Packing Characters into Unsigned Integers) The left-shift operator can be used to pack four
character values into a four-byte unsigned integer variable. Write a program that inputs four char-
acters from the keyboard and passes them to function packCharacters. To pack four characters into
an unsigned integer variable, assign the first character to the unsigned variable, shift the unsigned
variable left by eight bit positions and combine the unsigned variable with the second character us-
ing the bitwise inclusive-OR operator, etc. The program should output the characters in their bit
format before and after they’re packed into the unsigned integer to prove that they’re in fact packed
correctly in the unsigned variable.

22.9 (Unpacking Characters from Unsigned Integers) Using the right-shift operator, the bitwise
AND operator and a mask, write function unpackCharacters that takes the unsigned integer from
Exercise 22.8 and unpacks it into four characters. To unpack characters from an unsigned four-byte
integer, combine the unsigned integer with a mask and right-shift the result. To create the masks t
you’ll need to unpack the four characters, left-shift the value 255 in the mask variable by eight bits
0, 1, 2 or 3 times (depending on the byte you are unpacking). Then take the combined result each
time and right shift it by eight bits the same number of times. Assign each resulting value to a char
variable. The program should print the unsigned integer in bits before it’s unpacked, then print the
characters in bits to confirm that they were unpacked correctly.

22.10 (Reversing Bits) Write a program that reverses the order of the bits in an unsigned integer
value. The program should input the value from the user and call function reverseBits to print the
bits in reverse order. Print the value in bits both before and after the bits are reversed to confirm that
the bits are reversed properly.

22.11 (Testing Characters with the <cctype> Functions) Write a program that inputs a character
from the keyboard and tests the character with each function in the character-handling library. Print
the value returned by each function.

22.12 (Determine the Value) The following program uses function multiple to determine wheth-
er the integer entered from the keyboard is a multiple of some integer X. Examine function multi-
ple, then determine the value of X.

1 // Exercise 22.12: ex22_12.cpp
2 // This program determines if a value is a multiple of X.
3 #include <iostream>
4 using namespace std;
5
6 bool multiple(int);
7
8 int main()
9 {

10 int y = 0;
11
12 cout << "Enter an integer between 1 and 32000: ";
13 cin >> y;

cpphtp9_22_BitsChars.fm Page 929 Thursday, January 3, 2013 12:13 PM

930 Chapter 22 Bits, Characters, C Strings and structs

22.13 What does the following program do?

22.14 Write a program that inputs a line of text with istream member function getline (as in
Chapter 13) into character array s[100]. Output the line in uppercase letters and lowercase letters.

14
15 if (multiple(y))
16 cout << y << " is a multiple of X" << endl;
17 else
18 cout << y << " is not a multiple of X" << endl;
19 } // end main
20
21 // determine if num is a multiple of X
22 bool multiple(int num)
23 {
24 bool mult = true;
25
26 for (int i = 0, mask = 1; i < 10; ++i, mask <<= 1)
27 if ((num & mask) != 0)
28 {
29 mult = false;
30 break;
31 } // end if
32
33 return mult;
34 } // end function multiple

1 // Exercise 22.13: ex22_13.cpp
2 #include <iostream>
3 using namespace std;
4
5 bool mystery(unsigned);
6
7 int main()
8 {
9 unsigned x;

10
11 cout << "Enter an integer: ";
12 cin >> x;
13 cout << boolalpha
14 << "The result is " << mystery(x) << endl;
15 } // end main
16
17 // What does this function do?
18 bool mystery(unsigned bits)
19 {
20 const int SHIFT = 8 * sizeof(unsigned) - 1;
21 const unsigned MASK = 1 << SHIFT;
22 unsigned total = 0;
23
24 for (int i = 0; i < SHIFT + 1; ++i, bits <<= 1)
25 if ((bits & MASK) == MASK)
26 ++total;
27
28 return !(total % 2);
29 } // end function mystery

cpphtp9_22_BitsChars.fm Page 930 Thursday, January 3, 2013 12:13 PM

 Exercises 931

22.15 (Converting Strings to Integers) Write a program that inputs four strings that represent in-
tegers, converts the strings to integers, sums the values and prints the total of the four values. Use
only the C string-processing techniques shown in this chapter.

22.16 (Converting Strings to Floating-Point Numbers) Write a program that inputs four strings
that represent floating-point values, converts the strings to double values, sums the values and prints
the total of the four values. Use only the C string-processing techniques shown in this chapter.

22.17 (Searching for Substrings) Write a program that inputs a line of text and a search string from
the keyboard. Using function strstr, locate the first occurrence of the search string in the line of
text, and assign the location to variable searchPtr of type char *. If the search string is found, print
the remainder of the line of text beginning with the search string. Then use strstr again to locate
the next occurrence of the search string in the line of text. If a second occurrence is found, print the
remainder of the line of text beginning with the second occurrence. [Hint: The second call to strstr
should contain the expression searchPtr + 1 as its first argument.]

22.18 (Searching for Substrings) Write a program based on the program of Exercise 22.17 that in-
puts several lines of text and a search string, then uses function strstr to determine the total num-
ber of occurrences of the string in the lines of text. Print the result.

22.19 (Searching for Characters) Write a program that inputs several lines of text and a search
character and uses function strchr to determine the total number of occurrences of the character
in the lines of text.

22.20 (Searching for Characters) Write a program based on the program of Exercise 22.19 that
inputs several lines of text and uses function strchr to determine the total number of occurrences
of each letter of the alphabet in the text. Uppercase and lowercase letters should be counted together.
Store the totals for each letter in an array, and print the values in tabular format after the totals have
been determined.

22.21 (ASCII Character Set) The chart in Appendix B shows the numeric code representations
for the characters in the ASCII character set. Study this chart, then state whether each of the follow-
ing is true or false:

a) The letter “A” comes before the letter “B.”
b) The digit “9” comes before the digit “0.”
c) The commonly used symbols for addition, subtraction, multiplication and division all

come before any of the digits.
d) The digits come before the letters.
e) If a sort program sorts strings into ascending sequence, then the program will place the

symbol for a right parenthesis before the symbol for a left parenthesis.

22.22 (Strings Beginning with b) Write a program that reads a series of strings and prints only
those strings beginning with the letter “b.”

22.23 (Strings Ending with ED) Write a program that reads a series of strings and prints only those
strings that end with the letters “ED.”

22.24 (Displaying Characters for Given ASCII Codes) Write a program that inputs an ASCII code
and prints the corresponding character. Modify this program so that it generates all possible three-
digit codes in the range 000–255 and attempts to print the corresponding characters. What happens
when this program is run?

22.25 (Write Your Own Character Handling Functions) Using the ASCII character chart in
Appendix B as a guide, write your own versions of the character-handling functions in Fig. 22.17.

22.26 (Write Your Own String Conversion Functions) Write your own versions of the functions
in Fig. 22.27 for converting strings to numbers.

cpphtp9_22_BitsChars.fm Page 931 Thursday, January 3, 2013 12:13 PM

932 Chapter 22 Bits, Characters, C Strings and structs

22.27 (Write Your Own String Searching Functions) Write your own versions of the functions in
Fig. 22.34 for searching strings.

22.28 (Write Your Own Memory Handling Functions) Write your own versions of the functions
in Fig. 22.41 for manipulating blocks of memory.

22.29 (What Does the Program Do?) What does this program do?

22.30 (Comparing Strings) Write a program that uses function strcmp to compare two strings in-
put by the user. The program should state whether the first string is less than, equal to or greater
than the second string.

22.31 (Comparing Strings) Write a program that uses function strncmp to compare two strings
input by the user. The program should input the number of characters to compare. The program
should state whether the first string is less than, equal to or greater than the second string.

22.32 (Randomly Creating Sentences) Write a program that uses random number generation to
create sentences. The program should use four arrays of pointers to char called article, noun, verb
and preposition. The program should create a sentence by selecting a word at random from each
array in the following order: article, noun, verb, preposition, article and noun. As each word is
picked, it should be concatenated to the previous words in a character array that’s large enough to
hold the entire sentence. The words should be separated by spaces. When the final sentence is out-
put, it should start with a capital letter and end with a period. The program should generate 20 such
sentences.

The arrays should be filled as follows: The article array should contain the articles "the",
"a", "one", "some" and "any"; the noun array should contain the nouns "boy", "girl", "dog",
"town" and "car"; the verb array should contain the verbs "drove", "jumped", "ran", "walked"
and "skipped"; the preposition array should contain the prepositions "to", "from", "over",
"under" and "on".

1 // Ex. 22.29: ex22_29.cpp
2 // What does this program do?
3 #include <iostream>
4 using namespace std;
5
6 bool mystery3(const char *, const char *); // prototype
7
8 int main()
9 {

10 char string1[80], string2[80];
11
12 cout << "Enter two strings: ";
13 cin >> string1 >> string2;
14 cout << "The result is " << mystery3(string1, string2) << endl;
15 } // end main
16
17 // What does this function do?
18 bool mystery3(const char *s1, const char *s2)
19 {
20 for (; *s1 != '\0' && *s2 != '\0'; ++s1, ++s2)
21
22 if (*s1 != *s2)
23 return false;
24
25 return true;
26 } // end function mystery3

cpphtp9_22_BitsChars.fm Page 932 Thursday, January 3, 2013 12:13 PM

 Special Section: Advanced String-Manipulation Exercises 933

After completing the program, modify it to produce a short story consisting of several of these
sentences. (How about a random term-paper writer!)

22.33 (Limericks) A limerick is a humorous five-line verse in which the first and second lines
rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those
developed in Exercise 22.32, write a C++ program that produces random limericks. Polishing this
program to produce good limericks is a challenging problem, but the result will be worth the effort!

22.34 (Pig Latin) Write a program that encodes English language phrases into pig Latin. Pig Latin
is a form of coded language often used for amusement. Many variations exist in the methods used
to form pig Latin phrases. For simplicity, use the following algorithm: To form a pig-Latin phrase
from an English-language phrase, tokenize the phrase into words with function strtok. To translate
each English word into a pig-Latin word, place the first letter of the English word at the end of the
English word and add the letters “ay.” Thus, the word “jump” becomes “umpjay,” the word “the”
becomes “hetay” and the word “computer” becomes “omputercay.” Blanks between words remain
as blanks. Assume that the English phrase consists of words separated by blanks, there are no punc-
tuation marks and all words have two or more letters. Function printLatinWord should display each
word. [Hint: Each time a token is found in a call to strtok, pass the token pointer to function
printLatinWord and print the pig-Latin word.]

22.35 (Tokenizing Phone Numbers) Write a program that inputs a telephone number as a string
in the form (555) 555-5555. The program should use function strtok to extract the area code as a
token, the first three digits of the phone number as a token, and the last four digits of the phone
number as a token. The seven digits of the phone number should be concatenated into one string.
Both the area code and the phone number should be printed.

22.36 (Tokenizing and Reversing a Sentence) Write a program that inputs a line of text, tokenizes
the line with function strtok and outputs the tokens in reverse order.

22.37 (Alphabetizing Strings) Use the string-comparison functions discussed in Section 22.8 and
the techniques for sorting arrays developed in Chapter 7 to write a program that alphabetizes a list
of strings. Use the names of 10 towns in your area as data for your program.

22.38 (Write Your Own String Copy and Concatenation Functions) Write two versions of each
string-copy and string-concatenation function in Fig. 22.21. The first version should use array sub-
scripting, and the second should use pointers and pointer arithmetic.

22.39 (Write Your Own String Comparison Functions) Write two versions of each string-compar-
ison function in Fig. 22.21. The first version should use array subscripting, and the second should
use pointers and pointer arithmetic.

22.40 (Write Your Own String Length Function) Write two versions of function strlen in
Fig. 22.21. The first version should use array subscripting, and the second should use pointers and
pointer arithmetic.

Special Section: Advanced String-Manipulation Exercises
The preceding exercises are keyed to the text and designed to test your understanding of fun-
damental string-manipulation concepts. This section includes a collection of intermediate and
advanced string-manipulation exercises. You should find these problems challenging, yet enjoyable.
The problems vary considerably in difficulty. Some require an hour or two of program writing and
implementation. Others are useful for lab assignments that might require two or three weeks of
study and implementation. Some are challenging term projects.

22.41 (Text Analysis) The availability of computers with string-manipulation capabilities has re-
sulted in some rather interesting approaches to analyzing the writings of great authors. Much atten-

cpphtp9_22_BitsChars.fm Page 933 Thursday, January 3, 2013 12:13 PM

934 Chapter 22 Bits, Characters, C Strings and structs

tion has been focused on whether William Shakespeare ever lived. Some scholars believe there is
substantial evidence that Francis Bacon, Christopher Marlowe or other authors actually penned the
masterpieces attributed to Shakespeare. Researchers have used computers to find similarities in the
writings of these authors. This exercise examines three methods for analyzing texts with a computer.
Thousands of texts, including Shakespeare, are available online at www.gutenberg.org.

a) Write a program that reads several lines of text from the keyboard and prints a table in-
dicating the number of occurrences of each letter of the alphabet in the text. For exam-
ple, the phrase

 To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” etc.
b) Write a program that reads several lines of text and prints a table indicating the number

of one-letter words, two-letter words, three-letter words, etc., appearing in the text. For
example, the phrase

 Whether 'tis nobler in the mind to suffer

contains the following word lengths and occurrences:

c) Write a program that reads several lines of text and prints a table indicating the number
of occurrences of each different word in the text. The first version of your program
should include the words in the table in the same order in which they appear in the text.
For example, the lines

 To be, or not to be: that is the question:
 Whether 'tis nobler in the mind to suffer

contain the word “to” three times, the word “be” two times, the word “or” once, etc. A
more interesting (and useful) printout should then be attempted in which the words
are sorted alphabetically.

22.42 (Word Processing) One important function in word-processing systems is type justifica-
tion—the alignment of words to both the left and right margins of a page. This generates a profes-
sional-looking document that gives the appearance of being set in type rather than prepared on a
typewriter. Type justification can be accomplished on computer systems by inserting blank charac-
ters between the words in a line so that the rightmost word aligns with the right margin.

Write a program that reads several lines of text and prints this text in type-justified format.
Assume that the text is to be printed on paper 8-1/2 inches wide and that one-inch margins are to
be allowed on both the left and right sides. Assume that the computer prints 10 characters to the
horizontal inch. Therefore, your program should print 6-1/2 inches of text, or 65 characters per
line.

Word length Occurrences

1 0

2 2

3 1

4 2 (including 'tis)

5 0

6 2

7 1

cpphtp9_22_BitsChars.fm Page 934 Thursday, January 3, 2013 12:13 PM

 Special Section: Advanced String-Manipulation Exercises 935

22.43 (Printing Dates in Various Formats) Dates are commonly printed in several different for-
mats in business correspondence. Two of the more common formats are

07/21/1955
July 21, 1955

Write a program that reads a date in the first format and prints that date in the second format.

22.44 (Check Protection) Computers are frequently employed in check-writing systems such as
payroll and accounts-payable applications. Many strange stories circulate regarding weekly pay-
checks being printed (by mistake) for amounts in excess of $1 million. Weird amounts are printed
by computerized check-writing systems, because of human error or machine failure. Systems design-
ers build controls into their systems to prevent such erroneous checks from being issued.

Another serious problem is the intentional alteration of a check amount by someone who
intends to cash a check fraudulently. To prevent a dollar amount from being altered, most
computerized check-writing systems employ a technique called check protection.

Checks designed for imprinting by computer contain a fixed number of spaces in which the
computer may print an amount. Suppose that a paycheck contains eight blank spaces in which the
computer is supposed to print the amount of a weekly paycheck. If the amount is large, then all
eight of those spaces will be filled, for example,

1,230.60 (check amount)

12345678 (position numbers)

On the other hand, if the amount is less than $1000, then several of the spaces would ordi-
narily be left blank. For example,

 99.87

12345678

contains three blank spaces. If a check is printed with blank spaces, it’s easier for someone to alter
the amount of the check. To prevent a check from being altered, many check-writing systems insert
leading asterisks to protect the amount as follows:

***99.87

12345678

Write a program that inputs a dollar amount to be printed on a check then prints the amount
in check-protected format with leading asterisks if necessary. Assume that nine spaces are available
for printing an amount.

22.45 (Writing the Word Equivalent of a Check Amount) Continuing the discussion of the previ-
ous example, we reiterate the importance of designing check-writing systems to prevent alteration
of check amounts. One common security method requires that the check amount be both written
in numbers and “spelled out” in words. Even if someone is able to alter the numerical amount of
the check, it’s extremely difficult to change the amount in words.

Write a program that inputs a numeric check amount and writes the word equivalent of the
amount. Your program should be able to handle check amounts as large as $99.99. For example,
the amount 112.43 should be written as

ONE HUNDRED TWELVE and 43/100

22.46 (Morse Code) Perhaps the most famous of all coding schemes is the Morse code, developed
by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a series of dots
and dashes to each letter of the alphabet, each digit and a few special characters (such as period, com-
ma, colon and semicolon). In sound-oriented systems, the dot represents a short sound, and the

cpphtp9_22_BitsChars.fm Page 935 Thursday, January 3, 2013 12:13 PM

936 Chapter 22 Bits, Characters, C Strings and structs

dash represents a long sound. Other representations of dots and dashes are used with light-oriented
systems and signal-flag systems.

Separation between words is indicated by a space, or, quite simply, the absence of a dot or
dash. In a sound-oriented system, a space is indicated by a short period of time during which no
sound is transmitted. The international version of the Morse code appears in Fig. 22.47.

Write a program that reads an English-language phrase and encodes it in Morse code. Also
write a program that reads a phrase in Morse code and converts it into the English-language equiv-
alent. Use one blank between each Morse-coded letter and three blanks between each Morse-coded
word.

22.47 (Metric Conversion Program) Write a program that will assist the user with metric con-
versions. Your program should allow the user to specify the names of the units as strings (i.e., cen-
timeters, liters, grams, etc., for the metric system and inches, quarts, pounds, etc., for the English
system) and should respond to simple questions such as

"How many inches are in 2 meters?"
"How many liters are in 10 quarts?"

Your program should recognize invalid conversions. For example, the question

"How many feet are in 5 kilograms?"

is not meaningful, because "feet" are units of length, while "kilograms" are units of weight.

Challenging String-Manipulation Projects
22.48 (Crossword Puzzle Generator) Most people have worked a crossword puzzle, but few have
ever attempted to generate one. Generating a crossword puzzle is a difficult problem. It’s suggested
here as a string-manipulation project requiring substantial sophistication and effort. There are many
issues that you must resolve to get even the simplest crossword puzzle generator program working.
For example, how does one represent the grid of a crossword puzzle inside the computer? Should

Character Code Character Code Character Code

A .- N -. Digits

B -... O --- 1 .----

C -.-. P .--. 2 ..---

D -.. Q --.- 3 ...--

E . R .-. 4-

F ..-. S ... 5

G --. T - 6 -....

H U ..- 7 --...

I .. V ...- 8 ---..

J .--- W .-- 9 ----.

K -.- X -..- 0 -----

L .-.. Y -.--

M -- Z --..

Fig. 22.47 | Letters and digits as expressed in international Morse code.

cpphtp9_22_BitsChars.fm Page 936 Thursday, January 3, 2013 12:13 PM

 Challenging String-Manipulation Projects 937

one use a series of strings, or should two-dimensional arrays be used? You need a source of words
(i.e., a computerized dictionary) that can be directly referenced by the program. In what form
should these words be stored to facilitate the complex manipulations required by the program? The
really ambitious reader will want to generate the “clues” portion of the puzzle, in which the brief
hints for each “across” word and each “down” word are printed for the puzzle worker. Merely print-
ing a version of the blank puzzle itself is not a simple problem.

22.49 (Spelling Checker) Many popular word-processing software packages have built-in spell
checkers. We used spell-checking capabilities in preparing this book and discovered that, no matter
how careful we thought we were in writing a chapter, the software was always able to find a few more
spelling errors than we were able to catch manually.

In this project, you are asked to develop your own spell-checker utility. We make suggestions
to help get you started. You should then consider adding more capabilities. You might find it help-
ful to use a computerized dictionary as a source of words.

Why do we type so many words with incorrect spellings? In some cases, it’s because we simply
do not know the correct spelling, so we make a “best guess.” In some cases, it’s because we trans-
pose two letters (e.g., “defualt” instead of “default”). Sometimes we double-type a letter acciden-
tally (e.g., “hanndy” instead of “handy”). Sometimes we type a nearby key instead of the one we
intended (e.g., “biryhday” instead of “birthday”). And so on.

Design and implement a spell-checker program. Your program maintains an array wordList of
character strings. You can either enter these strings or obtain them from a computerized dictionary.

Your program asks a user to enter a word. The program then looks up that word in the
wordList array. If the word is present in the array, your program should print “Word is spelled
correctly.”

If the word is not present in the array, your program should print “Word is not spelled cor-
rectly.” Then your program should try to locate other words in wordList that might be the word
the user intended to type. For example, you can try all possible single transpositions of adjacent let-
ters to discover that the word “default” is a direct match to a word in wordList. Of course, this
implies that your program will check all other single transpositions, such as “edfault,” “dfeault,”
“deafult,” “defalut” and “defautl.” When you find a new word that matches one in wordList, print
that word in a message such as “Did you mean "default?".”

Implement other tests, such as the replacing of each double letter with a single letter and any
other tests you can develop to improve the value of your spell checker.

cpphtp9_22_BitsChars.fm Page 937 Thursday, January 3, 2013 12:13 PM

23 Other Topics

What’s in a name? that which
we call a rose
By any other name would smell
as sweet.
—William Shakespeare

O Diamond! Diamond! thou
little knowest the mischief done!
—Sir Isaac Newton

O b j e c t i v e s
In this chapter you’ll learn:

■ To use const_cast to
temporarily treat a const
object as a non-const
object.

■ To use namespaces.

■ To use operator keywords.

■ To use mutable members in
const objects.

■ To use class-member pointer
operators .* and ->*.

■ To use multiple inheritance.

■ The role of virtual base
classes in multiple
inheritance.

cpphtp9_23_OtherTopics.fm Page 938 Thursday, January 3, 2013 12:15 PM

23.1 Introduction 939

23.1 Introduction
We now consider additional C++ features. First, we discuss the const_cast operator, which
allows you to add or remove the const qualification of a variable. Next, we discuss
namespaces, which can be used to ensure that every identifier in a program has a unique
name and can help resolve naming conflicts caused by using libraries that have the same
variable, function or class names. We then present several operator keywords that are useful
for programmers who have keyboards that do not support certain characters used in oper-
ator symbols, such as !, &, ̂ , ~ and |. We continue our discussion with the mutable storage-
class specifier, which enables you to indicate that a data member should always be modifi-
able, even when it appears in an object that’s currently being treated as a const object by
the program. Next we introduce two special operators that you can use with pointers to class
members to access a data member or member function without knowing its name in ad-
vance. Finally, we introduce multiple inheritance, which enables a derived class to inherit the
members of several base classes. As part of this introduction, we discuss potential problems
with multiple inheritance and how virtual inheritance can be used to solve them.

23.2 const_cast Operator
C++ provides the const_cast operator for casting away const or volatile qualification.
You declare a variable with the volatile qualifier when you expect the variable to be mod-
ified by hardware or other programs not known to the compiler. Declaring a variable vol-
atile indicates that the compiler should not optimize the use of that variable because
doing so could affect the ability of those other programs to access and modify the vola-
tile variable.

In general, it’s dangerous to use the const_cast operator, because it allows a program
to modify a variable that was declared const. There are cases in which it’s desirable, or
even necessary, to cast away const-ness. For example, older C and C++ libraries might
provide functions that have non-const parameters and that do not modify their parame-
ters—if you wish to pass const data to such a function, you’d need to cast away the data’s
const-ness; otherwise, the compiler would report error messages.

Similarly, you could pass non-const data to a function that treats the data as if it were
constant, then returns that data as a constant. In such cases, you might need to cast away
the const-ness of the returned data, as we demonstrate in Fig. 23.1.

23.1 Introduction
23.2 const_cast Operator
23.3 mutable Class Members
23.4 namespaces
23.5 Operator Keywords
23.6 Pointers to Class Members

(.* and ->*)

23.7 Multiple Inheritance
23.8 Multiple Inheritance and virtual

Base Classes
23.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

cpphtp9_23_OtherTopics.fm Page 939 Thursday, January 3, 2013 12:15 PM

940 Chapter 23 Other Topics

In this program, function maximum (lines 9–12) receives two C strings as const char *

parameters and returns a const char * that points to the larger of the two strings. Func-
tion main declares the two C strings as non-const char arrays (lines 16–17); thus, these
arrays are modifiable. In main, we wish to output the larger of the two C strings, then
modify that C string by converting it to uppercase letters.

Function maximum’s two parameters are of type const char *, so the function’s return
type also must be declared as const char *. If the return type is specified as only char *,
the compiler issues an error message indicating that the value being returned cannot be
converted from const char * to char *—a dangerous conversion, because it attempts to
treat data that the function believes to be const as if it were non-const data.

Even though function maximum believes the data to be constant, we know that the orig-
inal arrays in main do not contain constant data. Therefore, main should be able to modify
the contents of those arrays as necessary. Since we know these arrays are modifiable, we use
const_cast (line 21) to cast away the const-ness of the pointer returned by maximum, so we
can then modify the data in the array representing the larger of the two C strings. We can

1 // Fig. 23.1: fig23_01.cpp
2 // Demonstrating const_cast.
3 #include <iostream>
4 #include <cstring> // contains prototypes for functions strcmp and strlen
5 #include <cctype> // contains prototype for function toupper
6 using namespace std;
7
8 // returns the larger of two C strings
9 const char *maximum(const char *first, const char *second)

10 {
11 return (strcmp(first, second) >= 0 ? first : second);
12 } // end function maximum
13
14 int main()
15 {
16 char s1[] = "hello"; // modifiable array of characters
17 char s2[] = "goodbye"; // modifiable array of characters
18
19 // const_cast required to allow the const char * returned by maximum
20 // to be assigned to the char * variable maxPtr
21
22
23 cout << "The larger string is: " << maxPtr << endl;
24
25 for (size_t i = 0; i < strlen(maxPtr); ++i)
26 maxPtr[i] = toupper(maxPtr[i]);
27
28 cout << "The larger string capitalized is: " << maxPtr << endl;
29 } // end main

The larger string is: hello
The larger string capitalized is: HELLO

Fig. 23.1 | Demonstrating operator const_cast.

char *maxPtr = const_cast< char * >(maximum(s1, s2));

cpphtp9_23_OtherTopics.fm Page 940 Thursday, January 3, 2013 12:15 PM

23.3 mutable Class Members 941

then use the pointer as the name of a character array in the for statement (lines 25–26) to
convert the contents of the larger string to uppercase letters. Without the const_cast in
line 21, this program will not compile, because you are not allowed to assign a pointer of
type const char * to a pointer of type char *.

23.3 mutable Class Members
In Section 23.2, we introduced the const_cast operator, which allowed us to remove the
“const-ness” of a type. A const_cast operation can also be applied to a data member of
a const object from the body of a const member function of that object’s class. This en-
ables the const member function to modify the data member, even though the object is
considered to be const in the body of that function. Such an operation might be per-
formed when most of an object’s data members should be considered const, but a partic-
ular data member still needs to be modified.

As an example, consider a linked list that maintains its contents in sorted order.
Searching through the linked list does not require modifications to the data of the linked
list, so the search function could be a const member function of the linked-list class. How-
ever, it’s conceivable that a linked-list object, in an effort to make future searches more effi-
cient, might keep track of the location of the last successful match. If the next search
operation attempts to locate an item that appears later in the list, the search could begin
from the location of the last successful match, rather than from the beginning of the list.
To do this, the const member function that performs the search must be able to modify
the data member that keeps track of the last successful search.

If a data member such as the one described above should always be modifiable, C++
provides the storage-class specifier mutable as an alternative to const_cast. A mutable
data member is always modifiable, even in a const member function or const object.

mutable and const_cast are used in different contexts. For a const object with no
mutable data members, operator const_cast must be used every time a member is to be
modified. This greatly reduces the chance of a member being accidentally modified
because the member is not permanently modifiable. Operations involving const_cast are
typically hidden in a member function’s implementation. The user of a class might not be
aware that a member is being modified.

Error-Prevention Tip 23.1
In general, a const_cast should be used only when it is known in advance that the orig-
inal data is not constant. Otherwise, unexpected results may occur.

Portability Tip 23.1
The effect of attempting to modify an object that was defined as constant, regardless of
whether that modification was made possible by a const_cast or C-style cast, varies
among compilers.

Software Engineering Observation 23.1
mutable members are useful in classes that have “secret” implementation details that do
not contribute to a client’s use of an object of the class.

cpphtp9_23_OtherTopics.fm Page 941 Thursday, January 3, 2013 12:15 PM

942 Chapter 23 Other Topics

Mechanical Demonstration of a mutable Data Member
Figure 23.2 demonstrates using a mutable member. The program defines class Test-
Mutable (lines 7–21), which contains a constructor, function getValue and a private
data member value that’s declared mutable. Lines 15–18 define function getValue as a
const member function that returns a copy of value. Notice that the function increments
mutable data member value in the return statement. Normally, a const member func-
tion cannot modify data members unless the object on which the function operates—i.e.,
the one to which this points—is cast (using const_cast) to a non-const type. Because
value is mutable, this const function can modify the data.

Line 25 declares const TestMutable object test and initializes it to 99. Line 27 calls
the const member function getValue, which adds one to value and returns its previous
contents. Notice that the compiler allows the call to member function getValue on the
object test because it’s a const object and getValue is a const member function. How-
ever, getValue modifies variable value. Thus, when line 28 invokes getValue again, the
new value (100) is output to prove that the mutable data member was indeed modified.

1 // Fig. 23.2: fig23_02.cpp
2 // Demonstrating storage-class specifier mutable.
3 #include <iostream>
4 using namespace std;
5
6 // class TestMutable definition
7 class TestMutable
8 {
9 public:

10 TestMutable(int v = 0)
11 {
12 value = v;
13 } // end TestMutable constructor
14
15 int getValue() const
16 {
17 return ++value; // increments value
18 } // end function getValue
19 private:
20
21 }; // end class TestMutable
22
23 int main()
24 {
25 const TestMutable test(99);
26
27 cout << "Initial value: " << ;
28 cout << "\nModified value: " << << endl;
29 } // end main

Initial value: 99
Modified value: 100

Fig. 23.2 | Demonstrating a mutable data member.

mutable int value; // mutable member

test.getValue()
test.getValue()

cpphtp9_23_OtherTopics.fm Page 942 Thursday, January 3, 2013 12:15 PM

23.4 namespaces 943

23.4 namespaces
A program may include many identifiers defined in different scopes. Sometimes a variable
of one scope will “overlap” (i.e., collide) with a variable of the same name in a different
scope, possibly creating a naming conflict. Such overlapping can occur at many levels. Iden-
tifier overlapping occurs frequently in third-party libraries that happen to use the same
names for global identifiers (such as functions). This can cause compilation errors.

C++ solves this problem with namespaces. Each namespace defines a scope in which
identifiers and variables are placed. To use a namespace member, either the member’s name
must be qualified with the namespace name and the scope resolution operator (::), as in

or a using directive must appear before the name is used in the program. Typically, such
using statements are placed at the beginning of the file in which members of the
namespace are used. For example, placing the following using directive at the beginning
of a source-code file

specifies that members of namespace MyNameSpace can be used in the file without preced-
ing each member with MyNameSpace and the scope resolution operator (::).

A using directive of the form

brings one name into the scope where the directive appears. A using directive of the form

brings all the names from the specified namespace (std) into the scope where the directive
appears.

Not all namespaces are guaranteed to be unique. Two third-party vendors might inad-
vertently use the same identifiers for their namespace names. Figure 23.3 demonstrates the
use of namespaces.

MyNameSpace::member

using namespace MyNameSpace;

using std::cout;

using namespace std;

Error-Prevention Tip 23.2
Precede a member with its namespace name and the scope resolution operator (::) if the
possibility exists of a naming conflict.

1 // Fig. 23.3: fig23_03.cpp
2 // Demonstrating namespaces.
3 #include <iostream>
4 using namespace std;
5
6 int integer1 = 98; // global variable
7
8
9

10

Fig. 23.3 | Demonstrating the use of namespaces. (Part 1 of 3.)

// create namespace Example
namespace Example
{

cpphtp9_23_OtherTopics.fm Page 943 Thursday, January 3, 2013 12:15 PM

944 Chapter 23 Other Topics

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 int main()
33 {
34 // output value doubleInUnnamed of unnamed namespace
35 cout << "doubleInUnnamed = " << doubleInUnnamed;
36
37 // output global variable
38 cout << "\n(global) integer1 = " << integer1;
39
40 // output values of Example namespace
41 cout << "\nPI = " << << "\nE = " << Example::E
42 << "\ninteger1 = " << << "\nFISCAL3 = "
43 << << endl;
44
45
46 } // end main
47
48 // display variable and constant values
49 void Example::printValues()
50 {
51 cout << "\nIn printValues:\ninteger1 = " << integer1 << "\nPI = "
52 << PI << "\nE = " << E << "\ndoubleInUnnamed = "
53 << doubleInUnnamed << "\n(global) integer1 = " <<
54 << "\nFISCAL3 = " << Inner::FISCAL3 << endl;
55 } // end printValues

doubleInUnnamed = 88.22
(global) integer1 = 98
PI = 3.14159
E = 2.71828
integer1 = 8
FISCAL3 = 1992

Fig. 23.3 | Demonstrating the use of namespaces. (Part 2 of 3.)

 // declare two constants and one variable
 const double PI = 3.14159;
 const double E = 2.71828;
 int integer1 = 8;

 void printValues(); // prototype

 // nested namespace
 namespace Inner
 {
 // define enumeration
 enum Years { FISCAL1 = 1990, FISCAL2, FISCAL3 };
 } // end Inner namespace
} // end Example namespace

// create unnamed namespace
namespace
{
 double doubleInUnnamed = 88.22; // declare variable
} // end unnamed namespace

Example::PI
Example::integer1

Example::Inner::FISCAL3

Example::printValues(); // invoke printValues function

::integer1

cpphtp9_23_OtherTopics.fm Page 944 Thursday, January 3, 2013 12:15 PM

23.4 namespaces 945

Defining namespaces
Lines 9–24 use the keyword namespace to define namespace Example. The body of a
namespace is delimited by braces ({}). The namespace Example’s members consist of two
constants (PI and E in lines 12–13), an int (integer1 in line 14), a function (printVal-
ues in line 16) and a nested namespace (Inner in lines 19–23). Notice that member
integer1 has the same name as global variable integer1 (line 6). Variables that have the
same name must have different scopes—otherwise compilation errors occur. A namespace
can contain constants, data, classes, nested namespaces, functions, etc. Definitions of
namespaces must occupy the global scope or be nested within other namespaces. Unlike
classes, different namespace members can be defined in separate namespace blocks—each
standard library header has a namespace block placing its contents in namespace std.

Lines 27–30 create an unnamed namespace containing the member doubleInUn-
named. Variables, classes and functions in an unnamed namespace are accessible only in the
current translation unit (a .cpp file and the files it includes). However, unlike variables,
classes or functions with static linkage, those in the unnamed namespace may be used as
template arguments. The unnamed namespace has an implicit using directive, so its mem-
bers appear to occupy the global namespace, are accessible directly and do not have to be
qualified with a namespace name. Global variables are also part of the global namespace
and are accessible in all scopes following the declaration in the file.

Accessing namespace Members with Qualified Names
Line 35 outputs the value of variable doubleInUnnamed, which is directly accessible as part
of the unnamed namespace. Line 38 outputs the value of global variable integer1. For
both of these variables, the compiler first attempts to locate a local declaration of the vari-
ables in main. Since there are no local declarations, the compiler assumes those variables
are in the global namespace.

Lines 41–43 output the values of PI, E, integer1 and FISCAL3 from namespace
Example. Notice that each must be qualified with Example:: because the program does not
provide any using directive or declarations indicating that it will use members of
namespace Example. In addition, member integer1 must be qualified, because a global
variable has the same name. Otherwise, the global variable’s value is output. FISCAL3 is a
member of nested namespace Inner, so it must be qualified with Example::Inner::.

In printValues:
integer1 = 8
PI = 3.14159
E = 2.71828
doubleInUnnamed = 88.22
(global) integer1 = 98
FISCAL3 = 1992

Software Engineering Observation 23.2
Each separate compilation unit has its own unique unnamed namespace; i.e., the
unnamed namespace replaces the static linkage specifier.

Fig. 23.3 | Demonstrating the use of namespaces. (Part 3 of 3.)

cpphtp9_23_OtherTopics.fm Page 945 Thursday, January 3, 2013 12:15 PM

946 Chapter 23 Other Topics

Function printValues (defined in lines 49–55) is a member of Example, so it can
access other members of the Example namespace directly without using a namespace qual-
ifier. The output statement in lines 51–54 outputs integer1, PI, E, doubleInUnnamed,
global variable integer1 and FISCAL3. Notice that PI and E are not qualified with
Example. Variable doubleInUnnamed is still accessible, because it’s in the unnamed
namespace and the variable name does not conflict with any other members of namespace
Example. The global version of integer1 must be qualified with the scope resolution oper-
ator (::), because its name conflicts with a member of namespace Example. Also, FISCAL3
must be qualified with Inner::. When accessing members of a nested namespace, the
members must be qualified with the namespace name (unless the member is being used
inside the nested namespace).

using Directives Should Not Be Placed in Headers
namespaces are particularly useful in large-scale applications that use many class libraries.
In such cases, there’s a higher likelihood of naming conflicts. When working on such proj-
ects, there should never be a using directive in a header. Having one brings the corre-
sponding names into any file that includes the header. This could result in name collisions
and subtle, hard-to-find errors. Instead, use only fully qualified names in headers (for ex-
ample, std::cout or std::string).

Aliases for namespace Names
namespaces can be aliased. For example the statement

creates the namespace alias CPPHTP for CPlusPlusHowToProgram.

23.5 Operator Keywords
The C++ standard provides operator keywords (Fig. 23.4) that can be used in place of sev-
eral C++ operators. You can use operator keywords if you have keyboards that do not sup-
port certain characters such as !, &, ^, ~, |, etc.

Common Programming Error 23.1
Placing main in a namespace is a compilation error.

namespace CPPHTP = CPlusPlusHowToProgram;

Operator Operator keyword Description

Logical operator keywords

&& and logical AND

|| or logical OR

! not logical NOT

Inequality operator keyword

!= not_eq inequality

Fig. 23.4 | Operator keyword alternatives to operator symbols. (Part 1 of 2.)

cpphtp9_23_OtherTopics.fm Page 946 Thursday, January 3, 2013 12:15 PM

23.5 Operator Keywords 947

Figure 23.5 demonstrates the operator keywords. Microsoft Visual C++ 2010 requires
the header <ciso646> (line 4) to use the operator keywords. In GNU C++ and LLVM, the
operator keywords are always defined and this header is not required.

Bitwise operator keywords

& bitand bitwise AND

| bitor bitwise inclusive OR

^ xor bitwise exclusive OR

~ compl bitwise complement

Bitwise assignment operator keywords

&= and_eq bitwise AND assignment

|= or_eq bitwise inclusive OR assignment

^= xor_eq bitwise exclusive OR assignment

1 // Fig. 23.5: fig23_05.cpp
2 // Demonstrating operator keywords.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 bool a = true;

10 bool b = false;
11 int c = 2;
12 int d = 3;
13
14 // sticky setting that causes bool values to display as true or false
15 cout << boolalpha;
16
17 cout << "a = " << a << "; b = " << b
18 << "; c = " << c << "; d = " << d;
19
20 cout << "\n\nLogical operator keywords:";
21 cout << "\n a and a: " << ;
22 cout << "\n a and b: " << ;
23 cout << "\n a or a: " << ;
24 cout << "\n a or b: " << ;
25 cout << "\n not a: " << ;
26 cout << "\n not b: " << ;
27 cout << "\na not_eq b: " << ;
28

Fig. 23.5 | Demonstrating operator keywords. (Part 1 of 2.)

Operator Operator keyword Description

Fig. 23.4 | Operator keyword alternatives to operator symbols. (Part 2 of 2.)

#include <ciso646> // enables operator keywords in Microsoft Visual C++

(a and a)
(a and b)
(a or a)
(a or b)
(not a)
(not b)
(a not_eq b)

cpphtp9_23_OtherTopics.fm Page 947 Thursday, January 3, 2013 12:15 PM

948 Chapter 23 Other Topics

The program declares and initializes two bool variables and two integer variables
(lines 9–12). Logical operations (lines 21–27) are performed with bool variables a and b
using the various logical operator keywords. Bitwise operations (lines 30–36) are per-
formed with the int variables c and d using the various bitwise operator keywords. The
result of each operation is output.

23.6 Pointers to Class Members (.* and ->*)
C++ provides the .* and ->* operators for accessing class members via pointers. This is a
rarely used capability, primarily for advanced C++ programmers. We provide only a me-
chanical example of using pointers to class members here. Figure 23.6 demonstrates the
pointer-to-class-member operators.

29 cout << "\n\nBitwise operator keywords:";
30 cout << "\nc bitand d: " << ;
31 cout << "\n c bitor d: " << ;
32 cout << "\n c xor d: " << ;
33 cout << "\n compl c: " << ;
34 cout << "\nc and_eq d: " << ;
35 cout << "\n c or_eq d: " << ;
36 cout << "\nc xor_eq d: " << << endl;
37 } // end main

a = true; b = false; c = 2; d = 3

Logical operator keywords:
 a and a: true
 a and b: false
 a or a: true
 a or b: true
 not a: false
 not b: true
a not_eq b: true

Bitwise operator keywords:
c bitand d: 2
 c bitor d: 3
 c xor d: 1
 compl c: -3
c and_eq d: 2
 c or_eq d: 3
c xor_eq d: 0

1 // Fig. 23.6: fig23_06.cpp
2 // Demonstrating operators .* and ->*.
3 #include <iostream>
4 using namespace std;
5

Fig. 23.6 | Demonstrating operatprs .* and ->*. (Part 1 of 2.)

Fig. 23.5 | Demonstrating operator keywords. (Part 2 of 2.)

(c bitand d)
(c bitor d)
(c xor d)
(compl c)
(c and_eq d)
(c or_eq d)
(c xor_eq d)

cpphtp9_23_OtherTopics.fm Page 948 Thursday, January 3, 2013 12:15 PM

23.6 Pointers to Class Members (.* and ->*) 949

The program declares class Test (lines 7–16), which provides public member func-
tion test and public data member value. Lines 18–19 provide prototypes for the func-
tions arrowStar (defined in lines 30–34) and dotStar (defined in lines 37–41), which
demonstrate the ->* and .* operators, respectively. Line 23 creates object test, and line
24 assigns 8 to its data member value. Lines 25–26 call functions arrowStar and dotStar
with the address of the object test.

Line 32 in function arrowStar declares and initializes variable memPtr as a pointer to
a member function. In this declaration, Test::* indicates that the variable memPtr is a
pointer to a member of class Test. To declare a pointer to a function, enclose the pointer
name preceded by * in parentheses, as in (Test::*memPtr). A pointer to a function must

6 // class Test definition
7 class Test
8 {
9 public:

10 void func()
11 {
12 cout << "In func\n";
13 } // end function func
14
15 int value; // public data member
16 }; // end class Test
17
18 void arrowStar(Test *); // prototype
19 void dotStar(Test *); // prototype
20
21 int main()
22 {
23 Test test;
24 test.value = 8; // assign value 8
25 arrowStar(&test); // pass address to arrowStar
26 dotStar(&test); // pass address to dotStar
27 } // end main
28
29 // access member function of Test object using ->*
30 void arrowStar(Test *testPtr)
31 {
32
33
34 } // end arrowStar
35
36 // access members of Test object data member using .*
37 void dotStar(Test *testPtr2)
38 {
39
40
41 } // end dotStar

In test function
8

Fig. 23.6 | Demonstrating operatprs .* and ->*. (Part 2 of 2.)

void (Test::*memberPtr)() = &Test::func; // declare function pointer
(testPtr->*memberPtr)(); // invoke function indirectly

int Test::*vPtr = &Test::value; // declare pointer
cout << (*testPtr2).*vPtr << endl; // access value

cpphtp9_23_OtherTopics.fm Page 949 Thursday, January 3, 2013 12:15 PM

950 Chapter 23 Other Topics

specify, as part of its type, both the return type of the function it points to and the parameter
list of that function. The function’s return type appears to the left of the left parenthesis
and the parameter list appears in a separate set of parentheses to the right of the pointer
declaration. In this case, the function has a void return type and no parameters. The
pointer memPtr is initialized with the address of class Test’s member function named test.
The header of the function must match the function pointer’s declaration—i.e., function
test must have a void return type and no parameters. Notice that the right side of the
assignment uses the address operator (&) to get the address of the member function test.
Also, notice that neither the left side nor the right side of the assignment in line 32 refers to a
specific object of class Test. Only the class name is used with the scope resolution operator
(::). Line 33 invokes the member function stored in memPtr (i.e., test), using the ->*
operator. Because memPtr is a pointer to a member of a class, the ->* operator must be used
rather than the -> operator to invoke the function.

Line 39 declares and initializes vPtr as a pointer to an int data member of class Test.
The right side of the assignment specifies the address of the data member value. Line 40
dereferences the pointer testPtr2, then uses the .* operator to access the member to
which vPtr points. The client code can create pointers to class members for only those class
members that are accessible to the client code. In this example, both member function test
and data member value are publicly accessible.

23.7 Multiple Inheritance
In Chapters 11 and 12, we discussed single inheritance, in which each class is derived from
exactly one base class. In C++, a class may be derived from more than one base class—a tech-
nique known as multiple inheritance in which a derived class inherits the members of two
or more base classes. This powerful capability encourages interesting forms of software re-
use but can cause a variety of ambiguity problems. Multiple inheritance is a difficult concept
that should be used only by experienced programmers. In fact, some of the problems associated
with multiple inheritance are so subtle that newer programming languages, such as Java
and C#, do not enable a class to derive from more than one base class.

Common Programming Error 23.2
Declaring a member-function pointer without enclosing the pointer name in parentheses
is a syntax error.

Common Programming Error 23.3
Declaring a member-function pointer without preceding the pointer name with a class
name followed by the scope resolution operator (::) is a syntax error.

Common Programming Error 23.4
Attempting to use the -> or * operator with a pointer to a class member generates syntax
errors.

Software Engineering Observation 23.3
Great care is required in the design of a system to use multiple inheritance properly; it
should not be used when single inheritance and/or composition will do the job.

cpphtp9_23_OtherTopics.fm Page 950 Thursday, January 3, 2013 12:15 PM

23.7 Multiple Inheritance 951

A common problem with multiple inheritance is that each of the base classes might
contain data members or member functions that have the same name. This can lead to
ambiguity problems when you attempt to compile. Consider the multiple-inheritance
example (Figs. 23.7–23.11). Class Base1 (Fig. 23.7) contains one protected int data
member—value (line 20), a constructor (lines 10–13) that sets value and public
member function getData (lines 15–18) that returns value.

Class Base2 (Fig. 23.8) is similar to class Base1, except that its protected data is a
char named letter (line 20). Like class Base1, Base2 has a public member function get-
Data, but this function returns the value of char data member letter.

1 // Fig. 23.7: Base1.h
2 // Definition of class Base1
3 #ifndef BASE1_H
4 #define BASE1_H
5
6 // class Base1 definition
7 class Base1
8 {
9 public:

10 Base1(int parameterValue)
11 : value(parameterValue)
12 {
13 } // end Base1 constructor
14
15
16 {
17 return value;
18 } // end function getData
19 protected: // accessible to derived classes
20 int value; // inherited by derived class
21 }; // end class Base1
22
23 #endif // BASE1_H

Fig. 23.7 | Demonstrating multiple inheritance—Base1.h.

1 // Fig. 23.8: Base2.h
2 // Definition of class Base2
3 #ifndef BASE2_H
4 #define BASE2_H
5
6 // class Base2 definition
7 class Base2
8 {
9 public:

10 Base2(char characterData)
11 : letter(characterData)
12 {
13 } // end Base2 constructor

Fig. 23.8 | Demonstrating multiple inheritance—Base2.h. (Part 1 of 2.)

int getData() const

cpphtp9_23_OtherTopics.fm Page 951 Thursday, January 3, 2013 12:15 PM

952 Chapter 23 Other Topics

Class Derived (Figs. 23.9–23.10) inherits from both class Base1 and class Base2
through multiple inheritance. Class Derived has a private data member of type double
named real (Fig. 23.9, line 20), a constructor to initialize all the data of class Derived and
a public member function getReal that returns the value of double variable real.

14
15
16 {
17 return letter;
18 } // end function getData
19 protected: // accessible to derived classes
20 char letter; // inherited by derived class
21 }; // end class Base2
22
23 #endif // BASE2_H

1 // Fig. 23.9: Derived.h
2 // Definition of class Derived which inherits
3 // multiple base classes (Base1 and Base2).
4 #ifndef DERIVED_H
5 #define DERIVED_H
6
7 #include <iostream>
8 #include "Base1.h"
9 #include "Base2.h"

10 using namespace std;
11
12 // class Derived definition
13 class Derived : public Base1, public Base2
14 {
15 friend ostream &operator<<(ostream &, const Derived &);
16 public:
17 Derived(int, char, double);
18 double getReal() const;
19 private:
20 double real; // derived class's private data
21 }; // end class Derived
22
23 #endif // DERIVED_H

Fig. 23.9 | Demonstrating multiple inheritance—Derived.h.

1 // Fig. 23.10: Derived.cpp
2 // Member-function definitions for class Derived
3 #include "Derived.h"
4
5
6

Fig. 23.10 | Demonstrating multiple inheritance—Derived.cpp. (Part 1 of 2.)

Fig. 23.8 | Demonstrating multiple inheritance—Base2.h. (Part 2 of 2.)

char getData() const

// constructor for Derived calls constructors for
// class Base1 and class Base2.

cpphtp9_23_OtherTopics.fm Page 952 Thursday, January 3, 2013 12:15 PM

23.7 Multiple Inheritance 953

To indicate multiple inheritance (in Fig. 23.9) we follow the colon (:) after class
Derived with a comma-separated list of base classes (line 13). In Fig. 23.10, notice that
constructor Derived explicitly calls base-class constructors for each of its base classes—
Base1 and Base2—using the member-initializer syntax (line 9). The base-class constructors
are called in the order that the inheritance is specified, not in the order in which their construc-
tors are mentioned. Also, if the base-class constructors are not explicitly called in the member-
initializer list, their default constructors will be called implicitly.

The overloaded stream insertion operator (Fig. 23.10, lines 18–23) uses its second
parameter—a reference to a Derived object—to display a Derived object’s data. This
operator function is a friend of Derived, so operator<< can directly access all of class
Derived’s protected and private members, including the protected data member
value (inherited from class Base1), protected data member letter (inherited from class
Base2) and private data member real (declared in class Derived).

Now let’s examine the main function (Fig. 23.11) that tests the classes in Figs. 23.7–
23.10. Line 11 creates Base1 object base1 and initializes it to the int value 10. Line 12
creates Base2 object base2 and initializes it to the char value 'Z'. Line 13 creates Derived
object derived and initializes it to contain the int value 7, the char value 'A' and the
double value 3.5.

7
8
9

10
11 // return real
12 double Derived::getReal() const
13 {
14 return real;
15 } // end function getReal
16
17 // display all data members of Derived
18 ostream &operator<<(ostream &output, const Derived &derived)
19 {
20 output << " Integer: " << derived.value << "\n Character: "
21 << derived.letter << "\nReal number: " << derived.real;
22 return output; // enables cascaded calls
23 } // end operator<<

1 // Fig. 23.11: fig23_11.cpp
2 // Driver for multiple-inheritance example.
3 #include <iostream>
4 #include "Base1.h"
5 #include "Base2.h"
6 #include "Derived.h"
7 using namespace std;

Fig. 23.11 | Demonstrating multiple inheritance. (Part 1 of 2.)

Fig. 23.10 | Demonstrating multiple inheritance—Derived.cpp. (Part 2 of 2.)

// use member initializers to call base-class constructors
Derived::Derived(int integer, char character, double double1)
 : Base1(integer), Base2(character), real(double1) { }

cpphtp9_23_OtherTopics.fm Page 953 Thursday, January 3, 2013 12:15 PM

954 Chapter 23 Other Topics

Lines 16–18 display each object’s data values. For objects base1 and base2, we invoke
each object’s getData member function. Even though there are two getData functions in
this example, the calls are not ambiguous. In line 16, the compiler knows that base1 is an
object of class Base1, so class Base1’s getData is called. In line 17, the compiler knows that
base2 is an object of class Base2, so class Base2’s getData is called. Line 18 displays the
contents of object derived using the overloaded stream insertion operator.

8
9 int main()

10 {
11 Base1 base1(10); // create Base1 object
12 Base2 base2('Z'); // create Base2 object
13
14
15 // print data members of base-class objects
16 cout << "Object base1 contains integer " << base1.getData()
17 << "\nObject base2 contains character " << base2.getData()
18 << "\nObject derived contains:\n" << derived << "\n\n";
19
20 // print data members of derived-class object
21 // scope resolution operator resolves getData ambiguity
22 cout << "Data members of Derived can be accessed individually:"
23 << "\n Integer: " <<
24 << "\n Character: " <<
25 << "\nReal number: " << << "\n\n";
26 cout << "Derived can be treated as an object of either base class:\n";
27
28 // treat Derived as a Base1 object
29
30 cout << "base1Ptr->getData() yields " << << '\n';
31
32 // treat Derived as a Base2 object
33
34 cout << "base2Ptr->getData() yields " << << endl;
35 } // end main

Object base1 contains integer 10
Object base2 contains character Z
Object derived contains:
 Integer: 7
 Character: A
Real number: 3.5

Data members of Derived can be accessed individually:
 Integer: 7
 Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
base1Ptr->getData() yields 7
base2Ptr->getData() yields A

Fig. 23.11 | Demonstrating multiple inheritance. (Part 2 of 2.)

Derived derived(7, 'A', 3.5); // create Derived object

derived.Base1::getData()
derived.Base2::getData()
derived.getReal()

Base1 *base1Ptr = &derived;
base1Ptr->getData()

Base2 *base2Ptr = &derived;
base2Ptr->getData()

cpphtp9_23_OtherTopics.fm Page 954 Thursday, January 3, 2013 12:15 PM

23.8 Multiple Inheritance and virtual Base Classes 955

Resolving Ambiguity Issues That Arise When a Derived Class Inherits Member
Functions of the Same Name from Multiple Base Classes
Lines 22–25 output the contents of object derived again by using the get member func-
tions of class Derived. However, there is an ambiguity problem, because this object con-
tains two getData functions, one inherited from class Base1 and one inherited from class
Base2. This problem is easy to solve by using the scope resolution operator. The expression
derived.Base1::getData() gets the value of the variable inherited from class Base1 (i.e.,
the int variable named value) and derived.Base2::getData() gets the value of the vari-
able inherited from class Base2 (i.e., the char variable named letter). The double value
in real is printed without ambiguity with the call derived.getReal()—there are no other
member functions with that name in the hierarchy.

Demonstrating the Is-A Relationships in Multiple Inheritance
The is-a relationships of single inheritance also apply in multiple-inheritance relationships.
To demonstrate this, line 29 assigns the address of object derived to the Base1 pointer
base1Ptr. This is allowed because an object of class Derived is an object of class Base1.
Line 30 invokes Base1 member function getData via base1Ptr to obtain the value of only
the Base1 part of the object derived. Line 33 assigns the address of object derived to the
Base2 pointer base2Ptr. This is allowed because an object of class Derived is an object of
class Base2. Line 34 invokes Base2 member function getData via base2Ptr to obtain the
value of only the Base2 part of the object derived.

23.8 Multiple Inheritance and virtual Base Classes
In Section 23.7, we discussed multiple inheritance, the process by which one class inherits
from two or more classes. Multiple inheritance is used, for example, in the C++ standard
library to form class basic_iostream (Fig. 23.12).

Class basic_ios is the base class for both basic_istream and basic_ostream, each
of which is formed with single inheritance. Class basic_iostream inherits from both
basic_istream and basic_ostream. This enables class basic_iostream objects to pro-
vide the functionality of basic_istreams and basic_ostreams. In multiple-inheritance
hierarchies, the inheritance described in Fig. 23.12 is referred to as diamond inheritance

Because classes basic_istream and basic_ostream each inherit from basic_ios, a
potential problem exists for basic_iostream. Class basic_iostream could contain two
copies of the members of class basic_ios—one inherited via class basic_istream and one

Fig. 23.12 | Multiple inheritance to form class basic_iostream.

basic_ios

basic_ostreambasic_istream

basic_iostream

cpphtp9_23_OtherTopics.fm Page 955 Thursday, January 3, 2013 12:15 PM

956 Chapter 23 Other Topics

inherited via class basic_ostream). Such a situation would be ambiguous and would result
in a compilation error, because the compiler would not know which version of the mem-
bers from class basic_ios to use. In this section, you’ll see how using virtual base classes
solves the problem of inheriting duplicate copies of an indirect base class.

Compilation Errors Produced When Ambiguity Arises in Diamond Inheritance
Figure 23.13 demonstrates the ambiguity that can occur in diamond inheritance. Class
Base (lines 8–12) contains pure virtual function print (line 11). Classes DerivedOne
(lines 15–23) and DerivedTwo (lines 26–34) each publicly inherit from Base and override
function print. Class DerivedOne and class DerivedTwo each contain a base-class subob-
ject—i.e., the members of class Base in this example.

1 // Fig. 23.13: fig23_13.cpp
2 // Attempting to polymorphically call a function that is
3 // multiply inherited from two base classes.
4 #include <iostream>
5 using namespace std;
6
7 // class Base definition
8 class Base
9 {

10 public:
11
12 }; // end class Base
13
14 // class DerivedOne definition
15 class DerivedOne : public Base
16 {
17 public:
18
19
20
21
22
23 }; // end class DerivedOne
24
25 // class DerivedTwo definition
26 class DerivedTwo : public Base
27 {
28 public:
29
30
31
32
33
34 }; // end class DerivedTwo
35
36 // class Multiple definition
37 class Multiple : public DerivedOne, public DerivedTwo
38 {

Fig. 23.13 | Attempting to call a multiply inherited function polymorphically. (Part 1 of 2.)

virtual void print() const = 0; // pure virtual

// override print function
void print() const
{
 cout << "DerivedOne\n";
} // end function print

// override print function
void print() const
{
 cout << "DerivedTwo\n";
} // end function print

cpphtp9_23_OtherTopics.fm Page 956 Thursday, January 3, 2013 12:15 PM

23.8 Multiple Inheritance and virtual Base Classes 957

Class Multiple (lines 37–45) inherits from both class DerivedOne and class
DerivedTwo. In class Multiple, function print is overridden to call DerivedTwo’s print
(line 43). Notice that we must qualify the print call with the class name DerivedTwo to
specify which version of print to call.

Function main (lines 47–61) declares objects of classes Multiple (line 49),
DerivedOne (line 50) and DerivedTwo (line 51). Line 52 declares an array of Base *
pointers. Each array element is initialized with the address of an object (lines 54–56). An
error occurs when the address of both—an object of class Multiple—is assigned to
array[0]. The object both actually contains two subobjects of type Base, so the compiler
does not know which subobject the pointer array[0] should point to, and it generates a
compilation error indicating an ambiguous conversion.

Eliminating Duplicate Subobjects with virtual Base-Class Inheritance
The problem of duplicate subobjects is resolved with virtual inheritance. When a base
class is inherited as virtual, only one subobject will appear in the derived class—a process
called virtual base-class inheritance. Figure 23.14 revises the program of Fig. 23.13 to
use a virtual base class.

39 public:
40
41
42
43
44
45 }; // end class Multiple
46
47 int main()
48 {
49 Multiple both; // instantiate Multiple object
50 DerivedOne one; // instantiate DerivedOne object
51 DerivedTwo two; // instantiate DerivedTwo object
52 Base *array[3]; // create array of base-class pointers
53
54
55 array[1] = &one;
56 array[2] = &two;
57
58 // polymorphically invoke print
59 for (int i = 0; i < 3; ++i)
60 array[i] -> print();
61 } // end main

Microsoft Visual C++ compiler error message:

c:\cpphtp9_examples\ch23\fig23_13\fig23_13.cpp(54) : error C2594: '=' :
 ambiguous conversions from 'Multiple *' to 'Base *'

Fig. 23.13 | Attempting to call a multiply inherited function polymorphically. (Part 2 of 2.)

// qualify which version of function print
void print() const
{
 DerivedTwo::print();
} // end function print

array[0] = &both; // ERROR--ambiguous

cpphtp9_23_OtherTopics.fm Page 957 Thursday, January 3, 2013 12:15 PM

958 Chapter 23 Other Topics

1 // Fig. 23.14: fig23_14.cpp
2 // Using virtual base classes.
3 #include <iostream>
4 using namespace std;
5
6 // class Base definition
7 class Base
8 {
9 public:

10 virtual void print() const = 0; // pure virtual
11 }; // end class Base
12
13 // class DerivedOne definition
14 class DerivedOne :
15 {
16 public:
17
18
19
20
21
22 }; // end DerivedOne class
23
24 // class DerivedTwo definition
25 class DerivedTwo :
26 {
27 public:
28
29
30
31
32
33 }; // end DerivedTwo class
34
35 // class Multiple definition
36 class Multiple : public DerivedOne, public DerivedTwo
37 {
38 public:
39
40
41
42
43
44 }; // end Multiple class
45
46 int main()
47 {
48 Multiple both; // instantiate Multiple object
49 DerivedOne one; // instantiate DerivedOne object
50 DerivedTwo two; // instantiate DerivedTwo object
51
52 // declare array of base-class pointers and initialize
53 // each element to a derived-class type

Fig. 23.14 | Using virtual base classes. (Part 1 of 2.)

virtual public Base

// override print function
void print() const
{
 cout << "DerivedOne\n";
} // end function print

virtual public Base

// override print function
void print() const
{
 cout << "DerivedTwo\n";
} // end function print

// qualify which version of function print
void print() const
{
 DerivedTwo::print();
} // end function print

cpphtp9_23_OtherTopics.fm Page 958 Thursday, January 3, 2013 12:15 PM

23.9 Wrap-Up 959

The key change is that classes DerivedOne (line 14) and DerivedTwo (line 25) each
inherit from Base by specifying virtual public Base. Since both classes inherit from
Base, they each contain a Base subobject. The benefit of virtual inheritance is not clear
until class Multiple inherits from DerivedOne and DerivedTwo (line 36). Since each of the
base classes used virtual inheritance to inherit class Base’s members, the compiler ensures
that only one Base subobject is inherited into class Multiple. This eliminates the ambi-
guity error generated by the compiler in Fig. 23.13. The compiler now allows the implicit
conversion of the derived-class pointer (&both) to the base-class pointer array[0] in line
55 in main. The for statement in lines 60–61 polymorphically calls print for each object.

Constructors in Multiple-Inheritance Hierarchies with virtual Base Classes
Implementing hierarchies with virtual base classes is simpler if default constructors are
used for the base classes. Figures 23.13 and 23.14 use compiler-generated default construc-
tors. If a virtual base class provides a constructor that requires arguments, the derived-
class implementations become more complicated, because the most derived class must ex-
plicitly invoke the virtual base class’s constructor.

23.9 Wrap-Up
In this chapter, you learned how to use the const_cast operator to remove the const qual-
ification of a variable. We showed how to use namespaces to ensure that every identifier in a
program has a unique name and explained how namespaces can help resolve naming con-
flicts. You saw several operator keywords to use if your keyboards do not support certain
characters used in operator symbols, such as !, &, ^, ~ and |. We showed how the mutable
storage-class specifier enables you to indicate that a data member should always be modifi-
able, even when it appears in an object that’s currently being treated as a const. We also
showed the mechanics of using pointers to class members and the ->* and .* operators. Fi-
nally, we introduced multiple inheritance and discussed problems associated with allowing a

54 Base *array[3];
55
56 array[1] = &one;
57 array[2] = &two;
58
59 // polymorphically invoke function print
60 for (int i = 0; i < 3; ++i)
61 array[i]->print();
62 } // end main

DerivedTwo
DerivedOne
DerivedTwo

Software Engineering Observation 23.4
Providing a default constructor for virtual base classes simplifies hierarchy design.

Fig. 23.14 | Using virtual base classes. (Part 2 of 2.)

array[0] = &both;

cpphtp9_23_OtherTopics.fm Page 959 Thursday, January 3, 2013 12:15 PM

960 Chapter 23 Other Topics

derived class to inherit the members of several base classes. As part of this discussion, we dem-
onstrated how virtual inheritance can be used to solve those problems.

Summary
Section 23.2 const_cast Operator
• C++ provides the const_cast operator () for casting away const or volatile qualification.

• A program declares a variable with the volatile qualifier (p. 939) when that program expects
the variable to be modified by other programs. Declaring a variable volatile indicates that the
compiler should not optimize the use of that variable because doing so could affect the ability of
those other programs to access and modify the volatile variable.

• In general, it is dangerous to use the const_cast operator, because it allows a program to modify
a variable that was declared const, and thus was not supposed to be modifiable.

• There are cases in which it is desirable, or even necessary, to cast away const-ness. For example,
older C and C++ libraries might provide functions with non-const parameters and that do not
modify their parameters. If you wish to pass const data to such a function, you’d need to cast
away the data’s const-ness; otherwise, the compiler would report error messages.

• If you pass non-const data to a function that treats the data as if it were constant, then returns
that data as a constant, you might need to cast away the const-ness of the returned data to access
and modify that data.

Section 23.3 mutable Class Members
• If a data member should always be modifiable, C++ provides the storage-class specifier mutable

as an alternative to const_cast. A mutable data member (p. 941) is always modifiable, even in a
const member function or const object. This reduces the need to cast away “const-ness.”

• mutable and const_cast are used in different contexts. For a const object with no mutable data
members, operator const_cast must be used every time a member is to be modified. This greatly
reduces the chance of a member being accidentally modified because the member is not perma-
nently modifiable.

• Operations involving const_cast are typically hidden in a member function’s implementation.
The user of a class might not be aware that a member is being modified.

Section 23.4 namespaces
• A program includes many identifiers defined in different scopes. Sometimes a variable of one

scope will “overlap” with a variable of the same name in a different scope, possibly creating a
naming conflict. The C++ standard solves this problem with namespaces (p. 943).

• Each namespace defines a scope in which identifiers are placed. To use a namespace member
(p. 943), either the member’s name must be qualified with the namespace name and the scope
resolution operator (::) or a using directive or declaration must appear before the name is used
in the program.

• Typically, using statements are placed at the beginning of the file in which members of the
namespace are used.

• Not all namespaces are guaranteed to be unique. Two third-party vendors might inadvertently
use the same identifiers for their namespace names.

• A namespace can contain constants, data, classes, nested namespaces (p. 945), functions, etc.
Definitions of namespaces must occupy the global scope or be nested within other namespaces.

cpphtp9_23_OtherTopics.fm Page 960 Thursday, January 3, 2013 12:15 PM

 Self-Review Exercises 961

• An unnamed namespace (p. 945) has an implicit using directive, so its members appear to occu-
py the global namespace, are accessible directly and do not have to be qualified with a namespace
name. Global variables are also part of the global namespace.

• When accessing members of a nested namespace, the members must be qualified with the
namespace name (unless the member is being used inside the nested namespace).

• Namespaces can be aliased (p. 946).

Section 23.5 Operator Keywords
• The C++ standard provides operator keywords (p. 946) that can be used in place of several C++

operators. Operator keywords are useful for programmers who have keyboards that do not sup-
port certain characters such as !, &, ^, ~, |, etc.

Section 23.6 Pointers to Class Members (.* and ->*)
• C++ provides the .* and ->* operators (p. 948) for accessing class members via pointers. This is

a rarely used capability that’s used primarily by advanced C++ programmers.

• Declaring a pointer to a function requires that you enclose the pointer name preceded by an * in
parentheses. A pointer to a function must specify, as part of its type, both the return type of the
function it points to and the parameter list of that function.

Section 23.7 Multiple Inheritance
• In C++, a class may be derived from more than one base class—a technique known as multiple

inheritance (p. 950), in which a derived class inherits the members of two or more base classes.

• A common problem with multiple inheritance is that each of the base classes might contain data
members or member functions that have the same name. This can lead to ambiguity problems
when you attempt to compile.

• The is-a relationships of single inheritance also apply in multiple-inheritance relationships.

• Multiple inheritance is used in the C++ Standard Library to form class basic_iostream. Class
basic_ios is the base class for both basic_istream and basic_ostream. Class basic_iostream
inherits from both basic_istream and basic_ostream. In multiple-inheritance hierarchies, the
situation described here is referred to as diamond inheritance.

Section 23.8 Multiple Inheritance and virtual Base Classes
• The ambiguity in diamond inheritance (p. 955) occurs when a derived-class object inherits two

or more base-class subobjects (p. 956). The problem of duplicate subobjects is resolved with vir-
tual inheritance. When a base class is inherited as virtual, only one subobject will appear in the
derived class—a process called virtual base-class inheritance (p. 957).

• Implementing hierarchies with virtual base classes is simpler if default constructors are used for
the base classes. If a virtual base class provides a constructor that requires arguments, the im-
plementation of the derived classes becomes more complicated, because the most derived class
(p. 959) must explicitly invoke the virtual base class’s constructor to initialize the members in-
herited from the virtual base class.

Self-Review Exercises
23.1 Fill in the blanks for each of the following:

a) The operator qualifies a member with its namespace.
b) The operator allows an object’s “const-ness” to be cast away.
c) Because an unnamed namespace has an implicit using directive, its members appear to

occupy the , are accessible directly and do not have to be qualified with a
namespace name.

cpphtp9_23_OtherTopics.fm Page 961 Thursday, January 3, 2013 12:15 PM

962 Chapter 23 Other Topics

d) Operator is the operator keyword for inequality.
e) allows a class to be derived from more than one base class.
f) When a base class is inherited as , only one subobject of the base class will ap-

pear in the derived class.

23.2 State which of the following are true and which are false. If a statement is false, explain why.
a) When passing a non-const argument to a const function, the const_cast operator

should be used to cast away the “const-ness” of the function.
b) A mutable data member cannot be modified in a const member function.
c) namespaces are guaranteed to be unique.
d) Like class bodies, namespace bodies also end in semicolons.
e) namespaces cannot have namespaces as members.

Answers to Self-Review Exercises
23.1 a) binary scope resolution (::). b) const_cast. c) global namespace. d) not_eq. e) multiple
inheritance. f) virtual.

23.2 a) False. It’s legal to pass a non-const argument to a const function. However, when pass-
ing a const reference or pointer to a non-const function, the const_cast operator
should be used to cast away the “const-ness” of the reference or pointer

b) False. A mutable data member is always modifiable, even in a const member function.
c) False. Programmers might inadvertently choose the namespace already in use.
d) False. namespace bodies do not end in semicolons.
e) False. namespaces can be nested.

Exercises
23.3 (Fill in the Blanks) Fill in the blanks for each of the following:

a) Keyword specifies that a namespace or namespace member is being used.
b) Operator is the operator keyword for logical OR.
c) Storage specifier allows a member of a const object to be modified.
d) The qualifier specifies that an object can be modified by other programs.
e) Precede a member with its name and the scope resolution operator

if the possibility exists of a scoping conflict.
f) The body of a namespace is delimited by .
g) For a const object with no data members, operator must be used

every time a member is to be modified.

23.4 (Currency namespace) Write a namespace, Currency, that defines constant members ONE,
TWO, FIVE, TEN, TWENTY, FIFTY and HUNDRED. Write two short programs that use Currency. One pro-
gram should make all constants available and the other should make only FIVE available.

23.5 (Namespaces) Given the namespaces in Fig. 23.15, determine whether each statement is true
or false. Explain any false answers.

a) Variable kilometers is visible within namespace Data.
b) Object string1 is visible within namespace Data.
c) Constant POLAND is not visible within namespace Data.
d) Constant GERMANY is visible within namespace Data.
e) Function function is visible to namespace Data.
f) Namespace Data is visible to namespace CountryInformation.
g) Object map is visible to namespace CountryInformation.
h) Object string1 is visible within namespace RegionalInformation.

cpphtp9_23_OtherTopics.fm Page 962 Thursday, January 3, 2013 12:15 PM

 Exercises 963

23.6 (mutable vs. const_cast) Compare and contrast mutable and const_cast. Give at least one
example of when one might be preferred over the other. [Note: This exercise does not require any
code to be written.]

23.7 (Modifying a const Variable) Write a program that uses const_cast to modify a const vari-
able. [Hint: Use a pointer in your solution to point to the const identifier.]

23.8 (virtual Base Classes) What problem do virtual base classes solve?

23.9 (virtual Base Classes) Write a program that uses virtual base classes. The class at the top
of the hierarchy should provide a constructor that takes at least one argument (i.e., do not provide
a default constructor). What challenges does this present for the inheritance hierarchy?

23.10 (Find the Code Errors) Find the error(s) in each of the following. When possible, explain
how to correct each error.

a) namespace Name {
 int x;
 int y;
 mutable int z;
};

b) int integer = const_cast< int >(double);
c) namespace PCM(111, "hello"); // construct namespace

1 namespace CountryInformation
2 {
3 using namespace std;
4 enum Countries { POLAND, SWITZERLAND, GERMANY,
5 AUSTRIA, CZECH_REPUBLIC };
6 int kilometers;
7 string string1;
8
9 namespace RegionalInformation

10 {
11 short getPopulation(); // assume definition exists
12 MapData map; // assume definition exists
13 } // end RegionalInformation
14 } // end CountryInformation
15
16 namespace Data
17 {
18 using namespace CountryInformation::RegionalInformation;
19 void *function(void *, int);
20 } // end Data

Fig. 23.15 | namespaces for Exercise 23.5.

cpphtp9_23_OtherTopics.fm Page 963 Thursday, January 3, 2013 12:15 PM

	M18_DEIT7391_09_SE_765-776
	M19_DEIT7391_09_SE_777-821
	M20_DEIT7391_09_SE_822-848
	M21_DEIT7391_09_SE_849-878
	M22_DEIT7391_09_SE_879-937
	M23_DEIT7391_09_SE_938-964

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Thomson Learning Techno Task Force settings for Acrobat 6. To be used by Compositors for all Thomson Learning approved Print vendors. January 2005.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Thomson Learning Techno Task Force settings for Acrobat 6. To be used by Compositors for all Thomson Learning approved Print vendors. January 2005.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Thomson Learning Techno Task Force settings for Acrobat 6. To be used by Compositors for all Thomson Learning approved Print vendors. January 2005.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Thomson Learning Techno Task Force settings for Acrobat 6. To be used by Compositors for all Thomson Learning approved Print vendors. January 2005.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Thomson Learning Techno Task Force settings for Acrobat 6. To be used by Compositors for all Thomson Learning approved Print vendors. January 2005.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Thomson Learning Techno Task Force settings for Acrobat 6. To be used by Compositors for all Thomson Learning approved Print vendors. January 2005.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

